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Abstract. In this paper, we consider the following fractional Schrödinger-

Poisson system:{
(−∆)su+ u+ λK(x)ϕu = a(x)|u|p−2u+ b(x)|u|2u in R3,
(−∆)tϕ = K(x)u2 in R3,

where s, t ∈ (0, 1), λ > 0, 2 < p < 4, K(x), a(x) and b(x) are nonnegative

functions satisfying some suitable conditions. We establish the existence of
nontrivial solutions by using a refinement constrained minimization methods
combining with compactness-concentration arguments.

1. Introduction

In this paper, we consider the following fractional Schrödinger-Poisson system{
(−∆)su+ u+ λK(x)ϕu = a(x)|u|p−2u+ b(x)|u|2u in R3,
(−∆)tϕ = K(x)u2 in R3,

(1.1)

where λ > 0, 2 < p < 4, s, t ∈ (0, 1), 2s + 2t > 3 and K(x), a(x), b(x) are
nonnegative functions. we assume that the function a(x) and b(x), K(x) satisfy
the following assumptions:
(H1) a(x) is a positive continuous function on R3, then we have

lim
x→∞

a(x) = a∞ > 0, amax := sup
x∈R3

a(x) <
a∞

A(p)
p−2
2

,

where

A(p) =


(4− p

2

) 1
p−2

, if 2 < p ≤ 3,

1

2
, if 3 < p < 4;

(H2) K(x) ∈ L∞(R3)\{0} is a non-negative function on R3 and

lim
x→∞

K(x) = K∞ ≥ 0;

(H3) b(x) ∈ L∞(R3) is a non-negative continuous function on R3 such that

lim
x→∞

b(x) = 0.
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When s = t = 1, problem (1.1) reduces to the following system{
−∆u+ u+K(x)ϕu = a(x)|u|p−2u+ b(x)|u|2u in R3,
−∆ϕ = K(x)u2 in R3 (1.2)

and its more general form is written as{
−∆u+ V (x)u+K(x)ϕu = f(x, u) in R3,
−∆ϕ = K(x)u2 in R3,

(1.3)

where f(x, u) ∈ C(R3 × R,R). Problem (1.3) can be regarded as a model to
describe the interaction between charged particles and electrostatic field, which
was proposed by Benci-Fortunato [5] in quantum mechanics. The nonlinearity
f(x, u) represents the particles interacting with each other, u and ϕ represent the
wave functions associated with the particle and the electric potential. We refer the
interesting readers to see [1] for more detailed information on mathematical and
physical backgrounds.

In recent years, Schrödinger-Poisson systems with a local nonlinear term f(x, u)
have been studied in depth. For system (1.3), there have been extensive studies
under different assumptions of V , K and f . For example, see [2, 3, 5, 7, 8, 9, 6,
14, 15, 19, 30, 28, 32, 31] and the references therein. In the case of the critical
f = |u|p−2u + u5 with 4 < p < 6 and the subcritical 3 < p < 6, the existence of
ground state solutions were proved in [3]. For the case p ≤ 2 or p ≥ 6, the reader
may see [9] and for the case 2 < p < 6, can see [2, 3, 7, 8, 19]. When V is non-radial,
K ≡ 1 and f = |u|p−2u, system (1.3) has a ground state solution in [3] and [30]
for 4 < p < 6 and 3 < p ≤ 4. In [26], when V ≡ 1 and f = a(x)|u|p−2u with
4 < p < 6 and λ ∈ R\{0}, Varia proved the exist of ground state solutions in the
case of 4 < p < 6 if λ > 0 and 2 < p < 6 if λ < 0.

On the other hand, for problem (1.1), we give its more general form by{
(−∆)su+ V (x)u+K(x)ϕu = f(x, u) in R3,
(−∆)tϕ = K(x)u2 in R3.

(1.4)

In recent years, the system (1.4) are receving a great attention. For example, in
[29], Zhang, Do ó and Squassina considered the existence of radial ground state
solution to the fractional Schrödinger-poisson system with a general subcritical or
critical nonlinearity as V (x) = 0 ,K(x) = λ > 0. In [23], when f(x) = |u|p−1u,
Teng established the existence of ground state solution to the nonlinear fractional
Södinger-Poisson system (1.4) when 2 < p < 2∗s, and system (1.4) has a trivial
solution when 1 < p ≤ 2, K(x) = λ ≥ 1

4 or p = 2∗s − 1. In [22], Teng studied
the existence of a nontrivial ground state solution through using the method of
Pohozaev-Nehari manifold and the arguments of Brezis-Nirenberg, the monotonic
trick and global compactness Lemma for f(x, u) = µ|u|q−1u + |u|2∗s−2u with q ∈
(1, 2∗s − 1). For other related works, we refer the readers to see [13, 18, 20, 24, 25]
and so on.

As far as we know, there are few results about the case of 2 < p ≤ 4 and λ > 0.
In very recent, Sun and Wu, Feng [21] established the existence of ground state solu-
tions and positive solutions to the non-autonomous fractional Schrödinger-poisson
system (1.3) when f(x, u) = a(x)|u|p−2u. Motivated by the above mentioned work-
s, the purpose of this study is to prove the existence results of positive solutions for
system (1.1) under 2 < p < 4. Observed that the usual Nehari manifold is not ideal
choices because the energy functional I constrained on its Nehari manifold is not
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bounded below when 2 < p < 4. To kill this obstacle, based on recent study [21],
through introducing a new set N(c), which is sub-level set of the Nehari manifold

N(c) = {u ∈ N : I(u) < c},

where N is the Nehari manifold and c ∈ R, N(c) is a subset of the Nehari manifold
and it can be divided into two parts

N(c) = N (1)(c) ∪N (2)(c), N (1)(c) = {u ∈ N(c) : ∥u∥Hs < C1}

and

N (2)(c) = {u ∈ N(c) : ∥u∥Hs > C2}.
Moreover, local minimum of I on each set is a critical point of I in Hs(R3). The
advantage of this subset is that the functional I constrained on N (1)(c) is bounded
below so that we can consider the corresponding minimum problem inf

u∈N(1)(c)
I(u).

Applying this approach, we can prove the existence of nontrivial solutions of system
(1.1). Compare with the work of [21], we introduce a perturbation term b(x)u3,
this will make more careful analysis, except that our problem (1.1) is a class of
nonlocal problem.

Now, we introduce some notations.

(a): S is the best constants for the embedding of Hs(R3) in L
12

3+2t (R3).
(b): St is the best constants for the embedding of Dt,2(R3) in L2∗t (R3).
(c): Sp is the best Sobolev constant for the embedding of Hs(R3) in Lp(R3).

Remark 1.1. For 2 < p < 4, it is not difficult to show that

A(p) <
1√
e
< 1 and A(p)(

2

4− p
)

2
p−2 > 1.

Our main results are stated as follows.

Theorem 1.2. Suppose that 2 < p < 4, K(x) = K∞ > 0 and a(x) = a∞ > 0,
b(x) = b∞ = 0. Then for each 0 < λ < Λ, system (1.1) has a positive solution
(wλ, ϕ

t
wλ

), and it satisfies

0 < ∥wλ∥Hs <
( 2Sp

p

a∞(4− p)

) 1
p−2

and

α∞
0 < α∞,−

λ := J∞
λ (wλ) <

A(p)(p− 2)

2p

( 2Sp
p

a∞(4− p)

) 2
p−2

.

Theorem 1.3. Suppose that 2 < p < 4, K∞ > 0 and conditions (H1)-(H3) hold.
In addition, we assume that
(H4):

∫
R3 [a(x) − a∞]wp

λdx ≥ 0 and
∫
R3 K(x)ϕtwλ

w2
λdx ≤

∫
R3 K∞ϕ

t
wλ
w2

λdx but the
equality signs can not hold at the same time, where wλ is the positive solution is
given in Theorem 1.2.

Then for each 0 < λ < Λ, system (1.1) has a nontrivial solution (vλ, ϕ
t
vλ
) ∈

Hs(R3)×Dt,2(R3) and it satisfies

0 < ∥vλ∥Hs <
( 2Sp

p

amax(4− p)

) 1
p−2
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and
p− 2

4p
C0 ≤ Jλ(vλ) < α∞,−

λ .

Theorem 1.4. Suppose that 2 < p < 4, K∞ ≥ 0 and conditions (H1)-(H3) hold.
In addition, we assume that
(H5):

∫
R3 [a(x)− a∞]wp

0dx > 0 where w0 is the unique positive solution of equation

(−∆)su+ u = a∞|u|p−2u in R3. (E∞
0 )

Then there exists 0 < Λ̂ < Λ such that for each 0 < λ < Λ̂, system (1.1) has a
nontrivial solution (u0, ϕ

t
u0
) ∈ Hs(R3)×Dt,2(R3) and it satisfies

0 < ∥u0∥Hs <
( 2Sp

p

amax(4− p)

) 1
p−2

and

p− 2

4p
C0 ≤ Jλ(u0) <

{
α∞,−
λ , if K∞ > 0,

α∞
0 , if K∞ = 0.

The structure of this paper is organized as follows. In section 2, we introduce
some technical Lemmas. In section 3, we prove Theorem1.2. Section 4 and Section
5 are devoted to proving Theorem1.3 and Theorem1.4.

2. Preliminaries

For the second equation of system (1.1), applying the Lax-Milgram theorem, for
each u ∈ Hs(R3), when 4s+ 2t ≥ 3, there exists a unique ϕtu ∈ Dt,2(R3) such that

ϕtu(x) = Ct

∫
R3

K(y)u2(y)

|x− y|3−2t
dy where Ct = π− 3

2 2−2tΓ(
3−2t
2 )

Γ(t)
, (2.1)

and then (−∆)tϕ = K(x)|u|2 in R3. Replacing it into the first equation of system
(1.1), we get that

(−∆)su+ u+ λK(x)ϕtuu = a(x)|u|p−2u+ b(x)|u|2u in R3. (Eλ)

Equation (Eλ) is variational, and its solutions are the critical points of the func-
tional Jλ(u) defined in Hs(R3) as

Jλ(u) =
1

2
∥u∥2Hs +

λ

4

∫
R3

K(x)ϕtuu
2dx− 1

p

∫
R3

a(x)|u|pdx− 1

4

∫
R3

b(x)|u|4dx.

Obviously, Jλ ∈ C1(Hs(R3),R) and

⟨J ′
λ(u), φ⟩ =

∫
R3

(−∆)
s
2u(−∆)

s
2φ+ uφdx+ λ

∫
R3

K(x)ϕtuuφdx

−
∫
R3

a(x)|u|p−2uφdx−
∫
R3

b(x)|u|2uφdx,

for any φ ∈ Hs(R3), where J ′
λ denotes the Fréchet derivative of Jλ. Note that

(u, ϕ) ∈ Hs(R3)×Dt,2(R3) is a solution of system (1.1) if and only if u is a critical
point of Jλ and ϕ = ϕtu.

Define the Nehari manifold for the functional Jλ as follows

Mλ := {u ∈ Hs(R3)\{0} : ⟨J ′
λ(u), u⟩ = 0},
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clearly, u ∈Mλ if and only if

∥u∥2Hs + λ

∫
R3

K(x)ϕtuu
2dx−

∫
R3

a(x)|u|pdx−
∫
R3

b(x)|u|4dx = 0.

Let hλ,u : t → Jλ(tu) for t > 0, such map was introduced by Drábek-Pohozaev
in [10], which is known as fibering map. For u ∈ Hs(R3), we have

hλ,u(t) =
t2

2
∥u∥2Hs +

λt4

4

∫
R3

K(x)ϕtuu
2dx− tp

p

∫
R3

a(x)|u|pdx− t4

4

∫
R3

b(x)|u|4dx,

h′λ,u(t) = t∥u∥2Hs + λt3
∫
R3

K(x)ϕtuu
2dx− tp−1

∫
R3

a(x)|u|pdx− t3
∫
R3

b(x)|u|4dx,

h′′λ,u(t) = ∥u∥2Hs+3λt2
∫
R3

K(x)ϕtuu
2dx−(p−1)tp−2

∫
R3

a(x)|u|pdx−3t2
∫
R3

b(x)|u|4dx.

Obviously, h′λ,u(t) = 0 if and only if tu ∈Mλ. Particularly, h
′
λ,u(1) = 0 if and only

if u ∈Mλ. As usual, in order to find the local minimizer of Jλ, we split the set Mλ

into three parts as follows

M+
λ = {u ∈Mλ : h′′λ,u(1) > 0},

M0
λ = {u ∈Mλ : h′′λ,u(1) = 0},

M−
λ = {u ∈Mλ : h′′λ,u(1) < 0}.

Lemma 2.1. For 2 < p < 4, Jλ(u) is coercive and bounded below on M−
λ . For any

u ∈M−
λ , Jλ(u) ≥ p−2

4p C0.

Proof. For all u ∈Mλ, by the Sobolev inequality, we have that

∥u∥2Hs ≤ ∥u∥2Hs + λ

∫
R3

K(x)ϕtuu
2dx =

∫
R3

a(x)|u|pdx+

∫
R3

b(x)|u|4dx

≤ amaxS
−p
p ∥u∥pHs + bmaxS

−4
4 ∥u∥4Hs ,

thus

1 ≤ amaxS
−p
p ∥u∥p−2

Hs + bmaxS
−4
4 ∥u∥2Hs ≤ max{amaxS

−p
p , bmaxS

−4
4 }(∥u∥p−2

Hs + ∥u∥2Hs)

≤ 2max{amaxS
−p
p , bmaxS

−4
4 }max{∥u∥p−2

Hs , ∥u∥2Hs},

which implies that ∥u∥2Hs is bounded below, i.e.,

∥u∥2Hs ≥ C0 > 0, (2.2)

where C0 is a positive constant only dependent of amax, bmax, S4 and Sp. Thus, for
each u ∈M−

λ , by (2.2) and the definition of h′′λ,u(1), we deduce that

Jλ(u) =
1

4
∥u∥2Hs −

4− p

4p

∫
R3

a(x)|u|pdx ≥ p− 2

4p
∥u∥2Hs ≥ p− 2

4p
C0.

�

Lemma 2.2. Assume that u0 is a local minimizer for Jλ on Mλ and u0 /∈ M0
λ,

then J ′
λ(u0) = 0.

Proof. Let

G(u) = ∥u∥2Hs + λ

∫
R3

K(x)ϕtuu
2dx−

∫
R3

a(x)|u|pdx−
∫
R3

b(x)|u|4dx.



6 S. ZHANG AND K. TENG

Using the Lagrange multiplier theorem, there exists µ ∈ R such that

J ′
λ(u) + µG′(u) = 0.

Next, we prove that µ = 0. Otherwise, we have

⟨J ′
λ(u), u⟩+ µ⟨G′(u), u⟩ = 0,

that is

∥u∥2Hs + λ

∫
R3

K(x)ϕtuu
2dx−

∫
R3

a(x)|u|pdx−
∫
R3

b(x)|u|4dx

+ µ
[
2∥u∥2Hs + 4λ

∫
R3

K(x)ϕtuu
2dx− p

∫
R3

a(x)|u|pdx− 4

∫
R3

b(x)|u|4dx
]
= 0.

Since u ∈Mλ, then ⟨J ′
λ(u), u⟩ = 0. So we deduce

2∥u∥2Hs + 4λ

∫
R3

K(x)ϕtuu
2dx− p

∫
R3

a(x)|u|pdx− 4

∫
R3

b(x)|u|4dx = 0,

that is

∥u∥2Hs + 3λ

∫
R3

K(x)ϕtuu
2dx− (p− 1)

∫
R3

a(x)|u|pdx− 3

∫
R3

b(x)|u|4dx = 0,

which means that u ∈ M0
λ, contradiction with u ̸∈ M0

λ . Thus µ = 0 and then
J ′
λ(u) = 0.

�

Lemma 2.3. For each u ∈ Hs(R3), the following two inequalities are true.
(i)ϕtu ≥ 0;

(ii)
∫
R3 K(x)ϕtuu

2 ≤ K2
maxS

−1

t S−2∥u∥4Hs .

Proof. It follows from (2.1) that ϕtu ≥ 0 holds. We will prove (ii) as follows.
By the definition of ϕtu and Sobolev’s inequality, we obtain

∥ϕtu∥2Dt,2 =

∫
R3

K(x)ϕtuu
2dx ≤ Kmax

(∫
R3

|ϕtu|2
∗
t dx

) 1
2∗t
(∫

R3

|u(x)|
12

3+2t dx
) 3+2t

6

≤ KmaxS
− 1

2

t ∥ϕtu∥Dt,2

(∫
R3

|u(x)|
12

3+2t dx
) 3+2t

6

≤ KmaxS
− 1

2

t S−1∥u∥2Hs∥ϕtu∥Dt,2 ,

which yields the following

∥ϕtu∥Dt,2 ≤ KmaxS
− 1

2

t S−1∥u∥2Hs .

Thus, by Höder’s inequality, we have that∫
R3

K(x)ϕtuu
2 ≤ Kmax∥ϕtu∥L2∗t ∥u∥

2

L
12

3+2t
≤ KmaxS

− 1
2

t S−1∥u∥2Hs∥ϕtu∥Dt,2

≤ K2
maxS

−1

t S−2∥u∥4Hs .

Consequently, the conclusion (ii) follows. �
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For 2 < p < 4 and any u ∈Mλ with Jλ(u) < A(p)(p−2
2p )(

2Sp
p

a∞(4−p) )
2

p−2 , we deduce

that

A(p)(
p− 2

2p
)(

2Sp
p

a∞(4− p)
)

2
p−2 > Jλ(u)

=
1

2
∥u∥2Hs +

λ

4

∫
R3

K(x)ϕtuu
2dx− 1

p

∫
R3

a(x)|u|pdx− 1

4

∫
R3

b(x)|u|4dx

=
p− 2

2p
∥u∥2Hs −

p− 4

4p
λ

∫
R3

K(x)ϕtuu
2dx+

4− p

4p

∫
R3

b(x)|u|4dx

≥p− 2

2p
∥u∥2Hs −

p− 4

4p
λ

∫
R3

K(x)ϕtuu
2dx

≥p− 2

2p
∥u∥2Hs −

4− p

4p
λK2

maxS
−1

t S−2∥u∥4Hs .

(2.3)

Let

Λ =
(p− 2)StS

2

2(4− p)K2
∞

(a∞(4− p)2

2pSp
p

) 2
p−2

and

Λ0 =
[
1−A(p)(

amax

a∞
)

2
p−2

]
(
a∞
Sp
p
)

2
p−2

StS
2

K2
max

, (2.4)

where Kmax = sup
x∈R3

K(x).

Moreover, consider the following quadratic equation

1

4

(
1−A(p)

(amax

a∞

) 2
p−2

)(a∞(4− p)

pSp
p

) 2
p−2

x2−x+A(p)
( 2Sp

p

a∞(4− p)

) 2
p−2

= 0, (2.5)

where x = ∥u∥2Hs . It is not difficult to get its solutions,

x0 =

2
(
1 +

√
1−A(p)

(
1−A(p)(amax

a∞
)

2
p−2

)
( 2p )

2
p−2

)
(1−A(p)(amax

a∞
)

2
p−2 )( 2p )

2
p−2

( 2Sp
p

a∞(4− p)

) 2
p−2

, (2.6)

x1 =

2
(
1−

√
1−A(p)

(
1−A(p)(amax

a∞
)

2
p−2

)
( 2p )

2
p−2

)
(1−A(p)(amax

a∞
)

2
p−2 )( 2p )

2
p−2

( 2Sp
p

a∞(4− p)

) 2
p−2

. (2.7)

We infer that

x0 >2
( 2Sp

p

a∞(4− p)

) 2
p−2

,( 2Sp
p

amax(4− p)

) 2
p−2

> x1 >A(p)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

(2.8)

In fact, we denote G = (1− A(p)(amax

a∞
)

2
p−2 )( 2p )

2
p−2 . By (H1), we can easily see

that 0 < G < 1. By Remark1.1, we have

1−A(p)G > (1−A(p)G)2.

By (H1), we have A(p) <
(

a∞
amax

) 2
p−2

. Directly calculations, we have

1−
√
1−A(p)G <

G

2

( a∞
amax

) 2
p−2

,
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thus, we have

x1 =
2
(
1−

√
1−A(p)G

)
G

( 2Sp
p

a∞(4− p)

) 2
p−2

<
G

2

( a∞
amax

) 2
p−2 2

G

( 2Sp
p

a∞(4− p)

) 2
p−2

=
( 2Sp

p

amax(4− p)

) 2
p−2

.

On the other hand, by calculations, we have

2(1−
√
1−A(p)G) > A(p)G,

and then

x1 =
2
(
1−

√
1−A(p)G

)
G

( 2Sp
p

a∞(4− p)

) 2
p−2

>
A(p)G

G

( 2Sp
p

a∞(4− p)

) 2
p−2

= A(p)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

By using the fact of 1−A(p)G > (1−A(p)G)2 and 0 < G < 1, we have

x0 =
2
(
1 +

√
1−A(p)G

)
G

( 2Sp
p

a∞(4− p)

) 2
p−2

>
2
(
1 + 1−A(p)G

)
G

( 2Sp
p

a∞(4− p)

) 2
p−2

=
2
(
2−A(p)G

)
G

( 2Sp
p

a∞(4− p)

) 2
p−2 ≥ 2

( 2Sp
p

a∞(4− p)

) 2
p−2

,

which leads to x0 > 2
(

2Sp
p

a∞(4−p)

) 2
p−2

. Thus, (2.8) is proved.

For 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0, according to (2.3) and (2.6), (2.7), (2.8), then

there exist two positive numbers D̂1 and D̂2 satisfying√
A(p)

( 2Sp
p

a∞(4− p)

) 1
p−2

< D̂1 <
( 2Sp

p

amax(4− p)

) 1
p−2

<
√
2
( 2Sp

p

a∞(4− p)

) 1
p−2

< D̂2,

such that

∥u∥Hs < D̂1 or ∥u∥Hs > D̂2.

Clearly, we can get that D̂1 → ∞ as p→ 4−.
Therefore, we define

M̃λ =
{
u ∈Mλ : Jλ(u) < A(p)(

p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

}
=M

(1)
λ ∪M (2)

λ , (2.9)

where

M
(1)
λ :=

{
u ∈ M̃λ : ∥u∥Hs < D̂1

}
, M

(2)
λ :=

{
u ∈ M̃λ : ∥u∥Hs > D̂2

}
.

Furthermore, it is easy to see that

∥u∥Hs < D̂1 <
( 2Sp

p

amax(4− p)

) 1
p−2

, for any u ∈M
(1)
λ , (2.10)

∥u∥Hs > D̂2 >
√
2
( 2Sp

p

a∞(4− p)

) 1
p−2

, for any u ∈M
(2)
λ . (2.11)
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Lemma 2.4. For 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0, we have M

(1)
λ ⊂ M−

λ , M
(2)
λ ⊂ M+

λ

are C1 sub-manifolds. Furthermore, each local minimizer of the functional Jλ in

the sub-manifolds M
(1)
λ and M

(2)
λ is a critical point of Jλ in Hs(R3).

Proof. For u ∈M
(1)
λ , by (2.10) and Sobolev’s inequality, we have that

h′′λ,u(1) = −2∥u∥2Hs + (4− p)

∫
R3

a(x)|u|pdx ≤ −2∥u∥2Hs + (4− p)S−p
p amax∥u∥pHs < 0,

which means that M
(1)
λ ⊂M−

λ .

For u ∈M
(2)
λ , by (2.11), we deduce that

1

4
∥u∥2Hs −

(4− p)

4p

∫
R3

a(x)|u|pdx = Jλ(u) < A(p)
p− 2

2p

( 2Sp
p

a∞(4− p)

) 2
p−2

<
p− 2

2p

( 2Sp
p

a∞(4− p)

) 2
p−2

<
p− 2

4p
∥u∥2Hs ,

which implies

2∥u∥2Hs < (4− p)

∫
R3

a(x)|u|pdx, for any u ∈M
(2)
λ . (2.12)

From (2.12), it follows that

h′′λ,u(1) = −2∥u∥2Hs + (4− p)

∫
R3

a(x)|u|pdx > 0.

Thus, M
(2)
λ ⊂ M+

λ . According to Lemma 2.2 , we know that each local minimizer

of the functional Jλ in the sub-manifolds M
(1)
λ and M

(2)
λ is a critical point of Jλ in

Hs(R3). The proof is completed. �

For u ∈ Hs(R3) \ {0} , we define

Ta(u) =
( ∥u∥2Hs∫

R3 a(x)|u|pdx

) 1
p−2

.

Lemma 2.5. For each λ > 0 and u ∈ Hs(R3) \ {0} satisfying

(H6) :

∫
R3

a(x)|u|pdx > p

4− p

(2λ(4− p)K2
max

(p− 2)StS2

) p−2
2 ∥u∥pHs

and

λ

∫
R3

K(x)ϕtuu
2dx >

∫
R3

b(x)|u|4dx,

there exists a constant t̂
(0)
λ > ( p

4−p )
1

p−2Ta(u) such that

inf
t≥0

Jλ(tu) = inf
( p
4−p )

1
p−2 Ta(u)<t<t̂

(0)
λ

Jλ(tu) < 0. (2.13)

Proof. For any u ∈ Hs(R3) \ {0}, and t > 0, one has

Jλ(tu) =
t2

2
∥u∥2Hs +

λt4

4

∫
R3

K(x)ϕtuu
2dx− tp

p

∫
R3

a(x)|u|pdx− t4

4

∫
R3

b(x)|u|4dx

=t4
[
g(t) +

λ

4

∫
R3

K(x)ϕtuu
2dx− 1

4

∫
R3

b(x)|u|4dx
]
= hλ,u(t),
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where

g(t) =
t−2

2
∥u∥2Hs −

tp−4

p

∫
R3

a(x)|u|pdx.

It is obvious that Jλ(tu) = 0 if and only if

g(t) +
λ

4

∫
R3

K(x)ϕtuu
2dx− 1

4

∫
R3

b(x)|u|4dx = 0.

A direct calculation shows that

g(t̂a) = 0, lim
t→0+

g(t) = ∞ and lim
t→∞

g(t) = 0,

where t̂a = (p2 )
1

p−2Ta(u). Hence,

g′(t) =− t−3∥u∥2Hs −
p− 4

p
tp−5

∫
R3

a(x)|u|pdx = t−3
[
− ∥u∥2Hs +

4− p

p
tp−2

∫
R3

a(x)|u|pdx
]
,

which implies that g(t) is decreasing when 0 < t < ( p
4−p )

1
p−2Ta(u) and is increasing

when t > ( p
4−p )

1
p−2Ta(u). Thus, we have that

inf
t>0

g(t) = g
[
(

p

4− p
)

1
p−2Ta(u)

]
= − p− 2

2(4− p)

( p∥u∥2Hs

(4− p)
∫
R3 a(x)|u|pdx

)− 2
p−2 ∥u∥2Hs .

By Lemma 2.3 and Sobolev’s inequality, for each u ∈ Hs(R3) \ {0} satisfying∫
R3

a(x)|u|pdx > p

4− p

(2λ(4− p)K2
max

(p− 2)StS2

) p−2
2 ∥u∥pHs ,

we obtain

inf
t>0

g(t) =− p− 2

2(4− p)

( p∥u∥2Hs

(4− p)
∫
R3 a(x)|u|pdx

)− 2
p−2 ∥u∥2Hs

<− λK2
maxS

−1

t S−2∥u∥4Hs ≤ −λ
4

∫
R3

K(x)ϕtuu
2dx

<− λ

4

∫
R3

K(x)ϕtuu
2dx+

1

4

∫
R3

b(x)|u|4dx.

From the hypothesis, there exist t̂
(0)
λ and t̂

(1)
λ satisfying

0 < t̂
(1)
λ < (

p

4− p
)

1
p−2Ta(u) < t̂

(0)
λ , (2.14)

such that

g(t̂
(j)
λ ) +

λ

4

∫
R3

K(x)ϕtuu
2dx− 1

4

∫
R3

b(x)|u|4dx = 0 for j = 0, 1,

that is,

Jλ(t̂
(j)
λ u) = 0 for j = 0, 1.

Therefore, for each λ > 0 and u ∈ Hs(R3) \ {0} satisfying∫
R3

a(x)|u|pdx > p

4− p

(2λ(4− p)K2
max

(p− 2)StS2

) p−2
2 ∥u∥pHs

,
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we have

Jλ

[
(

p

4− p
)

1
p−2Ta(u)u

]
=
[
(

p

4− p
)

1
p−2Ta(u)

]4[
g
(
(

p

4− p
)

1
p−2Ta(u)

)
+
λ

4

∫
R3

K(x)ϕtuu
2dx− 1

4

∫
R3

b(x)|u|4dx
]
< 0.

Thus

inf
t≥0

Jλ(tu) < 0.

Note that

h′λ,u(t) = 4t3
[
g(t) +

λ

4

∫
R3

K(x)ϕtuu
2dx− 1

4

∫
R3

b(x)|u|4dx
]
+ t4g′(t),

which means that

h′λ,u(t) < 0 for all t ∈
(
t̂
(1)
λ , (

p

4− p
)

1
p−2Ta(u)

]
,

and

h′λ,u(t)(t̂
(0)
λ ) > 0.

Thus, (2.13) is proved. �

Lemma 2.6. For λ > 0 and u ∈ Hs(R3)\{0} satisfying (H6), then the following
two statements are true.
(i) If λ

∫
R3 K(x)ϕtuu

2dx >
∫
R3 b(x)|u|4dx, then there exist two constants t+λ and t−λ

which satisfy

Ta(u) < t−λ <
√
A(p)

( 2

4− p

) 1
p−2

<
( 2

4− p

) 1
p−2

Ta(u) < t+λ ,

such that

t±λ u ∈M±
λ , Jλ(t

−
λ u) = sup

0≤t≤t+λ

Jλ(tu)

and

Jλ(t
+
λ u) = inf

t≥t−λ

Jλ(tu) = inf
t≥0

Jλ(tu) < 0.

(ii) If λ
∫
R3 K(x)ϕtuu

2dx ≤
∫
R3 b(x)|u|4dx, then there exist a constant t0λ which

satisfies

0 < t0λ < Ta(u),

such that

t0λu ∈M−
λ , Jλ(t

0
λu) = sup

0≤t≤Ta(u)

Jλ(tu).

Proof. Define

f(t) = t−2∥u∥2Hs − tp−4

∫
R3

a(x)|u|pdx for t > 0.

It is easy to see that tu ∈Mλ if and only if

f(t) + λ

∫
R3

K(x)ϕtuu
2dx−

∫
R3

b(x)|u|4dx = 0.
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Directly computation, we have that

f(Ta(u)) =
( ∥u∥2Hs∫

R3 a(x)|u|pdx

) −2
p−2 ∥u∥2Hs −

( ∥u∥2Hs∫
R3 a(x)|u|pdx

) p−4
p−2

∫
R3

a(x)|u|pdx

=
(∥u∥2Hs)

p−4
p−2

(
∫
R3 a(x)|u|pdx)

−2
p−2

− (∥u∥2Hs)
p−4
p−2

(
∫
R3 a(x)|u|pdx)

−2
p−2

= 0

and
lim
t→0+

f(t) = ∞, lim
t→∞

f(t) = 0.

From 2 < p < 4 and

f ′(t) = t−3
(
− 2∥u∥2Hs + (4− p)tp−2

∫
R3

a(x)|u|pdx
)
,

we know that f(t) is decreasing if 0 < t < ( 2
4−p )

1
p−2Ta(u) and is increasing if

t > ( 2
4−p )

1
p−2Ta(u). Thus

inf
t>0

f(t) = f
[
(

2

4− p
)

1
p−2Ta(u)

]
. (2.15)

For each λ > 0 and u ∈ Hs(R3) \ {0} satisfying∫
R3

a(x)|u|pdx > p

4− p

(2λ(4− p)K2
max

(p− 2)StS2

) p−2
2 ∥u∥pHs

.

By Lemma 2.3, Sobolev’s inequality, and (p2 )
2

p−2 > 1, we have

f
(
(

2

4− p
)

1
p−2Ta(u)

)
=− (

p− 2

4− p
)
( 2∥u∥2Hs

(4− p)
∫
R3 a(x)|u|pdx

)− 2
p−2 ∥u∥2Hs

< −2
(2
p

)− 2
p−2

λK2
maxS

−1

t S−2∥u∥4Hs

<− λ

∫
R3

K(x)ϕtuu
2dx < −λ

∫
R3

K(x)ϕtuu
2dx+

∫
R3

b(x)|u|4dx.

And, for 2 < p < 4, by Remark 1.1 we have

Ta(u) <
√
A(p)

( 2

4− p

) 1
p−2

Ta(u) <
( 2

4− p

) 1
p−2

Ta(u), (2.16)

and it is not difficult to show that

( 2
4−p )A(p)

p−2
2 − 1

A(p)( 2
4−p )

2
p−2

>
p− 2

2(4− p)

(4− p

p

) 2
p−2

. (2.17)

By using (2.15)-(2.17), we deduce that

f
(√

A(p)(
2

4− p
)

1
p−2Ta(u)

)
= −

[
( 2
4−p )A(p)

p−2
2 − 1

]
A(p)( 2

4−p )
2

p−2

( ∥u∥2Hs∫
R3 a(x)|u|pdx

)− 2
p−2 ∥u∥2Hs

<− λK2
maxS

−1

t S−2∥u∥4Hs ≤ −λ
∫
R3

K(x)ϕtuu
2dx

<− λ

∫
R3

K(x)ϕtuu
2dx+

∫
R3

b(x)|u|4dx.
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Now, we need to distinguish two cases.

(i) If λ
∫
R3 K(x)ϕtuu

2dx >
∫
R3 b(x)|u|4dx holds, there exist two constants t+λ and

t−λ > 0 which satisfy

Ta(u) < t−λ <
√
A(p)

( 2

4− p

) 1
p−2

Ta(u) <
( 2

4− p

) 1
p−2

Ta(u) < t+λ , (2.18)

such that

f(t±λ ) + λ

∫
R3

K(x)ϕtuu
2dx−

∫
R3

b(x)|u|4dx = 0,

which implies that t±λ u ∈Mλ. Moreover, we have

h′′
λ,t−λ u

(1) =− 2∥t−λ u∥
2
Hs + (4− p)

∫
R3

a(x)|t−λ u|
pdx = (t−λ )

5f ′(t−λ ) < 0

and

h′′
λ,t+λ u

(1) =− 2∥t+λ u∥
2
Hs + (4− p)

∫
R3

a(x)|t+λ u|
p = (t+λ )

5f ′(t+λ ) > 0.

These yield that t±λ u ∈ M±
λ . It is not difficult to verify that h′λ,u(t) > 0 if t ∈

(0, t−λ )
∪
(t+λ ,∞) and h′λ,u(t) < 0 if t ∈ (t−λ , t

+
λ ). Hence, we obtain

Jλ(t
−
λ u) = sup

0≤t≤t+λ

Jλ(tu), Jλ(t
+
λ u) = inf

t≥t−λ

Jλ(tu)

and Jλ(t
+
λ u) < Jλ(t

−
λ u). By Lemma 2.5, we get

Jλ(t
+
λ u) = inf

t≥0
Jλ(tu) < 0.

(ii) If λ
∫
R3 K(x)ϕtuu

2dx ≤
∫
R3 b(x)|u|4dx holds, similar to the proof of (i), there

exists a constant t0λ which satisfies

0 < t0λ < Ta(u) (2.19)

such that

f(t0λ) + λ

∫
R3

K(x)ϕtuu
2dx−

∫
R3

b(x)|u|4dx = 0,

which implies that t0λu ∈Mλ. Moreover,

h′′λ,t0λu
(1) =− 2∥t0λu∥2Hs + (4− p)

∫
R3

a(x)|t0λu|pdx = (t0λ)
5f ′(t−λ ) < 0.

This means that t0λu ∈M−
λ and h′λ,u(t) > 0 if t ∈ (0, t0λ), h

′
λ,u(t) < 0 if t ∈ (t0λ,+∞).

Hence,

Jλ(t
0
λu) = sup

0≤t≤Ta(u)

Jλ(tu).

This proof is completed. �
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3. Proof of Theorem 1.2

In this section, suppose that K(x) ≡ K∞ > 0 and a(x) ≡ a∞ > 0, b(x) ≡ b∞ =
0.

Now, we consider the following limit problem associated to problem (Eλ):

(−∆)su+ u+ λK∞ϕ
t
uu = a∞|u|p−2u in R3. (E∞

λ )

The energy functional J∞
λ : Hs(R3) → R corresponding to (E∞

λ ) is defined by

J∞
λ (u) =

1

2
∥u∥2Hs +

λ

4

∫
R3

K∞ϕ
t
uu

2dx− 1

p

∫
R3

a∞|u|pdx,

clearly, J∞
λ ∈ C1(Hs(R3),R) and its critical points are weak solutions of (E∞

λ ).
Define

M∞
λ := {u ∈ Hs(R3) \ {0} : ⟨(J∞

λ )′(u), u⟩ = 0},
where (J∞

λ )′ is the Fréchet derivative of J∞
λ . Then, u ∈M∞

λ if and only if

∥u∥2Hs + λ

∫
R3

K∞ϕ
t
uu

2dx−
∫
R3

a∞|u|pdx = 0.

In particularly, when λ = 0, equation E∞
λ reduces to following fractional Schrödinger

equation

(−∆)su+ u = a∞|u|p−2u in R3. (E∞
0 )

Let w0 be the unique positive solution of E∞
0 (see [12]), we know that

w0(0) = max
x∈R3

w0(x),

∥w0∥2Hs =

∫
R3

a∞|w0|pdx =
( Sp

p

a∞

) 2
p−2

(3.1)

and

α∞
0 := inf

u∈M∞
0

J∞
0 (w0) =

p− 2

2p

( Sp
p

a∞

) 2
p−2

,

where J∞
0 is the energy functional of equation (E∞

0 ) in Hs(R3) as follows

J∞
0 (u) =

1

2
∥u∥2Hs −

1

p

∫
R3

a∞|u|pdx, (3.2)

and

M∞
0 = {u ∈ Hs(R3)\{0}|⟨(J∞

0 )′(u), u⟩ = 0}.
Since K(x) = K∞ and a(x) = a∞, we have

Λ0 = [1−A(p)](
a∞
Sp
p
)

2
p−2

StS
2

K2
∞
.

For 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0, by (3.1), w0 is the unique positive solution of

equation (E∞
0 ), we have∫

R3

a∞|w0|pdx =a∞S
−p
p ∥w0∥pHs >

p

4− p

(2λ(4− p)K2
∞

(p− 2)StS2

) p−2
2 ∥w0∥pHs .

By (H3), similar to the proof of conclusion (i) of Lemma 2.6, there exist two

constants t∞,+
λ and t∞,−

λ satisfying

1 < t∞,−
λ <

√
A(p)

( 2

4− p

) 1
p−2

< t∞,+
λ ,
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such that t∞,±
λ w0 ∈M∞,±

λ . Moreover, we have that

J∞
λ (t∞,−

λ w0) = sup
0≤t≤t∞,+

λ

J∞
λ (tw0),

J∞
λ (t∞,+

λ w0) = inf
t≥t∞,−

λ

J∞
λ (tw0) = inf

t≥0
J∞
λ (tw0) < 0.

Lemma 3.1. J∞
λ (u) is coercive and bounded below on M∞,−

λ . Furthermore, for

all u ∈M∞,−
λ , there holds J∞

λ (u) ≥ p−2
4p (

Sp
p

amax
)

2
p−2 .

Proof. Let u ∈M∞
λ , by Sobolev’s inequality, we have that

∥u∥2Hs ≤∥u∥2Hs + λ

∫
R3

K∞ϕ
t
uu

2dx =

∫
R3

a∞|u|pdx ≤ S−p
p amax∥u∥pHs ,

which leads to ∫
R3

a∞|u|pdx ≥ ∥u∥2Hs ≥
( Sp

p

amax

) 2
p−2

. (3.3)

For u ∈M∞,−
λ , there holds

(h∞λ,u)
′′(1) =∥u∥2Hs + 3λ

∫
R3

K∞ϕ
t
uu

2dx− (p− 1)

∫
R3

a∞|u|pdx

=− 2∥u∥2Hs + (4− p)

∫
R3

a∞|u|pdx < 0,

thus, we have

J∞
λ (u) =

1

4
∥u∥2Hs −

4− p

4p

∫
R3

a∞|u|pdx ≥ p− 2

4p
∥u∥2Hs ≥ p− 2

4p

( Sp
p

amax

) 2
p−2

. (3.4)

This completes the proof. �

By a simple computation, we deduce that

J∞
λ (t∞,−

λ w0) =
1

2
∥t∞,−

λ w0∥2Hs +
λ

4

∫
R3

K∞ϕ
t
t∞,−
λ w0

(t∞,−
λ w0)

2dx− 1

p

∫
R3

a∞|t∞,−
λ w0|pdx

=
1

4
(t∞,−

λ )2∥w0∥2Hs −
4− p

4p
(t∞,−

λ )p
∫
R3

a∞|w0|pdx

=
1

4
(t∞,−

λ )2∥w0∥2Hs −
4− p

4p
(t∞,−

λ )p∥w0∥2Hs =
(t∞,−

λ )2

4

[
1− 4− p

4p
(t∞,−

λ )p−2
]
∥w0∥2Hs

<A(p)
( 2

4− p

) 2
p−2 p− 2

2p
∥w0∥2Hs = A(p)

p− 2

2p

( 2Sp
p

a∞(4− p)

) 2
p−2

,

(3.5)

and

∥t∞,−
λ w0∥Hs <

√
A(p)

( 2

4− p

) 1
p−2

( Sp
p

a∞

) 1
p−2

< D̂1.

Thus, t∞,−
λ w0 ∈M

∞,(1)
λ , which implies that M

∞,(1)
λ is nonempty.

Similar to Lemma 2.4, we know that M
∞,(1)
λ ⊂ M∞,−

λ , M
∞,(2)
λ ⊂ M∞,+

λ . On

the other hand, M
∞,(1)
λ or M

∞,(2)
λ is a sublevel set, and thus the infimums of
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J∞
λ (u) constrained on these two sets are equal. Hence, we can define the following

minimum problem

α∞,−
λ = inf

u∈M
∞,(1)
λ

J∞
λ (u) = inf

u∈M∞,−
λ

J∞
λ (u),

α∞,+
λ = inf

u∈M
∞,(2)
λ

J∞
λ (u) = inf

u∈M∞,+
λ

J∞
λ (u).

By Lemma 3.1, (3.5) and Lemma 6.1 in Appendix A, we have that

p− 2

4p

( Sp
p

amax

) 2
p−2 ≤ α∞,−

λ < A(p)
p− 2

2p

( 2Sp
p

a∞(4− p)

) 2
p−2

(3.6)

and

α∞,+
λ = −∞. (3.7)

Proof of Theorem 1.2.
Let {un} ∈M

∞,(1)
λ satisfy

J∞
λ (un) = α∞,−

λ + o(1) and (J∞
λ )′(un) = o(1) in H−s(R3). (3.8)

By virtue of Lemma 6.2 in Appendix B, we get

0 < λ <
(p− 2)StS

2

2(4− p)K2
∞

(a∞(4− p)2

2pSp
p

) 2
p−2

,

compactness holds for the sequence {un}. Then for each θ > 0 there exist a positive
constant R = R(θ) and a sequence {zn} ⊂ R3 such that∫

[B(zn;R)]c
(|(−∆)

s
2un(x)|2 + u2n(x))dx < θ uniformly for n ≥ 1. (3.9)

Let

vn := un(·+ zn) ∈ Hs(R3),

then {vn} ⊂M
∞,(1)
λ , and

ϕtvn
= ϕtun(·+zn)

and J∞
λ (vn) = α∞,−

λ + o(1).

By (3.9), for each θ > 0, there exists R = R(θ) > 0 such that∫
[B(0;R)]c

(|(−∆)
s
2 vn(x)|2 + v2n(x))dx < θ uniformly for n ≥ 1. (3.10)

Since {vn} is bounded in Hs(R3), up to a subsequence, we can assume that there
exists wλ ∈ Hs(R3) such that

vn ⇀ wλ weakly in Hs(R3), (3.11)

vn → wλ strongly in Lr
loc(R3) for 2 ≤ r < 2∗s, (3.12)

vn → wλ a.e. in R3.



FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH LOW ORDER TERM 17

By (3.10)-(3.12) and Fatou’s Lemma, for any θ > 0 and sufficiently large n(≥ 1),
there exists a constant R > 0 such that∫

R3

|vn − wλ|pdx

≤
∫
[B(0;R)]

|vn − wλ|pdx+

∫
[B(0;R)]c

|vn − wλ|pdx

≤θ +
(∫

[B(0;R)]c
v2ndx

) τp
2
(∫

[B(0;R)]c
v
2∗s
n dx

) (1−τ)p
2∗s +

(∫
[B(0;R)]c

w2
λdx

) τp
2
(∫

[B(0;R)]c
w

2∗s
λ dx

) (1−τ)p
2∗s

≤θ + 2C̃θ
τp
2 ,

which means that for every r ∈ (2, 2∗s), there holds

vn → wλ strongly in Lr(R3). (3.13)

Since ϕ : L
12

3+2t → Dt,2(R3) is a continuous function, we get that

ϕtvn → ϕtwλ
in Dt,2(R3),

and ∫
R3

ϕtvnv
2
ndx→

∫
R3

ϕtwλ
w2

λdx. (3.14)

Since vn ∈M
∞,(1)
λ , by (3.3) and (3.13), we obtain∫

R3

a∞|wλ|pdx ≥
( Sp

p

amax

) 2
p−2

> 0.

This implies that wλ ̸= 0 and∫
R3

a∞|wλ|pdx− λ

∫
R3

K∞ϕ
t
wλ
w2

λdx ≥ ∥wλ∥2Hs > 0. (3.15)

Next, we prove that

vn → wλ strongly in Hs(R3),

suppose by the contrary that

∥wλ∥Hs < lim inf
n→∞

∥vn∥Hs . (3.16)

Similar to the argument of Lemma 2.6, we have

J∞
λ (twλ) = (h∞λ,wλ

)(t) =
t2

2
∥wλ∥2Hs +

λt4

4

∫
R3

K∞ϕ
t
wλ
w2

λdx− tp

p

∫
R3

a∞|wλ|pdx,

and

(h∞λ,wλ
)′(t) = t3

(
d∞(t) + λ

∫
R3

K∞ϕ
t
wλ
w2

λdx
)
for t > 0,

where d∞(t) = t−2∥wλ∥2Hs − tp−4
∫
R3 a∞|wλ|pdx. Clearly, d∞(Ta∞(wλ)) = 0. By

(3.15), we have Ta∞(wλ) = (
∥wλ∥2

Hs∫
R3 a∞|wλ|pdx

)
1

p−2 < 1. Then, by (3.13)-(3.16)

(h∞λ,wλ
)′(1) < 0,

(h∞λ,wλ
)′(Ta∞(wλ)) = (Ta∞(wλ))

3λ

∫
R3

K∞ϕ
t
wλ
w2

λdx > 0.

Hence, there exists Ta∞(wλ) < t−λ < 1 such that

t−λwλ ∈M∞
λ and (h∞λ,wλ

)′(t−λ ) = 0. (3.17)
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Since vn ∈M
∞,(1)
λ , by (3.13), (3.14) and (3.16), we have

(h∞λ,wλ
)′′(1) < 0.

This implies that t−λwλ ∈M∞,−
λ .

By (3.13), (3.14) and (3.16), we know that (h∞λ,vn
)′(t−λ ) > 0 for sufficiently large

n. Owing to vn ∈M
∞,(1)
λ , we get

(h∞λ,vn
)′(1) = 0. (3.18)

Similar to the proof of Lemma 2.6, we have

(h∞λ,vn
)′(t) = t3

(
f∞(t) + λ

∫
R3

K∞ϕ
t
vn
v2ndx

)
for t > 0,

where

f∞(t) = t−2∥vn∥2Hs − tp−4

∫
R3

a∞|vn|pdx.
f∞(t)is decreasing, 0 < t < (

2

4− p
)

1
p−2 (

∥vn∥2Hs∫
R3 a∞|vn|pdx

)
1

p−2 ,

f∞(t)is increasing, t > (
2

4− p
)

1
p−2 (

∥vn∥2Hs∫
R3 a∞|vn|pdx

)
1

p−2 ,

by using (2.16) and (3.18), we have ( 2
4−p )

1
p−2 (

∥vn∥2
Hs∫

R3 a∞|vn|pdx )
1

p−2 > 1. This means

that (h∞λ,vn)
′(t) > 0 when 0 < t < 1, which implies that (h∞λ,vn

) is increasing on

(t−λ , 1) for sufficiently large n. Therefore, (h∞λ,vn
)(t−λ ) < (h∞λ,vn)(1) for sufficiently

large n. That is

J∞
λ (t−λ vn) < J∞

λ (vn) for sufficiently large n.

By (3.13)-(3.16), we deduce that

J∞
λ (t−λwλ) < lim inf

n→∞
J∞
λ (t−λ vn) ≤ lim inf

n→∞
J∞
λ (vn) = α∞,−

λ ,

we get a contradiction. Thus we have vn → wλ strongly in Hs(R3) and

J∞
λ (vn) → J∞

λ (wλ) = α∞,−
λ as n→ ∞.

Furthermore, we obtain that

Λ =
(p− 2)StS

2

2(4− p)K2
∞

(a∞(4− p)2

2pSp
p

) 2
p−2

<
p− 2

2(4− p)

(4− p

p

) 2
p−2

Λ0. (3.19)

Therefore, wλ is a minimizer for J∞
λ on M∞,−

λ for each 0 < λ < Λ. By (3.5), we
deduce that

J∞
λ (wλ) = α∞,−

λ ≤ J∞
λ (t∞,−

λ w0) < A(p)
p− 2

2p

( 2Sp
p

a∞(4− p)

) 2
p−2

,

which implies that wλ ∈ M
∞,(1)
λ . Therefore, by Lemma 2.4, we see that wλ is a

nontrivial solution of problem (E∞
λ ). By standard argument as [23], it follows that

wλ(x) > 0 in R3. This indicates that (wλ, ϕ
t
wλ

) is a positive solution of system
(1.1). In addition, since

(4− p)

∫
R3

a∞|wλ|pdx < 2∥wλ∥2Hs and ta∞(wλ)wλ ∈M∞
0 ,
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where

(
4− p

2
)

1
p−2 < ta∞(wλ) :=

( ∥wλ∥2Hs∫
R3 a∞|wλ|pdx

) 1
p−2

< 1, (3.20)

similar argument as Lemma 2.6, there holds

J∞
λ (wλ) = sup

0≤t≤t+λ

J∞
λ (twλ), (3.21)

where t+λ > ( 2
4−p )

1
p−2 ta∞(wλ) > 1 by (3.20). Thus, we obtain

α∞,−
λ =J∞

λ (wλ) > J∞
λ (ta∞(wλ)wλ) ≥ α∞

0 +
λ
[
ta∞(wλ)

]4
4

∫
R3

K∞ϕ
t
wλ
w2

λdx > α∞
0 .

Thus, the proof is completed.

4. Proof of Theorem 1.3

Proposition 4.1. Let {un} be a bounded (PS)β − sequence in Hs(R3) for Jλ.
There exist a subsequence {un}, a number m ∈ N, a sequences {yin}∞n=1 in R3, a
function v0 ∈ Hs(R3), and 0 ̸= wi ∈ Hs(R3) when 1 ≤ i ≤ m such that
(i) |yin| → ∞ and |yin − yjn| → ∞ as n→ ∞, 1 ≤ i ̸= j ≤ m;
(ii) (−∆)sv0 + v0 + λK(x)ϕtv0

v0 = a(x)|v0|p−2v0 + b(x)|v0|2v0;
(iii) (−∆)swi + wi + λK∞ϕ

t
wiwi = a∞|wi|p−2wi;

(iv) un = v0 +
∑m

i=1 w
i(·+ yin) + o(1) strongly in Hs(R3);

(v)Jλ(un) = Jλ(v0) +
∑m

i=1 J
∞
λ (wi) + o(1).

Proof. (1) Since {un} is bounded in Hs(R3), up to a subsequence, there exists a
v0 ∈ Hs(R3) such that un ⇀ v0 in Hs(R3). Next, we will prove J ′

λ(v0) = 0. It is
suffice to prove ⟨J ′

λ(un), φ⟩ → ⟨J ′
λ(v0), φ⟩ for all φ ∈ Hs(R3). Indeed,

⟨J ′
λ(un), φ⟩

= ⟨un, φ⟩Hs +

∫
R3

K(x)ϕtun
unφdx−

∫
R3

a(x)|un|p−2unφdx−
∫
R3

b(x)|un|2unφ dx,

⟨J ′
λ(v0), φ⟩ = ⟨v0, φ⟩Hs+

∫
R3

K(x)ϕtv0v0φ dx−
∫
R3

a(x)|v0|p−2v0φdx−
∫
R3

b(x)|v0|2v0φ dx.

By the un ⇀ v0 in Hs(R3), we can conclude that ⟨un, φ⟩Hs → ⟨v0, φ⟩Hs . Since

|un|p−2un is bounded in L
p

p−1 (R3) and combining with un → u almost everywhere
in R3, we have∫

R3

a(x)|un|p−2unφ dx→
∫
R3

a(x)|v0|p−2v0φdx, ∀φ ∈ Lp(R3).

Similar to the above argument, we also have∫
R3

b(x)|un|2unφdx→
∫
R3

b(x)|v0|2v0φdx, ∀φ ∈ Lp(R3).

From the fact that un ⇀ v0 in Hs(R3), we can deduce that∫
R3

K(x)ϕtun
unφdx→

∫
R3

K(x)ϕtv0
v0φ dx, ∀φ ∈ Hs(R3).

Hence, J ′
λ(v0) = 0.
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(2) We will prove that (J∞
λ )′(w1

n) = o(1) and Jλ(un) = Jλ(v0)+ J∞
λ (w1

n)+ o(1),
where w1

n = un − v0. By the Brezis-Lieb Lemma, we deduce that

∥w1
n∥2Hs = ∥un∥2Hs − ∥v0∥2Hs + o(1),∫

R3

a(x)|w1
n|p dx =

∫
R3

a(x)|un|p dx−
∫
R3

a(x)|v0|p dx+ o(1),∫
R3

b(x)|w1
n|4 dx =

∫
R3

b(x)|un|4 dx−
∫
R3

b(x)|v0|4 dx+ o(1).

(4.1)

From (H1), w
1
n → 0 in Lp

loc(R3) and (4.1), we conclude that∫
R3

a∞|w1
n|p dx =

∫
R3

a(x)|un|p dx−
∫
R3

a(x)|v0|p dx+ o(1). (4.2)

By (H3), ∀ε > 0, there exist R(ε) > 0 such that∫
|x|≥R(ε)

b(x)|w1
n|4dx ≤ ε,

and from the fact that w1
n → 0 in Lp

loc(R3), we have that

lim
n→∞

∫
|x|≤R(ε)

b(x)|w1
n|4dx = 0.

Thus, ∫
R3

b(x)|un|4dx−
∫
R3

b(x)|v0|4dx = o(1). (4.3)

By Lemma 2.4 in [22] (2s+ 2t > 3), we obtain∫
R3

K∞ϕ
t
w1

n
(w1

n)
2dx =

∫
R3

K(x)ϕtun
u2ndx−

∫
R3

K(x)ϕtv0
v20dx = o(1). (4.4)

Combining (4.2)-(4.4), we get that

Jλ(un) = Jλ(v0) + J∞
λ (w1

n) + o(1). (4.5)

By Lemma 8.1 in [27], we have that∣∣∣ ∫
R3

a(x)(|un|p−2un − |v0|p−2v0 − |w1
n|p−2w1

n)φdx
∣∣∣ = o(1)∥φ∥Hs , ∀φ ∈ Hs(R3).

From the condition (H1), we have∣∣∣ ∫
R3

(a(x)− a∞)|w1
n|p−2w1

nφdx
∣∣∣ = o(1)∥φ∥Hs , ∀φ ∈ Hs(R3).

Thus,∣∣∣ ∫
R3

[
a(x)(|un|p−2un−|v0|p−2v0)−a∞|w1

n|p−2w1
n

]
φdx

∣∣∣ = o(1)∥φ∥Hs , ∀φ ∈ Hs(R3).

(4.6)
Similarly, we have∫

R3

[
K(x)(ϕtun

un − ϕtv0v0)−K∞ϕ
t
w1

n
w1

n

]
φdx = o(1)∥φ∥Hs , ∀φ ∈ Hs(R3). (4.7)

By (H3), and ∀φ ∈ Hs(R3) we have that∫
R3

b(x)|w1
n|2w1

nφdx = o(1)∥φ∥Hs ,
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and ∣∣∣ ∫
R3

b(x)[|w1
n|2w1

n − |un|2un − |v0|2v0]φdx
∣∣∣ = o(1)∥φ∥Hs .

Thus, ∣∣∣ ∫
R3

b(x)[|un|2un − |v0|2v0]φdx
∣∣∣ = o(1)∥φ∥Hs . (4.8)

Combining (4.6)-(4.8), we have∣∣⟨J ′
λ(un)− J ′

λ(v0), φ⟩ − ⟨(J∞
λ )′(w1

n), φ⟩
∣∣ = o(1)∥φ∥Hs , ∀φ ∈ Hs(R3).

Therefore,
(J∞

λ )′(w1
n) = o(1). (4.9)

Next, we will consider the following two cases.
Case 1.

lim
n→∞

sup
y∈R3

∫
B1(y)

|w1
n|2dx = 0.

By the vanishing Lemma, we have that

w1
n → 0 in Lt(R3), ∀t ∈ (2, 2∗s). (4.10)

Combining (4.5) and (4.10), there holds

Jλ(un)− Jλ(v0) =
1

2
∥w1

n∥2Hs +

∫
R3

K∞ϕ
t
w1

n
(w1

n)
2 − 1

p

∫
R3

a∞|w1
n|pdx+ o(1)

and ∫
R3

K∞ϕ
t
w1

n
(w1

n)
2dx ≤ Ĉ∥w1

n∥4 12
3+2s

.

Thus,

Jλ(un)− Jλ(v0) =
1

2
∥w1

n∥2Hs + o(1).

By (J∞
λ )′(w1

n) = 0, we have

∥w1
n∥2Hs +

∫
R3

K∞ϕ
t
w1

n
(w1

n)
2dx−

∫
R3

a∞|w1
n|pdx = 0

and by (4.10), we have∫
R3

K∞ϕ
t
w1

n
(w1

n)
2dx→ 0,

∫
R3

a∞|w1
n|pdx→ 0,

which yields ∥w1
n∥2Hs = o(1). Thus, Jλ(un) = Jλ(v0).

Case 2. There is γ1 > 0 such that

lim
n→∞

sup
y∈R3

∫
B1(y)

|v1n|2 dx ≥ γ1 > 0.

In this case, there exists y1n ∈ R3 with |y1n| → ∞ such that
∫
B1(y1

n)
|w1

n|2 dx ≥
γ1

2 > 0. Up to a subsequence, we assume that w1
n(. + y1n) ⇀ w1 ̸= 0 weakly in

Hs(R3). Thus,

Jλ(un)− Jλ(v0) = J∞
λ (w1

n(.+ y1n)) + o(1),

(J∞
λ )′(w1

n(.+ y1n)) = o(1).
(4.11)

Therefore (J∞
λ )′(w1) = 0. Let w2

n = w1
n(.+ y1n)−w1, then we have that ∥w2

n∥2Hs =
∥w1

n∥2Hs − ∥w1∥2Hs + o(1). Combining the first equality of (4.1), we have

∥w2
n∥2Hs = ∥un∥2Hs − ∥v0∥2Hs − ∥w1∥2Hs + o(1). (4.12)
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Similar argument as (4.5) and (4.9), we deduce that

Jλ(un)− Jλ(v0)− J∞
λ (w1) + o(1) = J∞

λ (w2
n),

(J∞
λ )′(w2

n) = o(1).
(4.13)

Next, similarly argue as above, we note that either

lim
n→∞

sup
y∈R3

∫
B1(y)

|w2
n|2dx = 0, (4.14)

or there is γ2 > 0 such that

lim
n→∞

sup
y∈R3

∫
B1(y)

|w2
n|2dx ≥ γ2 > 0. (4.15)

If (4.14) holds, it is similar to the case 1, we can show that Jλ(un) = Jλ(v0) +
J∞
λ (w1).
If (4.15) holds, it is similar to the case 2. There is y2n ∈ R3 with |y2n| → ∞

satisfying
∫
B1(y2

n)
|w2

n|2 dx ≥ γ2

2 > 0. Up to a subsequence, we can assume that

w2
n(.+ y2n)⇀ w2 ̸= 0 weakly in Hs(R3), (J∞

λ )′(w2) = 0 and

Jλ(un)− Jλ(v0)− J∞
λ (w1)− J∞

λ (w2) + o(1) = J∞
λ (w3

n),

(J∞
λ )′(w3

n) = o(1),

∥w3
n∥2Hs = ∥un∥2Hs − ∥v0∥2Hs − ∥w1∥2Hs − ∥w2∥2Hs + o(1),

where w3
n = w2

n(. + y2n) − w2. Continuing this process, we have wi
n ∈ Hs(R3),

yin ∈ R3 with |yin| → ∞ satisfying wi
n(.+ yin)⇀ wi ̸= 0 weakly in Hs(R3) and

(J∞
λ )′(wi) = 0, (4.16)

where wj+1
n = wj

n(.+ yjn)− wj , j ∈ N.
(3) From the above argument, we have that

Jλ(un)− Jλ(v0)−
j∑

i=1

J∞
λ (wi) + o(1) = J∞

λ (wj+1
n ),

(J∞
λ )′(wj+1

n ) = o(1),

∥wj+1
n ∥2Hs = ∥un∥2Hs − ∥v0∥2Hs −

j∑
i=1

∥wi∥2Hs + o(1).

(4.17)

Combining the fact that ⟨(J∞
λ )′(wi), wi⟩ = 0 and Sobolev embedding theorem, we

can find κ > 0 independent of i such that

∥wi∥2 ≥ κ > 0.

From (4.17), it is obvious that wj+1
n → 0 at some j = m. Hence, we conclude that

Jλ(un) = Jλ(v0) +
m∑
i=1

J∞
λ (wi) + o(1). (4.18)

�

Corollary 4.2. If {un} ⊂ M
(1)
λ is a (PS)β − sequence in Hs(R3) for Jλ and

0 < β < α∞,−
λ . Then there exist a subsequence {un} and a nonzero u0 in Hs(R3)

such that un → u0 strongly in Hs(R3) and Jλ(u0) = β. Furthermore, (u0, ϕu0) is
a nonzero solution of equation (Eλ).
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By Theorem 1.2, we see that problem (E∞
λ ) admits a positive solution wλ ∈

M∞,−
λ , and

J∞
λ (wλ) = α∞,−

λ ,
4− p

2

∫
R3

a∞|wλ|pdx < ∥wλ∥2Hs .

Define Ta(wλ) as follows( (4− p)a∞
2amax

) 1
p−2

< Ta(wλ) :=
( ∥wλ∥2Hs∫

R3 a(x)|wλ|pdx

) 1
p−2

.

Lemma 4.3. For 0 < λ < Λ, then there exists t∞λ > ( 2
4−p )

1
p−2 ta∞(wλ) > 1 such

that

J∞
λ (wλ) = sup

0≤t≤t∞λ

J∞
λ (twλ) = α∞,−

λ , (4.19)

where ta∞(wλ) is given in (3.20).

Proof. Since

(h∞λ,u)
′(t) = t3

[
b∞λ (t) + λ

∫
R3

K∞ϕ
t
uu

2dx
]
,

where

b∞λ (t) = t−2∥wλ∥2Hs − tp−4

∫
R3

a∞|wλ|pdx for t > 0. (4.20)

Observe that

b∞λ (1) + λ

∫
R3

K∞ϕ
t
wλ
w2

λdx = 0, (4.21)

for all 0 < λ < Λ, it is easy to show that

b∞λ (ta∞(wλ)) = 0, lim
t→0+

b∞λ (t) = ∞ and lim
t→∞

b∞λ (t) = 0.

Hence,

(b∞λ )′(t) =− 2t−3∥wλ∥2Hs + (4− p)tp−5

∫
R3

a∞|wλ|pdx

=t−3
(
− 2∥wλ∥2Hs + (4− p)tp−2

∫
R3

a∞|wλ|pdx
)
.

A straightforward calculation gives that
b∞λ (t) is decreasing, 0 < t < (

2

4− p
)

1
p−2 ta∞(wλ),

b∞λ (t) is increasing, t > (
2

4− p
)

1
p−2 ta∞(wλ).

Thus, we get

inf
t>0

b∞λ (t) = b∞λ

(
(

2

4− p
)

1
p−2 ta∞(wλ)

)
. (4.22)

In view of (3.20), we know that( 2

4− p

) 1
p−2

ta∞(wλ) > 1. (4.23)

Hence, by (4.21)-(4.23), we obtain

inf
t>0

b∞λ (t) < b∞λ (1) = −λ
∫
R3

K∞ϕ
t
wλ
w2

λdx (4.24)
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which implies that there exists t∞λ > ( 2
4−p )

1
p−2 ta∞(wλ) > 1 such that

b∞λ (t∞λ ) + λ

∫
R3

K∞ϕ
t
wλ
w2

λdx = 0.

By a similar argument as the proof of Lemma 2.6, we get (4.19). �

Lemma 4.4. Assume that 0 < λ < Λ and (H1)-(H3), (H4) hold, the following two
statements are true:
(1) If λ

∫
R3 K(x)ϕtwλ

w2
λdx >

∫
R3 b(x)|wλ|4dx, then there exist two constants t

(1)
λ

and t
(2)
λ satisfying

Ta(wλ) < t
(1)
λ < (

2

4− p
)

1
p−2Ta(wλ) < t

(2)
λ ,

such that

t
(i)
λ wλ ∈M

(i)
λ (i = 1, 2),

Jλ(t
(1)
λ wλ) = sup

0≤t≤t
(2)
λ

Jλ(twλ) < α∞,−
λ < A(p)(

p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

and

Jλ(t
(2)
λ wλ) = inf

t≥t
(1)
λ

Jλ(twλ).

(2) If λ
∫
R3 K(x)ϕtwλ

w2
λdx ≤

∫
R3 b(x)|wλ|4dx, then there exist a constant t

(3)
λ satis-

fying

0 < t
(3)
λ < Ta(wλ),

such that

t
(3)
λ wλ ∈M

(1)
λ ,

Jλ(t
(3)
λ wλ) = sup

0≤t≤Ta(wλ)

Jλ(twλ) < α∞,−
λ .

Proof. Let

bλ(t) = t−2∥wλ∥2Hs − tp−4

∫
R3

a(x)|wλ|pdx for t > 0.

Clearly, twλ ∈Mλ if and only if

bλ(t) + λ

∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

b(x)w4
λdx = 0. (4.25)

It is not difficult to verify that

bλ(Ta(wλ)) = 0, lim
t→0+

bλ(t) = ∞ and lim
t→∞

bλ(t) = 0,

bλ(t) is decreasing when 0 < t < ( 2
4−p )

1
p−2Ta(wλ) and is increasing when t >

( 2
4−p )

1
p−2Ta(wλ). From (H4), we get

Ta(wλ) ≤ Ta∞(wλ) < 1 and bλ(t) ≤ b∞λ (t),
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where b∞λ is given in (4.20). By condition (H4) and (4.24), we have

inf
t>0

bλ(t) =bλ

(
(

2

4− p
)

1
p−2Ta(wλ)

)
=− p− 2

4− p

(4− p

2

) 2
p−2 ∥wλ∥2Hs

( ∥wλ∥2Hs∫
R3 a(x)|wλ|pdx

)− 2
p−2

≤− p− 2

4− p

(4− p

2

) 2
p−2 ∥wλ∥2Hs

( ∥wλ∥2Hs∫
R3 a∞|wλ|pdx

)− 2
p−2

= inf
t>0

b∞λ (t) < −λ
∫
R3

K∞ϕ
t
wλ
w2

λdx

≤− λ

∫
R3

K(x)ϕtwλ
w2

λdx

<− λ

∫
R3

K(x)ϕtwλ
w2

λdx+

∫
R3

b(x)|wλ|4dx.

Similar to the argument of Lemma 2.6, we need to distinguish two cases.
Case 1:

λ

∫
R3

K(x)ϕtwλ
w2

λdx >

∫
R3

b(x)|wλ|4dx,

then there are two constants t
(1)
λ and t

(2)
λ satisfying Ta(wλ) < t

(1)
λ < ( 2

4−p )
1

p−2Ta(wλ) <

t
(2)
λ such that

bλ(t
(i)
λ ) + λ

∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

b(x)|wλ|4dx = 0 for i = 1, 2

which implies that t
(i)
λ wλ ∈ Mλ(i = 1, 2). Taking the derivative of h′

λ,t
(i)
λ wλ

(t), we

have

h′′
λ,t

(1)
λ wλ

(1) =− 2∥t(1)λ wλ∥2Hs + (4− p)

∫
R3

a(x)|t(1)λ wλ|pdx

=(t
(1)
λ )5(bλ)

′(t
(1)
λ ) < 0,

and

h′′
λ,t

(2)
λ wλ

(1) =− 2∥t(1)λ wλ∥2Hs + (4− p)

∫
R3

a(x)|t(2)λ wλ|pdx

=(t
(2)
λ )5(bλ)

′(t
(2)
λ ) > 0,

which implies that t
(1)
λ wλ ∈M−

λ , t
(2)
λ wλ ∈M+

λ and

t
(1)
λ < (

2

4− p
)

1
p−2Ta(wλ) ≤ (

2

4− p
)

1
p−2 ta∞(wλ) < min{( 2

4− p
)

1
p−2 , t∞λ },
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where t∞λ is given in Lemma 4.3. By (3.6), Lemma 4.3 and (H4), for every 0 < λ <
Λ, we have

Jλ

(
t
(1)
λ wλ

)
=
(t

(1)
λ )2

2
∥wλ∥2Hs +

λ(t
(1)
λ )4

4

∫
R3

K(x)ϕtwλ
w2

λdx

−
(t

(1)
λ )p

p

∫
R3

a(x)|wλ|pdx−
(t

(1)
λ )4

4

∫
R3

b(x)|wλ|4dx

=J∞
λ (t

(1)
λ wλ) +

λ(t
(1)
λ )4

4

(∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

K∞ϕ
t
wλ
w2

λdx
)

−
(t

(1)
λ )p

p

∫
R3

(a(x)− a∞)|wλ|pdx−
(t

(1)
λ )4

4

∫
R3

b(x)|wλ|4dx

<J∞
λ (t

(1)
λ wλ) +

λ(t
(1)
λ )4

4
(

∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

K∞ϕ
t
wλ
w2

λdx)

−
(t

(1)
λ )p

p

∫
R3

(a(x)− a∞)|wλ|pdx

≤ sup
0≤t≤t∞λ

J∞
λ (twλ) +

λ(t
(1)
λ )4

4
(

∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

K∞ϕ
t
wλ
w2

λdx)

−
(t

(1)
λ )p

p

∫
R3

(a(x)− a∞)|wλ|pdx

<α∞,−
λ < A(p)(

p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

(4.26)

Therefore, t
(1)
λ wλ ∈M

(1)
λ and Jλ(t

(1)
λ wλ) < α∞,−

λ and

(hλ,wλ
)′(t) = t3

(
bλ(t) + λ

∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

b(x)|wλ|4dx
)
.

By computation, we get

(hλ,wλ
)′(t) > 0 for all t ∈ (0, t

(1)
λ )

∪
(t

(2)
λ ,∞),

(hλ,wλ
)′(t) < 0 for all t ∈ (t

(1)
λ , t

(2)
λ ).

(4.27)

Therefore, we deduce that

Jλ(t
(1)
λ wλ) = sup

0≤t≤t
(2)
λ

Jλ(twλ) and Jλ(t
(2)
λ wλ) = inf

t≥t
(1)
λ

Jλ(twλ).

By (4.26) and (4.27), we have Jλ(t
(2)
λ wλ) ≤ Jλ(t

(1)
λ wλ) < α∞,−

λ , t
(2)
λ wλ ∈ M

(2)
λ ,

which yields the conclusion.
Case 2:

λ

∫
R3

K(x)ϕtwλ
w2

λdx ≤
∫
R3

b(x)|wλ|4dx.

Similar to the discussion of Case 1, there exists a constant t
(3)
λ satisfying

0 < t
(3)
λ < Ta(wλ)
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such that

bλ(t
(3)
λ ) + λ

∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

b(x)|wλ|4dx = 0

which implies that t
(3)
λ u ∈Mλ.

Taking the second order derivatives of h
λ,t

(3)
λ wλ

(t), we have

h′′
λ,t

(3)
λ u

(1) =− 2∥t(3)λ wλ∥2Hs + (4− p)

∫
R3

a(x)|t(3)λ wλ|pdx

=(t
(3)
λ )5b′λ(t

(3)
λ ) < 0,

thus, t
(3)
λ wλ ∈M−

λ . Moreover,

t
(3)
λ < Ta(wλ) < (

2

4− p
)

1
p−2Ta(wλ) ≤ (

2

4− p
)

1
p−2 ta∞(wλ) < min{( 2

4− p
)

1
p−2 , t∞λ }.

Similarly, we have

Jλ

(
t
(3)
λ wλ

)
< α∞,−

λ < A(p)(
p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

Therefore, t
(3)
λ wλ ∈M

(1)
λ and Jλ(t

(3)
λ wλ) < α∞,−

λ . Since

(hλ,wλ
)′(t) = t3

(
bλ(t) + λ

∫
R3

K(x)ϕtwλ
w2

λdx−
∫
R3

b(x)|wλ|4dx
)
.

By computation, we know that h′λ,wλ
(t) > 0 holds if t ∈ (0, t

(3)
λ ) and h′λ,wλ

(t) < 0

holds if t ∈ (t
(3)
λ ,+∞). This implies that

Jλ(t
(3)
λ wλ) = sup

0≤t≤Ta(wλ)

Jλ(twλ).

�

Lemma 4.5. For 2 < p < 4 and 0 < λ < Λ, for each u ∈ M
(1)
λ , there exist σ > 0

and a differentiable function:

t∗ : B(0;σ) ⊂ Hs(R3) → R+

such that

t∗(0) = 1 and t∗(v)(u− v) ∈M
(1)
λ

for all v ∈ B(0;σ), and there holds

⟨(t∗)′(0), φ⟩

=
2
∫
R3((−∆)

s
2u(−∆)

s
2φ+ uφ) + 4λ

∫
R3 K(x)ϕtuuφdx− p

∫
R3 a(x)|u|p−2uφdx− 4

∫
R3 b(x)|u|2uφdx

−2∥u∥2Hs + (4− p)
∫
R3 a(x)|u|pdx

for φ ∈ Hs(R3).

Proof. For any u ∈M
(1)
λ , we define the function Fu : R×Hs(R3) → R by

Fu(t, v) =⟨(Jλ)′(t(u− v)), t(u− v)⟩

=t2∥u− v∥2Hs + λt4
∫
R3

K(x)ϕtu−v(u− v)2dx

− tp
∫
R3

a(x)|u− v|pdx− t4
∫
R3

b(x)|u− v|4dx.
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Clearly, Fu(1, 0) = ⟨(Jλ)′(u), u⟩ = 0, and

d

dt
Fu(1, 0) =2∥u∥2Hs + 4λ

∫
R3

K(x)ϕtuu
2dx− p

∫
R3

a(x)|u|pdx− 4

∫
R3

b(x)|u|4dx

=− 2∥u∥2Hs − (p− 4)

∫
R3

a(x)|u|pdx < 0.

By applying the implicit function theorem, there exist σ > 0 and a differentiable
function t∗ : B(0;σ) ⊂ Hs(R3) → R such that t∗(0) = 1,

⟨(t∗)′(0), φ⟩

=
2
∫
R3((−∆)

s
2u(−∆)

s
2φ+ uφ)dx+ 4λ

∫
R3 K(x)ϕtuuφdx− p

∫
R3 a(x)|u|p−2uφdx− 4

∫
R3 b(x)|u|2uφdx

−2∥u∥2Hs + (4− p)
∫
R3 a(x)|u|pdx

,

and

Fu(t
∗(v), v) = 0 for all v ∈ B(0;σ),

that is,

⟨(Jλ)′(t∗(v)(u− v)), t∗(v)(u− v)⟩ = 0 for all v ∈ B(0;σ).

From the continuity of the map t∗, if σ is sufficiently small, we have

h′′λ,t∗(v)(u−v)(1) = −2∥t∗(v)(u− v)∥2Hs − (p− 4)

∫
R3

a(x)|t∗(v)(u− v)|pdx < 0,

and

Jλ(t
∗(v)(u− v)) < A(p)(

p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

Hence, t∗(v)(u− v) ∈M
(1)
λ for all v ∈ B(0;σ). �

Similar reason as we define α∞,−
λ and α∞,+

λ in Section 3, we can define the
following minimum problem

α−
λ = inf

u∈M
(1)
λ

Jλ(u) = inf
u∈M−

λ

Jλ(u),

α+
λ = inf

u∈M
(2)
λ

Jλ(u) = inf
u∈M+

λ

Jλ(u).

Proposition 4.6. For 0 < λ < Λ, there exists {un} ⊂M
(1)
λ such that

Jλ(un) = α−
λ + o(1) and (Jλ)

′(un) = o(1). (4.28)

Proof. First, we will show that M
(1)
λ is a complete metric space. It is obvious that

M
(1)
λ is a metric space. Then take any sequence un ∈ M

(1)
λ is a cauchy sequence.

We have d(un, um) → 0, that is ∥un − um∥Hs → 0. Then there exists u ∈ Hs(R3),
such that un → u in Hs(R3). It is easy to show that

∥u∥Hs ≤ lim inf
n→∞

∥un∥Hs ≤ D̂1, Jλ(u) < A(p)(
p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

So, we have u ∈M
(1)
λ . Hence,M

(1)
λ is a complete metric space. Then, by Lemma2.1,

we know Jλ(u) is bounded below on M
(1)
λ . Using the Ekeland variational principle

[11], there exists a minimizing sequence {un} ⊂M
(1)
λ such that

Jλ(un) < α−
λ +

1

n
,
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and

Jλ(un) ≤ Jλ(w) +
1

n
∥w − un∥Hs for all w ∈M

(1)
λ . (4.29)

By applying Lemma 4.5 with u = un, there exists a function t∗n : B(0; ϵn) → R for

some ϵn such that t∗n(w)(un − w) ∈ M
(1)
λ . Let 0 < δ < ϵn and u ∈ Hs(R3) with

u ̸≡ 0. Set

wδ =
δu

∥u∥Hs

and zδ = t∗n(wδ)(un − wδ).

Clearly, zδ ∈M
(1)
λ , and by (4.29), we have

Jλ(zδ)− Jλ(un) ≥ − 1

n
∥zδ − un∥Hs .

Using the mean value theorem, we have

⟨(Jλ)′(un), zδ − un⟩+ o(∥zδ − un∥Hs) ≥ − 1

n
∥zδ − un∥Hs ,

and

⟨(Jλ)′(un),−wδ⟩+ (t∗n(wδ)− 1)⟨(Jλ)′(un), un − wδ⟩

≥ − 1

n
∥zδ − un∥Hs + o(∥zδ − un∥Hs).

(4.30)

Observe that t∗n(wδ)(un − wδ) ∈M
(1)
λ . By (4.30), we deduce that

− δ
⟨
(Jλ)

′(un),
u

∥u∥Hs

⟩
+
t∗n(wδ)− 1

t∗n(wδ)
⟨(Jλ)′(zδ), t∗n(wδ)(un − wδ)⟩

+(t∗n(wδ)− 1)⟨(Jλ)′(un)− (Jλ)
′(zδ), un − wδ⟩

≥ 1

n
∥zδ − un∥Hs + o(∥zδ − un∥Hs),

that is,⟨
(Jλ)

′(un),
u

∥u∥Hs

⟩
≤ t

∗
n(wδ)− 1

δ
⟨(Jλ)′(un)− (Jλ)

′(zδ), un − wδ⟩

+
∥zδ − un∥Hs

δn
+
o(∥zδ − un∥Hs)

δ
.

(4.31)

There exists a constant C > 0 independent of δ such that

∥zδ − un∥Hs = ∥t∗n(wδ)(un − wδ)− un∥Hs

= ∥(t∗n(wδ)− 1)(un − wδ)− wδ∥Hs

≤ ∥wδ∥Hs + |t∗n(wδ)− 1|∥un − wδ∥Hs ≤ δ + C|t∗n(wδ)− 1|,

and

lim
δ→0

|t∗n(wδ)− 1|
δ

= lim
δ→0

| t
∗
n(wδ)− t∗n(0)

wδ
| = (t∗n)

′(0) ≤ ∥(t∗n)′(0)∥ ≤ C.

Owing to lim
δ→0

∥zδ − un∥Hs = 0, and letting δ → 0 in (4.31), we have that⟨
(Jλ)

′(un),
u

∥u∥Hs

⟩
≤ C

n
,

thus, (4.28) holds true. �
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Proof of Theorem 1.3.
By Proposition 4.6, there exists {un} ⊂M

(1)
λ such that

Jλ(un) = α−
λ + o(1) and (Jλ)

′(un) = o(1).

By Corollary 4.2, Lemma 4.3, and Lemma 4.4, let vλ ∈M−
λ be a nontrivial solution

of equation (Eλ) such that Jλ(vλ) = α−
λ . Hence, Jλ has a minimizer vλ on M−

λ .

By α−
λ < α∞,−

λ < A(p)(p−2
2p )(

2Sp
p

a∞(4−p) )
2

p−2 , we obtain vλ ∈ M
(1)
λ . By Lemma 2.2,

problem (Eλ) has a nontrivial solution vλ. Therefore, system (1.1) has a nontrivial
solution (vλ, ϕ

t
vλ
).

5. proof of the Theorem 1.4

Recall that w0(x) is a unique positive solution of equation (E∞
0 ) (up to transla-

tion) such that J∞
0 = α∞

0 = p−2
2p (

Sp
p

a∞
)

2
p−2 and w0(0) = maxx∈R3 w0(x).

Define Ta(w0) as follows( a∞
amax

) 1
p−2

< Ta(w0) :=
( ∥w0∥2Hs∫

R3 a(x)|w0|pdx

) 1
p−2

< 1, (5.1)

where
(

∥w0∥2
Hs∫

R3 a∞|w0|pdx

) 1
p−2

= 1.

From (H5) and 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0, we have∫

R3

a(x)|w0|p >
∫
R3

a∞|w0|pdx = a∞S
−p
p ∥w0∥pHs >

p

4− p

(2λ(4− p)K2
∞

(p− 2)StS2

) p−2
2 ∥w0∥pHs .

Similar argument as Lemma 2.6, we can prove the following Lemma holds true.

Lemma 5.1. If conditions (H1)-(H3) and (H5) hold. Then there exists a positive

number Λ̂ = min{Λ, Λ̃} < Λ, such that for every 0 < λ < Λ̂, the following two
statements are true.
(1) If λ

∫
R3 K(x)ϕtw0

w2
0dx >

∫
R3 b(x)|w0|4dx, there exist two constants t̃+λ and t̃−λ

satisfying

Ta(w0) < t̃−λ <
√
A(p)

( 2

4− p

) 1
p−2

Ta(w0) <
( 2

4− p

) 1
p−2

Ta(w0) < t̃+λ

such that t̃−λw0 ∈M
(1)
λ , t̃+λw0 ∈M

(2)
λ , and

Jλ(t̃
−
λw0) = sup

0≤t≤t̃+λ

Jλ(tw0) <

{
α∞,−
λ , if K∞ > 0,

α∞
0 , if K∞ = 0,

and

Jλ(t̃
+
λw0) = inf

t≥t̃−λ

Jλ(tw0) < 0.

(2) If λ
∫
R3 K(x)ϕtw0

w2
0dx ≤

∫
R3 b(x)|w0|4dx, there exist a constant t̃0λ satisfying

0 < t̃0λ < Ta(w0)

such that t̃0λw0 ∈M
(1)
λ and

Jλ(t̃
0
λw0) = sup

0≤t≤Ta(w0)

Jλ(tw0) <

{
α∞,−
λ , if K∞ > 0,

α∞
0 , if K∞ = 0.
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Proof. By (3.19), we have Λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0. For each 0 < λ < Λ, similar to

the proof of Lemma 2.6:
(1) If λ

∫
R3 K(x)ϕtw0

w2
0dx >

∫
R3 b(x)|w0|4dx, there exist two constants t̃+λ and t̃−λ

satisfying

Ta(w0) < t̃−λ <
√
A(p)

( 2

4− p

) 1
p−2

Ta(w0) <
( 2

4− p

) 1
p−2

Ta(w0) < t̃+λ ,

such that t̃±λw0 ∈M±
λ ,

Jλ(t̃
−
λw0) = sup

0≤t≤t̃+λ

Jλ(tw0),

and

Jλ(t̃
+
λw0) = inf

t≥t̃−λ

Jλ(tw0) = inf
t≥0

Jλ(tw0) < 0.

(2) If λ
∫
R3 K(x)ϕtw0

w2
0dx ≤

∫
R3 b(x)|w0|4dx, there exists t̃0λ satisfying

0 < t̃0λ < Ta(w0),

such that t̃0λw0 ∈M−
λ and

Jλ(t̃
0
λw0) = sup

0≤t≤Ta(w0)

Jλ(tw0).

From (H5) and (5.1), it follows that

Jλ(t̃
−
λw0) =

(t̃−λ )
2

2
∥w0∥2Hs +

λ(t̃−λ )
4

4

∫
R3

K(x)ϕtw0
w2

0dx

−
(t̃−λ )

p

p

∫
R3

a(x)|w0|pdx−
(t̃−λ )

4

4

∫
R3

b(x)|w0|4dx

=
(t̃−λ )

2

2
∥w0∥2Hs +

λ(t̃−λ )
4

4

∫
R3

K(x)ϕtw0
w2

0dx−
(t̃−λ )

p

p

∫
R3

a(x)|w0|pdx

−
(t̃−λ )

p

p

∫
R3

(a(x)− a∞)|w0|pdx−
(t̃−λ )

4

4

∫
R3

b(x)|w0|4dx

<α∞
0 +

λ

4
A(p)2

( 2

4− p

) 4
p−2

K2
maxS

−1

t S−2∥w0∥4Hs

− 1

p

( a∞
amax

) p
p−2

∫
R3

(a(x)− a∞)|w0|pdx−
(t̃−λ )

4

4

∫
R3

b(x)|w0|4dx

<α∞
0 +

λ

4
A(p)2

( 2Sp
p

a∞(4− p)

) 4
p−2

K2
maxS

−1

t S−2

− 1

p

( a∞
amax

) p
p−2

∫
R3

(a(x)− a∞)|w0|pdx.

This, together with α∞
0 < α∞,−

λ (see Theorem 1.2), we obtain that there exists a

positive number Λ ≤ Λ such that for every λ < Λ, we have

Jλ(t̃
−
λw0) <

{
α∞,−
λ , if K∞ > 0,

α∞
0 , if K∞ = 0.
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In fact, if K∞ > 0, then Kmax > 0, there exists a positive number Λ ≤ Λ such that
for every λ < Λ, we have

Jλ(t̃
−
λw0) <α

∞
0 +

λ

4
A(p)2

( 2Sp
p

a∞(4− p)

) 4
p−2

K2
maxS

−1

t S−2∥w0∥4Hs

− 1

p

( a∞
amax

) p
p−2

∫
R3

(a(x)− a∞)|w0|pdx < α∞,−
λ .

If K∞ = 0, then we need to distinguish two cases.
(1): when Kmax = 0, we have Jλ(t̃

−
λw0) < α∞

0 .

(2): when Kmax > 0, for every λ < Λ, we have

Jλ(t̃
−
λw0) <α

∞
0 +

λ

4
A(p)2

( 2Sp
p

a∞(4− p)

) 4
p−2

K2
maxS

−1

t S−2∥w0∥4Hs

− 1

p

( a∞
amax

) p
p−2

∫
R3

(a(x)− a∞)|w0|pdx

< α∞,−
λ = α∞

0 .

It implies that

Jλ(t̃
−
λw0) < max{α∞,−

λ , α∞
0 } < A(p)(

p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

We know t̃−λw0 ∈M
(1)
λ . Since Jλ(t̃

+
λw0) < 0, we obtain t̃+λw0 ∈M

(2)
λ .

Similarly, we have

Jλ(t̃
0
λw0) =

(t̃0λ)
2

2
∥w0∥2Hs +

λ(t̃0λ)
4

4

∫
R3

K(x)ϕtw0
w2

0dx

− (t̃0λ)
p

p

∫
R3

a(x)|w0|pdx− (t̃0λ)
4

4

∫
R3

b(x)|w0|4dx

=
(t̃0λ)

2

2
∥w0∥2Hs +

λ(t̃0λ)
4

4

∫
R3

K(x)ϕtw0
w2

0dx− (t̃0λ)
p

p

∫
R3

a∞|w0|pdx

− (t̃0λ)
p

p

∫
R3

(a(x)− a∞)|w0|pdx− (t̃0λ)
4

4

∫
R3

b(x)|w0|4dx

<α∞
0 +

λ

4
K2

maxS
−1

t S−2∥w0∥4Hs −
(t̃0λ)

p

p

∫
R3

(a(x)− a∞)|w0|pdx− (t̃0λ)
4

4

∫
R3

b(x)|w0|4dx

<α∞
0 +

λ

4
K2

maxS
−1

t S−2∥w0∥4Hs −
ϑp

p

∫
R3

(a(x)− a∞)|w0|pdx,

where ϑ > 0 sufficiently small. Using α∞
0 < α∞,−

λ (see Theorem 1.2), Similar

argument as above, there exists a positive number Λ̃ ≤ Λ such that for every

λ < Λ̃, we have

Jλ(t̃
0
λw0) <

{
α∞,−
λ , if K∞ > 0,

α∞
0 , if K∞ = 0,

that is

Jλ(t̃
0
λw0) < max{α∞,−

λ , α∞
0 } < A(p)(

p− 2

2p
)
( 2Sp

p

a∞(4− p)

) 2
p−2

.

We see t̃0λw0 ∈M
(1)
λ . �
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Proof of Theorem 1.4.
Let {un} ⊂M

(1)
λ be a sequence satisfying

Jλ(un) = α−
λ + o(1) and (Jλ)

′(un) = o(1).

In terms of Lemma 2.1 and Lemma 5.1, we obtain

p− 2

4p
C0 ≤ α−

λ <

{
α∞,−
λ , if K∞ > 0,

α∞
0 , if K∞ = 0.

Because {un} is bounded in Hs(R3), we assume that there exists u0 ∈ Hs(R3) such
that

un ⇀ u0 weakly in Hs(R3), (5.2)

un → u0 strongly in Lr
loc(R3) for 2 < r < 2∗s, (5.3)

un → u0 a.e. in R3. (5.4)

We claim that u0 ̸≡ 0. Otherwise, u0 ≡ 0. Since {un} ⊂ M
(1)
λ and α−

λ > 0, we
have that

0 < α−
λ < Jλ(un) =

1

4
∥un∥2Hs −

4− p

4p

∫
R3

a(x)|un|pdx ≤ 1

4
∥un∥2Hs .

which yields that ∥un∥Hs > ν > 0 for some constant ν and for all n. By concentra-
tion compactness principle [16], there are positive constants R, θ and a sequence
{zn} ⊂ R3 such that∫

B(0;R)

|un(x+ zn)|pdx ≥ θ for sufficiently large n, (5.5)

which implies that sequence {zn} is unbounded in R3. By contradiction, suppose
that zn → z0 for some z0 ∈ R3. Using (5.3), (5.5) we have∫

B(z0;R)

|u0|pdx ≥ θ,

which contradicts with u0 ≡ 0.
Set

ũn(x) = un(x+ zn),

it is not difficult to prove that{
J∞
0 (ũn) → α−

λ and (J∞
0 )′(ũn) = o(1) in H−s(R3), if K∞ = 0,

J∞
λ (ũn) → α−

λ and (J∞
λ )′(ũn) = o(1) in H−s(R3), if K∞ > 0.

(5.6)

In fact, up to a subsequence, we may assume that lim
n→∞

|x + zn| = +∞. Hence, it

is easy to check that∫
R3

a(x)|un|pdx =

∫
R3

a(x+ zn)|ũn|pdx→
∫
R3

a∞|ũn|pdx,∫
R3

b(x)|un|4dx =

∫
R3

b(x+ zn)|ũn|4dx→
∫
R3

b∞|ũn|4dx = 0,∫
R3

K(x)ϕtun
u2ndx =

∫
R3

K(x+ zn)ϕ
t
ũn
ũ2ndx→

∫
R3

K∞ϕ
t
ũn
ũ2ndx.

Thus, when K∞ > 0, J∞
λ (ũn) → α−

λ , when K∞ = 0, J∞
0 (ũn) → α−

λ .
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In virtue of {un} bounded in Hs(R3), we may assume that there exists ũ0 ∈
Hs(R3) such that

ũn ⇀ ũ0 weakly in Hs(R3).

Similar argument as above can lead to the followings{
(J∞

0 )′(ũ0) = 0 if K∞ = 0,

(J∞
λ )′(ũ0) = 0 if, K∞ > 0.

But, using Theorem 1.2, we see that ũ0 ̸≡ 0 in R3 and{
ũ0 ∈M∞

0 and J∞
0 (ũ0) ≤ α−

λ , if K∞ = 0,

ũ0 ∈M∞
λ and J∞

λ (ũ0) ≤ α−
λ , if K∞ > 0.

If K∞ = 0, it is easily seen that α∞
0 ≤ J∞

0 (ũ0) ≤ α−
λ , we achieve a contradiction

with α∞
0 < α−

λ .
If K∞ > 0, similarly argument as the proof of Theorem 1.2, it is not difficult

to obtain that ũ0 ∈ M∞,−
λ , which indicates that J∞

λ (ũ0) ≥ α∞,−
λ , and so α∞,−

λ ≤
J∞
λ (ũ0) ≤ α−

λ , this is impossible.
Hence, u0 ̸≡ 0 and (Jλ)

′(u0) = 0, this means that equation (Eλ) has a nontrivial
solution u0.

Due to {un} ∈M
(1)
λ and

∥un∥Hs < D̂1 <
[ 2Sp

p

amax(4− p)

] 1
p−2

for all n = 1, 2...,

using Fatou′s lemma, we can easily get that

∥u0∥Hs ≤ lim inf
n→∞

∥un∥Hs ≤ D̂1 <
[ 2Sp

p

amax(4− p)

] 1
p−2

.

By Sobolev’s inequality, we have that

(hλ,u0)
′′(1) =− 2∥u0∥2Hs + (4− p)

∫
R3

a(x)|u0|pdx

≤− 2∥u0∥2Hs + (4− p)amaxS
−p
p ∥u0∥pHs

<0.

Thus, u0 ∈M−
λ and then

Jλ(u0) ≥ α−
λ . (5.7)

Now we are in a position to prove un → u0 strongly in Hs(R3). By contradiction,
suppose that there exists c0 > 0 such that ∥un − u0∥Hs > c0. Let vn = un − u0.
By (5.2)-(5.4), up to a subsequence, we may assume that

vn ⇀ 0 weakly in Hs(R3),

vn → 0 strongly in Lr
loc(R3) for 2 < r < 2∗s,

vn → 0 a.e. in R3.

In terms of conditions (H1)-(H3) and (5.6), we have

∥vn∥2Hs + λ

∫
R3

K∞ϕ
t
vn
v2ndx =

∫
R3

a∞|vn|pdx+ o(1),
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it means that

J∞
λ (vn) ≥

{
α∞,−
λ , if K∞ > 0,

α∞
0 , if K∞ = 0.

(5.8)

By (5.7), (5.8) and Brezis-Lieb Lemma in [4], we have

Jλ(un) =
1

2
∥un∥2Hs +

λ

4

∫
R3

K(x)ϕtun
u2ndx− 1

p

∫
R3

a(x)|un|pdx− 1

4

∫
R3

b(x)|un|4dx

=
1

2
∥u0∥2Hs +

λ

4

∫
R3

K(x)ϕtu0
u20dx− 1

p

∫
R3

a(x)|u0|pdx− 1

4

∫
R3

b(x)|u0|4dx

+
1

2
∥vn∥2Hs +

λ

4

∫
R3

K∞ϕ
t
vnv

2
ndx− 1

p

∫
R3

a∞|vn|pdx+ o(1)

=Jλ(u0) + J∞
λ (vn) + o(1) ≥

{
α−
λ + α∞

0 + o(1), if K∞ = 0,

α−
λ + α∞,−

λ + o(1), if K∞ > 0,

which implies that

lim
n→∞

Jλ(un) = α−
λ ≥

{
α−
λ + α∞

0 + o(1) if K∞ = 0,

α−
λ + α∞,−

λ + o(1) if K∞ > 0.

Thus, we get a contradiction. So, un → u0 strongly in Hs(R3) and Jλ(u0) = α−
λ .

For 2 < p < 4, we have

α−
λ < max{α∞,−

λ , α∞
0 } < A(p)(

p− 2

2p
)(

2Sp
p

a∞(4− p)
)

2
p−2 .

That is u0 ∈ M
(1)
λ . Similarly, we obtain that u0 ∈ M−

λ and Jλ(u0) = α−
λ . By

Lemma 2.2, we see that equation (Eλ) has a nontrivial solution u0. Hence, system
(1.1) has a nontrivial solution (u0, ϕ

t
u0
).

6. Appendix

6.1. Appendix A. As we know that the following fractional Schrödinger equation

(−∆)su+ u = a∞|u|p−2u (E∞
0 )

has a unique positive solution w0 with w0(0) = maxx∈R3 w0(x).

If 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0, K(x) = K∞ and a(x) = a∞, b(x) = b∞ = 0, we

have

Ta(w0) = Ta∞(w0) =
( ∥w0∥2Hs∫

R3 a∞|w0|pdx

) 1
p−2

= 1,

and ∫
R3

a∞|w0|pdx = a∞S
−p
p ∥w0∥pHs >

p

4− p

(2λ(4− p)K2
∞

(p− 2)StS2

) p−2
2 ∥w0∥pHs . (6.1)

For 2 < p < 4, using Lemmas 2.5 and 2.6, there exists a constant t+λ > 0 satisfying

(
p

4− p
)

1
p−2 < t+λ < t̂

(0)
λ ,

such that

J∞
λ (t+λw0) = inf

( p
4−p )

1
p−2 <t<t̂

(0)
λ

J∞
λ (tw0) = inf

t≥0
J∞
λ (tw0) < 0,
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where t̂
(0)
λ is given in Lemma 2.5. ForR > 1, we define a function ψR ∈ C1(R3, [0, 1])

as

ψR(x) =

{
1 |x| < R

2 ,

0 |x| > R,

and |∇ψR| ≤ 1 in R3. Let uR(x) = w0(x)ψR(x). So, we have∫
R3

|uR|pdx→
∫
R3

|w0|pdx as R→ ∞, (6.2)∫
R3

|uR|4dx→
∫
R3

|w0|4dx as R→ ∞,

∥uR∥Hs → ∥w0∥Hs as R→ ∞, (6.3)∫
R3

K∞ϕ
t
uR
u2Rdx→

∫
R3

K∞ϕ
t
w0
w2

0dx as R→ ∞. (6.4)

Since J∞
λ ∈ C1(Hs(R3),R3), and using (6.1)-(6.4) there exists an R0 > 0 such that∫

R3

a∞|uR0 |pdx >
2

p
a∞S

−p
p ∥uR0∥

p
Hs , (6.5)

and
J∞
λ (t+λ uR0) < 0.

Let
u
(i)
R0,N

(x) = w0(x+ iN3e)ψR0(x+ iN3e)

for e ∈ S2 and i = 1, 2, ..., N ,where N3 > 2R0. In terms of condition (H1), we get

∥u(1)R0,N
∥2Hs = ∥uR0∥2Hs for all N. (6.6)

In fact,

∥u(1)R0,N
∥2Hs = Cs

∫
R3

∫
R3

|u(1)R0,N
(x)− u

(1)
R0,N

(y)|2

|x− y|3+2s
dxdy +

∫
R3

|u(1)R0,N
|2dx

= Cs

∫
R3

∫
R3

|w0(x+N3e)ψR0(x+N3e)− w0(y +N3e)ψR0(y +N3e)|2

|x− y|3+2s
dxdy

+

∫
R3

|w0(x+N3e)ψR0(x+N3e)|2dx

= Cs

∫
R3

∫
R3

|w0(x)ψR0(x)− w0(y)ψR0(y)|2

|x− y|3+2s
dxdy +

∫
R3

|w0(x)ψR0(x)|2dx

= Cs

∫
R3

∫
R3

|uR0(x)− uR0(y)|2

|x− y|3+2s
dxdy +

∫
R3

|uR0(x)|2dx

= ∥uR0∥2Hs .∫
R3

a(x)|u(1)R0,N
|pdx→

∫
R3

a∞|uR0 |pdx as N → ∞.∫
R3

K∞ϕ
t

u
(1)
R0,N

[u
(1)
R0,N

]2dx =

∫
R3

∫
R3

CtK(x)K(y)[u
(1)
R0,N

(x)]2[u
(1)
R0,N

(y)]2

|x− y|3−2t
dxdy

=

∫
R3

∫
R3

CtK(x−N3e)K(y −N3e)[uR0(x)]
2[uR0(y)]

2

|x− y|3−2t
dxdy

→K2
∞

∫
R3

∫
R3

Ct[uR0(x)]
2[uR0(y)]

2

|x− y|3−2t
dxdy as N → ∞.
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If a(x) ≥ a∞, K(x) ≤ K∞ and b(x) ≥ b∞ = 0, then there exists an N0 with
N3

0 > 2R0 such that for every N > N0, we have∫
R3

a(x)|u(i)R0,N
|pdx ≥

∫
R3

a∞|uR0 |pdx >
2a∞
pSp

p
∥uR0∥

p
Hs =

2a∞
pSp

p
∥u(i)R0,N

∥pHs ,

and

inf
t≥0

Jλ(tu
(i)
R0,N

) ≤ Jλ(t
+
λ u

(i)
R0,N

) ≤ J∞
λ (t+λ uR0),

for e ∈ S2 and i = 1, 2, ..., N .
Let

wR0,N (x) =
N∑
i=1

u
(i)
R0,N

.

When N3 ≥ N3
0 > 2R0, by (6.6), we have

∥wR0,N∥2Hs =

∫
R3

|(−∆)
s
2wR0,N |2 + (wR0,N )2dx

= Cs

∫
R3

∫
R3

|wR0,N (x)− wR0,N (y)|2

|x− y|3+2s
dxdy +

∫
R3

|wR0,N |2dx

= Cs

∫
R3

∫
R3

|
∑N

i=1 u
(i)
R0,N

(x)−
∑N

i=1 u
(i)
R0,N

(y)|2

|x− y|3+2s
dxdy +

∫
R3

|
N∑
i=1

u
(i)
R0,N

|2dx,

where∫
R3

∫
R3

|
∑N

i=1 u
(i)
R0,N

(x)−
∑N

i=1 u
(i)
R0,N

(y)|2

|x− y|3+2s
dxdy

=
N∑
i=1

∫
R3

∫
R3

|u(i)R0,N
(x)− u

(i)
R0,N

(y)|2

|x− y|3+2s
dxdy

+ 2

N∑
i ̸=j

∫
R3

∫
R3

(u
(i)
R0,N

(x)− u
(i)
R0,N

(y))(u
(j)
R0,N

(x)− u
(j)
R0,N

(y))

|x− y|3+2s
dxdy

= N

∫
R3

∫
R3

|uR0(x)− uR0(y)|2

|x− y|3+2s
dxdy

+
N∑
i ̸=j

∫
R3

∫
R3

2

|x− y|3+2s

[
uR0(x+ iN3e)uR0(x+ jN3e)− uR0(x+ iN3e)uR0(y + jN3e)

− uR0(x+ jN3e)uR0(y + iN3e) + uR0(y + iN3e)uR0(y + jN3e)
]
dxdy.

Let

T =
N∑
i ̸=j

∫
R3

∫
R3

2

|x− y|3+2s

[
uR0(x+ iN3e)uR0(x+ jN3e)− uR0(x+ iN3e)uR0(y + jN3e)

− uR0(x+ jN3e)uR0(y + iN3e) + uR0(y + iN3e)uR0(y + jN3e)
]
dxdy.
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By |ψR0 | ≤ 1, we have

N∑
i ̸=j

∫
R3

∫
R3

uR0(x+ iN3e)uR0(y + jN3e)

|x− y|3+2s
dxdy

=
N∑
i ̸=j

∫
R3

∫
R3

uR0(x)uR0(y)

|x− y + (j − i)N3e|3+2s
dxdy

≤
N∑
i ̸=j

1

|N3 − 2R0|3+2s
(

∫
R3

wR0(x)dx)
2

→ 0 as N → ∞.

Similarly,

N∑
i ̸=j

∫
R3

∫
R3

uR0(x+ jN3e)uR0(y + iN3e)

|x− y|3+2s
dxdy → 0 as N → ∞.

By Hölder inequality, we have

N∑
i̸=j

∫
R3

∫
R3

uR0(x+ iN3e)uR0(x+ jN3e) + uR0(y + iN3e)uR0(y + jN3e)

|x− y|3+2s
dxdy

N∑
i̸=j

∫
R3

∫
R3

uR0(x)uR0(x+ (j − i)N3e) + uR0(y)uR0(y + (i− j)N3e)

|x− y + (j − i)N3e|3+2s
dxdy

≤
N∑
i ̸=j

2

|N3 − 2R0|3+2s

∫
R3

wR0(x)wR0(x+ (j − i)N3e)dx

≤
N∑
i ̸=j

2

|N3 − 2R0|3+2s
(

∫
R3

|wR0(x)|2dx)
1
2 (

∫
R3

|wR0(x+ (j − i)N3e)|2dx) 1
2

≤
N∑
i ̸=j

2

|N3 − 2R0|3+2s

∫
R3

|wR0(x)|2dx → 0 as N → ∞,

where

|x− iN3e− (y − jN3e)|3+2s ≥
∣∣∣|i− j|N3e− |x| − |y|

∣∣∣3+2s

≥ |N3 − 2R0|3+2s.

Hence, we have

∥wR0,N∥2Hs

= NCs

∫
R3

∫
R3

|uR0(x)− uR0(y)|2

|x− y|3+2s
dxdy +N

∫
R3

|uR0 |2dx+ T

= N∥uR0∥2Hs + T.

So, we obtain

∥wR0,N∥2Hs = N∥uR0∥2Hs + T, (6.7)∫
R3

a(x)|wR0,N |pdx =
N∑
i=1

∫
R3

a(x)|u(i)R0,N
|pdx, (6.8)
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∫
R3

b(x)|wR0,N |4dx =
N∑
i=1

∫
R3

b(x)|u(i)R0,N
|4dx, (6.9)∫

R3

K∞ϕ
t
wR0,N

[wR0,N ]2dx =

∫
R3

∫
R3

CtK(x)K(y)[wR0,N (x)]2[wR0,N (y)]2

|x− y|3−2t
dxdy

=

N∑
i=1

∫
R3

∫
R3

CtK(x)K(y)[u
(i)
R0,N

(x)]2[u
(i)
R0,N

(y)]2

|x− y|3−2t
dxdy

+

N∑
i ̸=j

∫
R3

∫
R3

CtK(x)K(y)[u
(i)
R0,N

(x)]2[u
(i)
R0,N

(y)]2

|x− y|3−2t
dxdy.

(6.10)

By simple calculation, we obtain

N∑
i ̸=j

∫
R3

∫
R3

CtK(x)K(y)[u
(i)
R0,N

(x)]2[u
(i)
R0,N

(y)]2

|x− y|3−2t
dxdy

≤CtK
2
max(N

2 −N)

(N3 − 2R0)3−2t

(∫
R3

w2
0(x)dx

)2

,

which indicates that
N∑
i ̸=j

∫
R3

∫
R3

CtK(x)K(y)[u
(i)
R0,N

(x)]2[u
(i)
R0,N

(y)]2

|x− y|3−2t
dxdy → 0 as N → ∞. (6.11)

Lemma 6.1. For 2 < p < 4 and 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0. Let K(x) ≤ K∞

and a(x) ≥ a∞, b(x) = b∞ = 0. Then we obtain

α+
λ = inf

u∈M
(2)
λ

Jλ(u) = inf
u∈M+

λ

Jλ(u) = −∞. (6.12)

Proof. For N ∈ N, and let

fN (t) = t−2∥wR0,N∥2Hs − tp−4

∫
R3

a(x)|wR0,N |pdx for t > 0,

and

f∞(t) = t−2∥uR0∥2Hs − tp−4

∫
R3

a∞|uR0 |pdx for t > 0.

According to (6.7) and (6.8), it is easy to get

fN (t) =t−2(N∥uR0∥2Hs + T )− tp−4
N∑
i=1

∫
R3

a(x)|u(i)R0,N
|pdx

≤t−2N∥uR0∥2Hs − tp−4N

∫
R3

a∞|uR0 |pdx+ t−2T

=Nf∞(t) + t−2T.

(6.13)

So we observe that twR0,N ∈Mλ if and only if

fN (t) + λ

∫
R3

K(x)ϕtwR0,N
w2

R0,Ndx−
∫
R3

b(x)|wR0,N |4dx = 0.

By a direct computation, we can deduce that

f∞(Ta∞(uR0)) = 0, lim
t→0+

f∞(t) = ∞ and lim
t→∞

f∞(t) = 0,
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where

Ta∞(uR0) =
( ∥uR0∥2Hs∫

R3 a∞|uR0 |pdx

) 1
p−2

.

For 2 < p < 4 and

(f∞)′(t) = −2t−3∥uR0∥2Hs − (p− 4)tp−5

∫
R3

a∞|uR0 |pdx,

we can easily show that f∞(t) is decreasing when 0 < t < (
2∥uR0∥

2
Hs

(4−p)
∫
R3 a∞|uR0

|pdx )
1

p−2

and is increasing when t > (
2∥uR0∥

2
Hs

(4−p)
∫
R3 a∞|uR0 |pdx

)
1

p−2 . In view of (6.5) we can deduce

that

inf
t>0

f∞(t) =f∞
(( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0 |pdx

) 1
p−2

)
=− p− 2

4− p

( (4− p)
∫
R3 a∞|uR0 |pdx

2∥uR0∥2Hs

) 2
p−2 ∥uR0∥2Hs

<− p− 2

4− p

( (4− p)a∞∥uR0∥
p
Hs

pSp
p∥uR0∥2Hs

) 2
p−2 ∥uR0

∥2Hs

=− p− 2

4− p

( (4− p)a∞
pSp

p

) 2
p−2 ∥uR0∥4Hs .

For 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0, by (2.4) we have

λ <
p− 2

2(4− p)
(
4− p

p
)

2
p−2

[
1−A(p)(

amax

a∞
)

2
p−2

]
(
a∞
Sp
p
)

2
p−2

StS
2

K2
max

p− 2

4− p
(
(4− p)a∞

pSp
p

)
2

p−2 > 2λ
K2

max

StS2

1[
1−A(p)(amax

a∞
)

2
p−2

]
p− 2

4− p
(
(4− p)a∞

pSp
p

)
2

p−2 > 2λ
K2

max

StS2
> λK2

maxS
−1

t S−2,

hence, in terms of Lemma 2.3 and (6.13),

inf
t>0

fN (t) ≤fN
(( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0 |pdx

) 1
p−2

)
≤− N(p− 2)

4− p

( (4− p)a∞
pSp

p

) 2
p−2 ∥uR0∥4Hs +

( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0 |pdx

) −2
p−2T

<− λNK2
maxS

−1

t S−2∥uR0
∥4Hs

+
( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0

|pdx
) −2

p−2T

<− λN

∫
R3

∫
R3

CtK(x)K(y)[uR0(x)]
2[uR0(y)]

2

|x− y|3−2t
dxdy +

( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0 |pdx

) −2
p−2T.



FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH LOW ORDER TERM 41

By (6.11), we can deduce that

inf
t>0

fN (t) <− λN

∫
R3

∫
R3

CtK(x)K(y)[uR0(x)]
2[uR0(y)]

2

|x− y|3−2t
dxdy

−λ
N∑
i ̸=j

∫
R3

∫
R3

CtK(x)K(y)[u
(i)
R0

(x)]2[u
(i)
R0

(y)]2

|x− y|3−2t
dxdy +

( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0 |pdx

) −2
p−2T

=− λ

∫
R3

K(x)ϕtwR0,N
w2

R0,Ndx+
( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0 |pdx

) −2
p−2T.

From the above proof, we know that T → 0 as N → ∞, hence, we get that

inf
t>0

fN (t) < −λ
∫
R3

K(x)ϕtwR0,N
w2

R0,Ndx+

∫
R3

b(x)w4
R0,Ndx for sufficiently large N.

Hence, when 0 < λ < p−2
2(4−p) (

4−p
p )

2
p−2Λ0, by Lemma 2.6, we need to distinguish

two cases.
(1) If λ

∫
R3 K(x)ϕtwR0,N

w2
R0,N

dx >
∫
R3 b(x)w

4
R0,N

dx there exist two constants t
(1)
λ,N

and t
(2)
λ,N satisfying

1 < t
(1)
λ,N <

( 2∥uR0∥2Hs

(4− p)
∫
R3 a∞|uR0 |pdx

) 1
p−2

< t
(2)
λ,N ,

such that

fN (t
(i)
λ,N ) + λ

∫
R3

K(x)ϕtwR0,N
w2

R0,Ndx−
∫
R3

b(x)w4
R0,Ndx = 0,

for i = 1, 2 and for all N ∈ N. So, t
(i)
λ,NwR0,N ∈ Mλ for i = 1, 2 and for all N ∈ N.

Taking the derivative of h′
λ,t

(i)
λ,NwR0,N

(t), we have

h′′
λ,t

(1)
λ,NwR0,N

(1) =− 2∥t(1)λ,NwR0,N∥2Hs + (4− p)

∫
R3

a(x)|t(1)λ,NwR0,N |pdx = (t
(1)
λ,N )5f ′N (t

(1)
λ,N )

<0,

and

h′′
λ,t

(2)
λ,NwR0,N

(1) =− 2∥t(2)λ,NwR0,N∥2Hs + (4− p)

∫
R3

a(x)|t(2)λ,NwR0,N |pdx = (t
(2)
λ,N )5f ′N (t

(2)
λ,N )

>0.

Hence, we can easily deduce that

t
(1)
λ,NwR0,N ∈M−

λ and t
(2)
λ,NwR0,N ∈M+

λ .

In terms of (6.7)-(6.11), we get

Jλ(t
(2)
λ,NwR0,N ) = inf

t>0
Jλ(twR0,N ) ≤ Jλ(t

+
λwR0,N )

≤ NJ∞
λ (t+λ uR0) + (t+λ uR0)

−2T + C0 for some C0 > 0,

and

Jλ(t
(2)
λ,NwR0,N ) → −∞ as N → ∞.

Hence, (6.12) is proved.
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(2) If λ
∫
R3 K(x)ϕtwR0,N

w2
R0,N

dx ≤
∫
R3 b(x)w

4
R0,N

dx there exist a constant t
(0)
λ,N

satisfying

0 < t
(0)
λ,N < Ta∞(w0) = 1,

such that

fN (t
(0)
λ,N ) + λ

∫
R3

K(x)ϕtwR0,N
w2

R0,Ndx−
∫
R3

b(x)w4
R0,Ndx = 0.

Similar to the argument above we have t
(0)
λ,NwR0,N ∈M−

λ . �

6.2. Appendix B. In order to prove (3.9), we will apply the concentration-compactness
lemma due to [16, 17], to get the compactness.

For 2 < p < 4, let {un} ⊂M
∞,(1)
λ be a sequence as follows

lim
n→∞

J∞
λ (un) = α∞,−

λ > 0. (6.14)

Define the functional Φ∞
λ : Hs(R3) → R by

Φ∞
λ (u) =

p− 2

2p
∥u∥2Hs −

λ(4− p)

4p

∫
R3

K∞ϕ
t
uu

2dx. (6.15)

Using Lemma 2.1, for any u ∈M
∞,(1)
λ ⊂M∞,−

λ we obtain

J∞
λ (u) = Φ∞

λ (u) > 0.

In view of {un} ⊂ M
∞,(1)
λ , we have that {un} is bounded in Hs(R3), it indicates

that there exist a subsequence {un} and u∞ ∈ Hs(R3) such that


un ⇀ u∞ weakly in Hs(R3),

un → u∞ strongly in Lr
loc for 2 ≤ r < 2∗s,

un → u∞ a.e. in R3.

(6.16)

We need that sequence {un} has compactness. Finally, using a concentration-
compactness argument on the positive measures which are defined as follows. For

every un ∈M
∞,(1)
λ , we define the measure vn(Ω) by

vn(Ω) =
p− 2

2p

∫
Ω

(Cs

2

∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dx+u2n

)
dx− λ(4− p)

4p

∫
Ω

K∞ϕ
t
un
u2ndx,

(6.17)
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where Cs is a normalized constant. By un ∈ M
∞,(1)
λ , we obtain ∥un∥Hs < D̂1. By

Lemma 2.3 and K(x) = K∞, we have

vn(Ω) =
p− 2

2p

∫
Ω

(Cs

2

∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dx+ u2n

)
dx− λ(4− p)

4p

∫
Ω

K∞ϕ
t
un
u2ndx

≥ p− 2

2p

∫
Ω

(Cs

2

∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dx+ u2n

)
dx− λ(4− p)

4p
K2

maxS
−1

t S−2∥un∥2Hs(Ω)∥un∥
2
Hs(R3)

≥ p− 2

2p

∫
Ω

(Cs

2

∫
Ω

|un(x)− un(y)|2

|x− y|3+2s
dx+ u2n

)
dx

− (p− 2)StS
2

2(4− p)K2
∞

(a∞(4− p)2

2pSp
p

) 2
p−2 4− p

4p
K2

maxS
−1

t S−2∥un∥2Hs(Ω)∥un∥
2
Hs(R3)

=
p− 2

2p
∥un∥2Hs(Ω) −

(p− 2)

8p

K2
max

K2
∞

(a∞(4− p)2

2pSp
p

) 2
p−2 ∥un∥2Hs(Ω)∥un∥

2
Hs(R3)

≥ p− 2

2p
∥un∥2Hs(Ω)

[
1− 1

2

K2
max

K2
∞

(4− p

p

) 2
p−2

]
=
p− 2

2p
∥un∥2Hs(Ω)

[
1− 1

2

(4− p

p

) 2
p−2

]
≥ 0.

On the other hand, it is not difficult to check that vn(Ω) possesses the subadditivity
and monotonicity, Thus, vn(Ω) is a positive measure on R3. In terms of (6.14), we
have

vn(R3) = Φ∞
λ (un) = α∞,−

λ + o(1),

and we have three possibilities as follows:
(a) Vanishing: for all r > 0,

lim
n→∞

sup
ξ∈R3

∫
Br(ξ)

dvn = 0, (6.18)

where Br(ξ) = {x ∈ R3 : |x− ξ| < r}.
(b) Dichotomy: there exist a constant α ∈ (0, α∞,−

λ ), two sequences {ξn} and {rn},
with rn → ∞ and two nonnegative measures v1n and v2n such that

vn − (v1n + v2n) → 0, v1n(R3) → α, v2n(R3) → α∞,−
λ − α, (6.19)

and

supp(v1n) ⊂ Brn(ξn), supp(v2n) ⊂ R3 \B2rn(ξn). (6.20)

(c) Compactness: there exists a sequence {ξn} ∈ R3 with the following property:
for any δ > 0, there exists an r = r(δ) > 0 such that∫

Br(ξn)

dvn ≥ α∞,−
λ − δ, for large n. (6.21)

Lemma 6.2. For 0 < λ < (p−2)StS
2

2(4−p)K2
∞
(a∞(4−p)2

2pSp
p

)
2

p−2 , 2 < p < 4, compactness holds

for the sequence of measures {un} defined by (6.17).
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Proof. (I) Vanishing does not occur. Otherwise, for all r > 0, (6.18) holds. We can
show that there exists an r > 0 such that

lim
n→∞

sup
ξ∈R3

∫
Br(ξ)

u2ndx = 0.

It indicates that un → 0 strongly in Ls(R3) for 2 < s < 2∗s. Hence, for un ∈M
∞,(1)
λ ,

by Lemma 2.1, we have

0 ≤ J∞
λ (un) =

1

2
∥un∥2Hs +

λ

4

∫
R3

K∞ϕ
t
un
u2ndx− 1

p

∫
R3

a∞|un|pdx

=− λ

4

∫
R3

K∞ϕ
t
un
u2ndx+

p− 2

2p

∫
R3

a∞|un|pdx→ 0.

Hence, we get a contradiction.
(II) Dichotomy does not occur. Otherwise, there exist a constant α ∈ (0, α∞,−

λ ),
two sequences {ξn} and {rn}, with rn → ∞ and two nonnegative measures v1n and
v2n such that (6.19) and (6.20) hold. Let ρn ∈ C1(R3) satisfy that

ρn = 0 in R3\B2rn(ξn),

0 < ρn < 1 in B2rn(ξn)\Brn(ξn),

ρn = 1 in Brn(ξn),

and |∇ρn| ≤ 2
rn
. Let

hn := ρnun, wn := (1− ρn)un.

Similar argument in [23], we have

lim inf
n→∞

Φ∞
λ (hn) ≥ α and lim inf

n→∞
Φ∞

λ (wn) ≥ α∞,−
λ − α. (6.22)

Therefore, let Ωn := B2rn(ξn) \Brn(ξn), then we have

vn(Ωn) → 0 as n→ ∞,

that is ∫
Ωn

∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dxdy +

∫
Ωn

u2ndx→ 0 as n→ ∞,∫
Ωn

K∞ϕ
t
un
u2ndx→ 0 as n→ ∞. (6.23)

Similar arguments as that in [23], we have that∫
R3

(|(−∆)
s
2un|2dx =

∫
R3

(|(−∆)
s
2hn|2dx+

∫
R3

(|(−∆)
s
2wn|2dx+ on(1), (6.24)∫

R3

u2ndx =

∫
R3

h2ndx+

∫
R3

w2
ndx, (6.25)∫

R3

|un|pdx =

∫
R3

|hn|pdx+

∫
R3

|wn|pdx+ on(1), (6.26)

and ∫
R3

K∞ϕ
t
un
u2ndx ≥

∫
R3

K∞ϕ
t
hn
h2ndx−

∫
R3

K∞ϕ
t
wn
w2

ndx+ on(1). (6.27)

Thus, by (6.24)-(6.27), we deduce that

Φ∞
λ (un) ≥ Φ∞

λ (hn) + Φ∞
λ (wn) + on(1).
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Hence, we have

α∞,−
λ ≥ lim

n→∞
Φ∞

λ (un) ≥ lim
n→∞

Φ∞
λ (hn) + lim

n→∞
Φ∞

λ (wn) ≥ α+ (α∞,−
λ − α) = α∞,−

λ .

It indicates that lim
n→∞

Φ∞
λ (hn) + lim

n→∞
Φ∞

λ (wn) = α∞,−
λ . By (6.22), we get

lim
n→∞

Φ∞
λ (hn) = α > 0 and lim

n→∞
Φ∞

λ (wn) = α∞,−
λ − α. (6.28)

By (6.24), (6.25) and (6.26), (6.27) we have

0 = ⟨(J∞
λ )′(un), un⟩ ≥ ⟨(J∞

λ )′(hn), hn⟩+ ⟨(J∞
λ )′(wn), wn⟩+ on(1). (6.29)

So for all n ≥ 1 and 2 < p < 4, there holds

max{∥hn∥Hs , ∥wn∥Hs} < D̂1 <
( 2Sp

p

a∞(4− p)

) 1
p−2

(6.30)

and

λ <
(p− 2)StS

2

2(4− p)K2
∞

(a∞(4− p)2

2pSp
p

) 2
p−2

.

Furthermore, we get

p

4− p

(2λ(4− p)K2
∞

(p− 2)StS2

) p−2
2 ∥hn∥pHs =

p

4− p

(2λ(4− p)K2
∞

(p− 2)StS2

) p−2
2 ∥hn∥p−2

Hs ∥hn∥2Hs

≤
2pSp

p

a∞(4− p)2

(2λ(4− p)K2
∞

(p− 2)StS2

) p−2
2 ∥hn∥2Hs

< ∥hn∥2Hs ≤ ∥hn∥2Hs + λ

∫
R3

K∞ϕ
t
hn
h2ndx

≤
∫
R3

a∞|hn|pdx.

By Lemma 2.6, for any n ≥ 1 there exists

Ta∞(hn) < t−λ,n <
√
A(p)(

2

4− p
)

1
p−2Ta∞(hn),

such that t−λ,nhn ∈M∞,−
λ , where

Ta∞(hn) =
( ∥hn∥2Hs∫

R3 a∞|hn|pdx

) 1
p−2

> 0.

Next, we discuss the following three cases:

Case (i). Up to a subsequence, ⟨(J∞
λ )′(hn), hn⟩ ≤ 0. We claim that t−λ,n ≤ 1.

Since t−λ,nhn ∈M∞,−
λ , we have∫

R3

λK∞ϕ
t
hn
h2ndx = −(t−λ,n)

−2∥hn∥2Hs + (t−λ,n)
p−4

∫
R3

a∞|hn|pdx. (6.31)

By (6.31), we obtain

0 ≥ ⟨(J∞
λ )′(hn), hn⟩ = ∥hn∥2Hs + λ

∫
R3

K∞ϕ
t
hn
h2ndx−

∫
R3

a∞|hn|pdx

=∥hn∥2Hs − (t−λ,n)
−2∥hn∥2Hs + (t−λ,n)

p−4

∫
R3

a∞|hn|pdx−
∫
R3

a∞|hn|pdx

=[1− (t−λ,n)
−2]∥hn∥2Hs + [(t−λ,n)

p−4 − 1]

∫
R3

a∞|hn|pdx.

(6.32)
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Suppose by contradiction that t−λ,n > 1. By (6.31), we have that∫
R3

a∞|hn|pdx <
2

4− p
(t−λ,n)

2−p∥hn∥2Hs . (6.33)

By virtue of (6.32) and (6.33), we have

0 ≥[1− (t−λ,n)
−2]∥hn∥2Hs +

2

4− p
[(t−λ,n)

−2 − (t−λ,n)
2−p]∥hn∥2Hs

=[1 +
p− 2

4− p
(t−λ,n)

−2 − 2

4− p
(t−λ,n)

2−p]∥hn∥2Hs

=(t−λ,n)
−2[(t−λ,n)

2 +
p− 2

4− p
− 2

4− p
(t−λ,n)

4−p]∥hn∥2Hs ,

(6.34)

that is,

(t−λ,n)
2 +

p− 2

4− p
− 2

4− p
(t−λ,n)

4−p ≤ 0.

Nevertheless, for 2 < p < 4, it is not difficult to get that

t2 +
p− 2

4− p
− 2

4− p
t4−p > 0 for t > 1. (6.35)

In fact, let g(t) = t2 + p−2
4−p − 2

4−p t
4−p, we have g′(t) = 2t− 2t3−p. When g′(t) = 0,

we obtain t = 0 or t = 1. Hence,

f(t) > 0, if t > 1,

f(t) < 0, if t < 1.

The above facts gives a contradiction. Thus, t−λ,n ≤ 1.

Now, we define function Φ∞
λ (thn) by

Φ∞
λ (thn) =

(p− 2)t2

2p
∥hn∥2Hs −

(4− p)t4

4p
λ

∫
R3

K∞ϕ
t
hn
h2ndx for t > 0.

Since 2 < p < 4, it is not difficult to prove that there exists a constant

t∞λ (hn) =
[ (p− 2)∥hn∥2Hs

(4− p)λ
∫
R3 K∞ϕthn

h2ndx

] 1
2

> 0,

such that Φ∞
λ (thn) is increasing when t ∈ (0, t∞λ (hn)) and is decreasing when t ∈

(t∞λ (hn),∞). By using Lemma 2.3 and (6.30), we deduce that

t∞λ (hn) =
[ (p− 2)∥hn∥2Hs

(4− p)λ
∫
R3 K∞ϕthn

h2ndx

] 1
2 ≥

[ p− 2

(4− p)λS
−1

t S−2K2
∞∥hn∥2Hs

] 1
2

≥
[ (p− 2)λStS

2

λ(4− p)K2
∞

] 1
2

(
a∞(4− p)2

2Sp
p

)
1

p−2 ≥ 1,

where

λ <
(p− 2)StS

2

2(4− p)K2
∞
(
a∞(4− p)2

2pSp
p

)
2

p−2 .

Therefore, owing to t−λ,n ≤ 1, we have that

α∞,−
λ ≤ J∞

λ (t−λ,nhn) = Φ∞
λ (t−λ,nhn) ≤ Φ∞

λ (hn) → α < α∞,−
λ ,

this is impossible.
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Case(ii). ⟨(J∞
λ )′(wn), wn⟩ ≤ 0. Similar argument as the proof of Case (i), we

also get a contradiction.
Case(iii). Up to a subsequence, ⟨(J∞

λ )′(hn), hn⟩ > 0, ⟨(J∞
λ )′(wn), wn⟩ > 0.

By (6.29), we obtain that ⟨(J∞
λ )′(hn), hn⟩ = on(1) , and ⟨(J∞

λ )′(wn), wn⟩ =
on(1). Repeating the arguments of Case (i), suppose by contradiction that

lim
n→∞

t−λ,n = t−λ,∞ > 1. (6.36)

By (6.32), we have that

on(1) = ⟨(J∞
λ )′(hn), hn⟩ = [1− (t−λ,n)

−2]∥hn∥2Hs + [(t−λ,n)
p−4 − 1]

∫
R3

a∞|hn|pdx.

From (6.34), we deduce that

on(1) ≥ (t−λ,n)
−2[(t−λ,n)

2 +
p− 2

4− p
− 2

4− p
(t−λ,n)

4−p]∥hn∥2Hs ,

which implies that

∥hn∥2Hs → 0 as n→ ∞,

and then ∫
R3

K∞ϕ
t
hn
h2ndx→ 0 as n→ ∞.

Thus, it is easy to infer that Φ∞
λ (hn) → 0 as n→ ∞, which contradicts with (6.28).

Therefore, dichotomy does not occur. �
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