Reference

1. Stein C (2016) Opioid Receptors.Annual review of medicine 67:433-451.
2. Imam MZ, Kuo A, Ghassabian S, & Smith MT (2018) Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression.Neuropharmacology 131:238-255.
3. Zhu W, Chernew ME, Sherry TB, & Maestas N (2019) Initial Opioid Prescriptions among U.S. Commercially Insured Patients, 2012-2017. The New England journal of medicine380(11):1043-1052.
4. Neuman MD, Bateman BT, & Wunsch H (2019) Inappropriate opioid prescription after surgery. Lancet (London, England) 393(10180):1547-1557.
5. Matthes HW, et al. (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature383(6603):819-823.
6. Bohn LM, et al. (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2.Science (New York, N.Y.) 286(5449):2495-2498.
7. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, & Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence.Nature 408(6813):720-723.
8. Bohn LM, Lefkowitz RJ, & Caron MG (2002) Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice. The Journal of neuroscience : the official journal of the Society for Neuroscience22(23):10494-10500.
9. Raehal KM & Bohn LM (2011) The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics.Neuropharmacology 60(1):58-65.
10. Przewlocka B, et al.(2002) Knockdown of spinal opioid receptors by antisense targeting beta-arrestin reduces morphine tolerance and allodynia in rat.Neuroscience letters 325(2):107-110.
11. Menchine M, et al. (2017) Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Science (New York, N.Y.) 171(5):1165-1175.e1113.
12. Manglik A, et al. (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537(7619):185-190.
13. Chen XT, et al. (2013) Structure-activity relationships and discovery of a G protein biased mu opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan- 9-yl]ethyl})amine (TRV130), for the treatment of acute severe pain.Journal of medicinal chemistry 56(20):8019-8031.
14. Koehl A, et al. (2018) Structure of the micro-opioid receptor-Gi protein complex. Nature558(7711):547-552.
15. Huang W, et al. (2015) Structural insights into micro-opioid receptor activation. Nature524(7565):315-321.
16. Smith JS, Lefkowitz RJ, & Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nature reviews. Drug discovery 17(4):243-260.
17. Wanka L, et al. (2017) C-terminal motif of human neuropeptide Y4 receptor determines internalization and arrestin recruitment. Cellular signalling29:233-239.
18. Kenakin T & Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nature reviews. Drug discovery12(3):205-216.
19. Weinstein JABH (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods in Neurosciences 25:366-428.
20. Black JW & Leff P (1983) Operational models of pharmacological agonism. Proceedings of the Royal Society of London. Series B, Biological sciences220(1219):141-162.
21. van der Westhuizen ET, Breton B, Christopoulos A, & Bouvier M (2014) Quantification of ligand bias for clinically relevant beta2-adrenergic receptor ligands: implications for drug taxonomy. Molecular pharmacology 85(3):492-509.
22. Bohn LM & Aube J (2017) Seeking (and Finding) Biased Ligands of the Kappa Opioid Receptor. ACS medicinal chemistry letters 8(7):694-700.
23. Stott LA, Hall DA, & Holliday ND (2016) Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.Biochemical pharmacology 101:1-12.
24. Staus DP, et al. (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535(7612):448-452.
25. Manglik A & Kruse AC (2017) Structural Basis for G Protein-Coupled Receptor Activation. 56(42):5628-5634.
26. Cheng JX, et al. (2018) Computational insights into the G-protein-biased activation and inactivation mechanisms of the mu opioid receptor. Acta pharmacologica Sinica 39(1):154-164.
27. Rasmussen SG, et al.(2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549-555.
28. Zhang Y, et al. (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546(7657):248-253.
29. Liang YL, et al. (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex.Nature 546(7656):118-123.
30. Hughes J, et al. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258(5536):577-580.
31. Gilbert PE & Martin WR (1976) The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog.The Journal of pharmacology and experimental therapeutics198(1):66-82.
32. Burford NT, Traynor JR, & Alt A (2015) Positive allosteric modulators of the mu-opioid receptor: a novel approach for future pain medications. British journal of pharmacology 172(2):277-286.
33. Anonymous (Final Summary Minutes of the Anesthetic and Analgesic Drug Products Advisory Committee Meeting October 11, 2018.