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ABSTRACT. In this paper, we consider the following fractional Schrodinger-
Poisson system:

(=A)u +u + AK(x)pu = a(x)|ulP~2u + b(x)|[u]?u  in R3,

(A = K(z)u? in R3,
where s,t € (0,1), A > 0, 2 < p < 4, K(x), a(z) and b(x) are nonnegative
functions satisfying some suitable conditions. We establish the existence of

nontrivial solutions by using a refinement constrained minimization methods
combining with compactness-concentration arguments.

1. INTRODUCTION

In this paper, we consider the following fractional Schrodinger-Poisson system

(—A)u+u + MK (z)pu = a(z)|u[P~2u + b(z)|ul?u in R3, 11
{ (—A)lp = K(z)u? in R3, (1.1)
where A > 0, 2 < p < 4, s,t € (0,1), 2s + 2t > 3 and K(z), a(z), b(x) are
nonnegative functions. we assume that the function a(z) and b(z), K(x) satisty
the following assumptions:
(H1) a(z) is a positive continuous function on R?, then we have

Goo
lim a(x) = aoe >0, Qumae := sup a(z) < —,
2213, (%) S ele) Alp)*=
where )
4—p\r—2 .
(Tp) ? if 2 <p<3,
Alp) =1
3 if 3<p<4;

(H3) K(x) € L*(R3)\{0} is a non-negative function on R? and
lim K(z) =Ky > 0;

T—>00

(Hs3) b(z) € L*°(R?) is a non-negative continuous function on R? such that

z151010 b(x) = 0.
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When s =t = 1, problem (1.1) reduces to the following system

{ —Au+u+ K(z)pu = a(x)|ulP~?u + b(x)|ul*u in R3,

—A¢p = K(z)u? i R3 (1.2)

and its more general form is written as

—Au+V(z)u+ K(z)pu = f(z,u) in R3, 13
~A¢ = K(x)u? in R3, (1.3)

where f(z,u) € C(R® x R,R). Problem (1.3) can be regarded as a model to
describe the interaction between charged particles and electrostatic field, which
was proposed by Benci-Fortunato [5] in quantum mechanics. The nonlinearity
f(z,u) represents the particles interacting with each other, u and ¢ represent the
wave functions associated with the particle and the electric potential. We refer the
interesting readers to see [1] for more detailed information on mathematical and
physical backgrounds.

In recent years, Schrodinger-Poisson systems with a local nonlinear term f(x,u)
have been studied in depth. For system (1.3), there have been extensive studies
under different assumptions of V| K and f. For example, see [2, 3, 5, 7, 8, 9, 6,
14, 15, 19, 30, 28, 32, 31] and the references therein. In the case of the critical
f = JulP~2u + u® with 4 < p < 6 and the subcritical 3 < p < 6, the existence of
ground state solutions were proved in [3]. For the case p < 2 or p > 6, the reader
may see [9] and for the case 2 < p < 6, can see [2, 3, 7, 8, 19]. When V is non-radial,
K =1 and f = |ul[P~2u, system (1.3) has a ground state solution in [3] and [30]
for4 <p<6and 3 <p <4 In[26], when V = 1 and f = a(z)|u[P~%u with
4 < p <6 and A € R\{0}, Varia proved the exist of ground state solutions in the
caseof 4 <p<6if A\>0and2<p<6if A <O0.

On the other hand, for problem (1.1), we give its more general form by

{ (=A)u+ V(zx)u+ K(x)pu = f(z,u) in R3,

(—A)tp = K(z)u? in R3. (1.4)

In recent years, the system (1.4) are receving a great attention. For example, in
[29], Zhang, Do 6 and Squassina considered the existence of radial ground state
solution to the fractional Schrédinger-poisson system with a general subcritical or
critical nonlinearity as V(z) = 0 ,K(z) = A > 0. In [23], when f(z) = |u|P~ 1y,
Teng established the existence of ground state solution to the nonlinear fractional
Sodinger-Poisson system (1.4) when 2 < p < 2%, and system (1.4) has a trivial
solution when 1 < p < 2, K(z) = A > % or p = 27 — 1. In [22], Teng studied
the existence of a nontrivial ground state solution through using the method of
Pohozaev-Nehari manifold and the arguments of Brezis-Nirenberg, the monotonic
trick and global compactness Lemma for f(z,u) = plu|? u + |u|*~2u with ¢ €
(1,2% — 1). For other related works, we refer the readers to see [13, 18, 20, 24, 25]
and so on.

As far as we know, there are few results about the case of 2 < p <4 and A > 0.
In very recent, Sun and Wu, Feng [21] established the existence of ground state solu-
tions and positive solutions to the non-autonomous fractional Schréodinger-poisson
system (1.3) when f(z,u) = a(z)|u|P~2u. Motivated by the above mentioned work-
s, the purpose of this study is to prove the existence results of positive solutions for
system (1.1) under 2 < p < 4. Observed that the usual Nehari manifold is not ideal
choices because the energy functional I constrained on its Nehari manifold is not
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bounded below when 2 < p < 4. To kill this obstacle, based on recent study [21],
through introducing a new set N(c), which is sub-level set of the Nehari manifold

N(e)={u e N :I(u) < c},

where N is the Nehari manifold and ¢ € R, N(c) is a subset of the Nehari manifold
and it can be divided into two parts

N(e)= NV (e)UN®(e), NV (¢)={ue N(c): |Ju]|g- < C1}
and
N®(c) = {ue N(o) : |lullzz= > Ca}.

Moreover, local minimum of I on each set is a critical point of I in H*(R3). The
advantage of this subset is that the functional I constrained on N (c) is bounded
below so that we can consider the corresponding minimum problem e ]ivr%f)(c) I(u).
Applying this approach, we can prove the existence of nontrivial solutions of system
(1.1). Compare with the work of [21], we introduce a perturbation term b(z)u?,
this will make more careful analysis, except that our problem (1.1) is a class of
nonlocal problem.

Now, we introduce some notations.
(a): S is the best constants for the embedding of H*(R?) in L%(RS).
(b): S; is the best constants for the embedding of D“2(R?) in L% (R?).
(¢): S, is the best Sobolev constant for the embedding of H*(R3) in LP(R?).

Remark 1.1. For 2 < p < 4, it is not difficult to show that
1 2
A — <1 d A
(p)<\/é< an (p)(4_p

Our main results are stated as follows.

)ﬁ>1.

Theorem 1.2. Suppose that 2 < p < 4, K(z) = Ko > 0 and a(z) = ace > 0,
b(z) = boo = 0. Then for each 0 < A < A, system (1.1) has a positive solution
(wx, L, ), and it satisfies

wx
25P P
< sl < (%)
N )
and

ag® <oy = J80(wy) <

App-2) [ 258\
p);; 2)<aoo(4p))

Theorem 1.3. Suppose that 2 < p < 4, Koo > 0 and conditions (Hy)-(Hs) hold.
In addition, we assume that
(Hy): [gsla(z) — asowldaz > 0 and [ps K(x)dl, wide < [oo Koodl, wide but the
equality signs can not hold at the same time, where wy is the positive solution is
giwen in Theorem 1.2.

Then for each 0 < X\ < A, system (1.1) has a nontrivial solution (vx,¢,) €
H*(R3) x D¥?(R3) and it satisfies

P 1

28 =3
o< ol < (25 )
loalle =)
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and
p—2
p
Theorem 1.4. Suppose that 2 < p < 4, Koo > 0 and conditions (Hy)-(Hs) hold.
In addition, we assume that
(Hs): [gsla(z) — asslwlida > 0 where wy is the unique positive solution of equation

(—AYu+u=axulf2u inR3 (E)

Co < Ja(uy) < Ozio’_.

Then there exists 0 < A < A such that for each 0 < \ < /AX, system (1.1) has a
nontrivial solution (ug, ¢%,,) € H*(R3) x D"2(R3) and it satisfies

257\ i
0< ||UOHH5 < <7p)) ’

amax(4_p
and
p_2 a§o7_a ZfKoo >0,
Co < J <
1p 0= Alw) {aSO, if Koy = 0.

The structure of this paper is organized as follows. In section 2, we introduce
some technical Lemmas. In section 3, we prove Theorem1.2. Section 4 and Section
5 are devoted to proving Theorem1.3 and Theorem1.4.

2. PRELIMINARIES

For the second equation of system (1.1), applying the Lax-Milgram theorem, for
each u € H*(R3), when 4s + 2t > 3, there exists a unique ¢!, € D“2(R3) such that
F( 3;21& )

I'(t)

and then (—A)'¢ = K(z)|u|? in R3. Replacing it into the first equation of system
(1.1), we get that

(=A)u +u+ MK (2)¢Lu = a(x)|ulP~2u + b(z)|jul*u  in R3. (E))

¢ (2) = C’t/ Mdy where Cy=m"227% , (2.1)

o [ — g7

Equation (F)) is variational, and its solutions are the critical points of the func-
tional Jy(u) defined in H*(R?) as

1 1 1
In(u) = = ||lul| % + é/ K(x)¢! u’dx — f/ a(x)|ulPde — f/ b(x)|ul*dz.
2 4 R3 P Jrs 4 R3
Obviously, Jy € C1(H*(R?),R) and

(Ghwhph = [ (=)
— a(z)|uP " 2updr — x)|ul?updz
|, a@lup~2updo — [ v@luPugds,

for any ¢ € H*(R?), where J§ denotes the Fréchet derivative of Jy. Note that
(u,¢) € H*(R3) x D%2(R?) is a solution of system (1.1) if and only if u is a critical
point of Jy and ¢ = ¢¢.

Define the Nehari manifold for the functional J as follows

My = {u € H*(R*)\{0} : (J(u),u) = O},

wle

u(—A)2 o + updz + )\/ K (z)¢! updx
R3
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clearly, u € M) if and only if

|| % —i—)\/ K(m)qﬁiquaj—/ a(x)|u|pdx—/ b(x)|ul*dx = 0.
R3 R3 R3

Let hy, : t — Jx(tu) for ¢ > 0, such map was introduced by Drdbek-Pohozaev
in [10], which is known as fibering map. For u € H*(R?), we have

4
() = —||u||H9+)\i/ K (2)6' u2d — 7/ |u|pdx——/ 2)ufide,

hal®) =l + 36 [ K@otalds — 0 [ a@lurde— ¢ [ bolultds,
R3 R3
Kyu(t):HuH%Is—ﬁ—i%)\t?/ K(w)qﬁiuzdx—(p—l)tpﬂ/ a(ac)|u|pdm—3t2/ b(x)|u|*d.
R3 R3 R3

Obviously, h) ,(t) = 0 if and only if tu € M. Particularly, h (1) = 0 if and only
if w € M. As usual, in order to find the local minimizer of Jy, we split the set M)
into three parts as follows

M ={ue M, :n,(1) >0},

MY = {u € M,y : hY (1) =0},

My = {ue My :hY,(1) <0}.
Lemma 2.1. For2 < p < 4, Jx(u) is coercive and bounded below on M, . For any
we My, Jy(u) > pT;QCO.

Proof. For all u € M), by the Sobolev inequality, we have that

ul|2s < [Jul|%- +>\/ K(z)¢o! u’dx :/ a(x)|u|pdx+/ b(z)|u|*dx
R3 R3 R3
< amax Sy " ullfs + bmaz Sy |ullfre,
thus
1 < tmazS, Pllul/®re 24 basS . < max{@mazSy, ", bmazSy }(||u|| 24 llul| %)
< 2maX{awuwSp P bmaxSy 4} maX{H“HH* ) ||UHH b
which implies that |[ul|%. is bounded below, i.e.,
[ullF: > Co >0, (2.2)

where Cy is a positive constant only dependent of amax; bmax, Sa and S;,. Thus, for
each u € My, by (2.2) and the definition of A} , (1), we deduce that

I =Sz, = 22 [ a@updr > 22 ). > 22
4 4p  Jps 4p

Co.
4p 0

]

Lemma 2.2. Assume that ug is a local minimizer for Jy on My and ug ¢ M/(\),
then J} (ug) = 0.

Proof. Let

G(u) = |Jull % + )\/]R3 K(2)¢! u?dx — /]1@3 a(z)|ulPde — /R3 b(x)|ul*dz.
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Using the Lagrange multiplier theorem, there exists p € R such that
J\(u) + pG' (u) = 0.
Next, we prove that = 0. Otherwise, we have
(4 (), u) + (G (), u) = 0,
that is

Hu||ils+)\/ K(x) Zquxf/ a(z)|u|pdx—/ b(x)|ul*de

R3 R3 R3

+u[2\|u||%15 +4)\/ K(x)qﬁtuquzfp/ a(x)|u|pd:1774/ b(:c)|u|4d:c} =0.
R3 R3 R3

Since u € My, then (J}(u),u) = 0. So we deduce

2|ull?. + 4)\/ K (2)¢! u?dx — p/ a(x)|u|Pdz — 4/ b(x)|u|*dx = 0,
R3 R3 R3
that is
wllFs + 3)\/ K ()¢t u?dx — (p — 1)/ a(x)|ulPde — 3/ b(x)|u|*dx = 0,
R3 R3 R3

which means that u € Mf\J, contradiction with v & Mg. Thus p© = 0 and then
Ji(u) = 0.
O

Lemma 2.3. For each u € H*(R3), the following two inequalities are true.
(1)¢y, > 0;

. =1,
(i) Jps K (2) @l u® < K700 8, S72|Jull3

mazx

Proof. Tt follows from (2.1) that ¢!, > 0 holds. We will prove (ii) as follows.
By the definition of ¢!, and Sobolev’s inequality, we obtain

342t

640 = [ K(@pdhaitde < Koo ([ [60P5a0) 7 ([ fute)ioHirae)
R3 R3 R3

3+2t
12

< KonasS; ke ([ futa)| e *
R3

__1
S KmawSt 25_1”””?{5

¢Z”Dtv25

which yields the following

—_1
6]l pre < KimaaSy *S7 lullf.

Thus, by Hoder’s inequality, we have that

K(x)¢tuu2 < Kmax”ﬁ%
]Rfi

—_1
Iz 1l g, < KnawSy *S™ Il 60l pe2

<K}

max

—
S S |lullh--

Consequently, the conclusion (ii) follows. a
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For 2 < p <4 and any u € M) with Jy(u) < A(p)(55,° )(%) 77, we deduce

that

A ) > D)
Lo A ¢ 2 1 1 4
=g lullz + 4 K(x)%u de— = | a(@)|uffde— - [ b(x)lul"dz
4 R3 4 R3
_b—= 2 / t, 2 —p/ 4
e—i/\ K(x)¢,u dx + b(x)|u|*dz (2.3)
22l potaide+ L [ ol
Pl 0 [ K@t
p—2 4—0p 5 lg
>, ||U\|12Hs— )‘K72nazs S72 | e
Let .
_ (p—2)8:5? (aoo(4—p)2>f32
24-p)KL\  2pSy
and )
Gmax \ —2- S S
Bo = [1- A7 () 1 (2.4)

where K4, = sup K(z).
z€R3
Moreover, consider the following quadratic equation

i(l—A(p)(am”) )(M) —a:+A(p)(255))”22 =0, (2.5)

Goo pSh oo (4 —p
where z = ||ul|%.. It is not difficult to get its solutions,

21+ /1 - At9) (1 - A (230) ) )7
(L= A@)(gae)72)(2) 7=
2(1- /1 - at) (1 - A (230) ) )7 )

2579 25
o (1= A(p)(Zuse) 772 ) (2) 72 () - e

oo

o =

We infer that

259 =z
o >2<aoo(4 - p)) ’ (2.8)
(7255 )7 > @ >A(p)<7255 )7
Amaz (4 — P) (4 -p)

In fact, we denote G = (1 — A(p)(%)v 2)(p) . By (Hi), we can easily see
that 0 < G < 1. By Remarkl.1, we have
—A(p)G > (1 - A(p)G)*.
2

By (H1), we have A(p) < (“%”) 2 Directly calculations, we have

Omazx

LI AE < ()77

Umazx
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thus, we have

2(1—W)

25p 23
G (aoo(4p—p))

o \ 72 250 N\ 250 =
< %(aimm) %(aoo(4p—p)> - (amax(élp—p)) ’

On the other hand, by calculations, we have

2(1 - +v/1-A(p)G) > Alp)G,

xr1 =

and then
B 2(1 - V1= A(p)G) 257\
= G (aoo(4 - p))
A 257\ 5% 257\ 3%
> (Z)G (aoo(4 - p)) = A@)(m)

By using the fact of 1 — A(p)G > (1 — A(p)G)? and 0 < G < 1, we have

_2(1+\/W)< 257 )1722>2(1+1—A(p)G)( 257 )f
N Goo Goo )

Zo

G (4-p) G (4-p
2(2-A(p)G 2P 2 2P 2
o) (™ s o
G oo (4 —p) Go0(4 — D)
. 257\ 52 ,
which leads to zg > 2(?‘1{@) . Thus, (2.8) is proved.

For 0 < A < 2&:21))(4;”)%[&0, according to (2.3) and (2.6), (2.7), (2.8), then

there exist two positive numbers 51 and ﬁg satisfying
25P = o~ 25P =3 25P 2~
Ap(ip ) <D <(7p ) <\/§<7” ) < Do,
( ) Qoo (4 - p) ! Amazx (4 - p) ) ?
such that

lulls < Dy or lullgs > Ds.

Clearly, we can get that Di — o as p— 4.
Therefore, we define

— - SP N5z 1 2
M, = {u € My : Ja(u) < A(p)(prQ)(awip_p)) } ~MPuM?, (29)

where
Mil) = {'U, c M)\ : ||’LLHH3 < ﬁl}, M§2) = {u c M)\ : HU”Hs > ﬁg}

Furthermore, it is easy to see that

~ 257 =
lullgs < D1 < (ﬁ:—p)) " foranyue Mil), (2.10)
~ 257 =7
llul|zre > Do > ﬁ(ﬁ) " forany ue M§2). (2.11)
aoo(4—p
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Lemma 2.4. For 0 < \ < 2(4_p)(4 Y522 Ao, we have MY ¢ My, MP c My

are C' sub-manifolds. Furthermore, each local minimizer of the functional Jy in
the sub-manifolds M)(\l) and M/g) is a critical point of Jy in H*(R3).

Proof. For u € M)(\l), by (2.10) and Sobolev’s inequality, we have that
Na(D) = =2ullfs + (4 - p) /Rg a(@)|ulPdz < =2||ullF: + (4 = p)S, Pamas[ul. <0,

which means that M;\l) C M, .
For u € M;\Q), by (2.11), we deduce that

_ _ P\
sty = O [ alupas = nw < )22 ()

2p (4-p
P22 ) p
2p \as(4—p) ap T
which implies
2|ul|?. < (4 —p)/ a(x)|ulPdx, for any u € M, (2.12)
RS

From (2.12), it follows that
£ (1) = ~2lluly. + (4 - p) / a@)lulfdr >0

Thus, M >(\2) cCM ;‘ . According to Lemma 2.2 | we know that each local minimizer
of the functional Jy in the sub-manifolds M il) and M §2) is a critical point of Jy in

H*(R?). The proof is completed. O
For u € H*(R3)\ {0} , we define

Ta(u) ||,U’HHS )ﬁ

(fRs x)|u|Pdz
Lemma 2.5. For each A > 0 and u € H*(R3)\ {0} satisfying

204 — p)K2, .\ 5
o): [ alulrar > 2 (PU ey =y
R? 4=p\ (p—2)8,58?
and
A K(x)¢zu2dx>/ b(x)|u|*dz,
R3 R3
there exists a constant fE\O) (4pp)p 2T, (u) such that
tlgt(") Ja(tu) = inf Ja(tu) < 0. (2.13)

() 72 T () <t <7
Proof. For any u € H*(R?)\ {0}, and ¢ > 0, one has

4 4
a(t) —Hu||Hg+/\i/ K (z)6Lutdz — / a(x)\u|pdx—t—/ b()|ulAda
P Jrs 4 R3

=t* [g(t) + % . K(x)¢iu2dx ~1 /RS b(x)|u|4dx] = hy (1),
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where
t72 tp74
g(t) = 7““||?{s T e a(z)|ulPdz.
It is obvious that Jy(tu) = 0 if and only if
A 1
gt)+ = | K(z)¢tudr — 7/ b(x)|u|*dx = 0.
4 R3 4 R3

A direct calculation shows that

g(ta) =0,  Tim g(t) = oo and lim g(t) =0,

where 7, = (g)ﬁTa(u) Hence,

—4 4 —
g0 ==l - 20 [ a@lupde = - July + L2 [
b R3 p

R3

a(x)|u|pdx],

which implies that g(t) is decreasing when 0 < ¢t < (f%p)p%?Ta (u) and is increasing

when ¢ > (4fp)P+2Ta(u). Thus, we have that

2

: _ j . p—2 pllullg- =
o =02 ) = 3= (a3 feooapa) 1ol

By Lemma 2.3 and Sobolev’s inequality, for each v € H*(R3) \ {0} satisfying

2

p 2)\(4_]9)}(31&1; P%
/ a@)lurds > £ )7l
Rf}

- (p — 2)?,552
we obtain
. p—2 pllullzs =T
fg(t)=— s
tu;log( ) 2(4 —p) ((4—p) Jgs a(m)|u|de) lulla

= A
< AKELSS . < -7 [ K(@)oltds
R3

A 1
< - - K (2)¢! u?dx + 7/ b(x)|ul*de.
4 R3 4 R3

and

0< < (o) T (w) <7, (2.14)

From the hypothesis, there exist Z&O) f&l) satisfying

such that
g(fs\j)) + % - K ()¢t u?dx — i/RB b(x)|u[*dz =0 for j = 0,1,
that is,
Iy u) =0 for j =0,1.
Therefore, for each A > 0 and v € H*(R3) \ {0} satisfying
p2

P 24 —p Kfmz =
/ a(@)|updz > L ( 4 -p) a2 ) 7 ullf,,
R? 4d=p\ (p—2)SiS
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we have

P\t

I [(4 L) Ta(u)u}
:[( P )P%T (u)r[g(( P )5e T, (u)) + 2 K(z)¢!udr — 1/ b(a:)|u|4da?} < 0.
1_p e 1_p e 1 Jos u 1 Jes
Thus
t11_>1£ Ja(tu) < 0.

Note that

(0 =10 [g0)+ 5 [ K@dlatds - 1 [ bwluitds] + 0

’ 4 R3 4 R3

which means that

fu(t) <0 forall t € (#;%( p )ﬁTa(u)},

and
0
L@ > 0.
Thus, (2.13) is proved. O
Lemma 2.6. For A\ > 0 and v € H*(R3)\{0} satisfying (Hg), then the following
two statements are true.

i) If X [ K(2)ot uda > (o4 b(z)|u|*dz, then there exist two constants t7 and t,
( ) R U R A A
which satisfy

T,(u) < t5 < \/@(42]3)”12 < ( 2 )ﬁTa(u) <tf,

4—p
such that
tfue M,  Jy(tyu)= sup Ja(tu)
o<t<t!
and

In(tiu) = ti>r1tg Jx(tu) = inf 7, (tu) < 0.
5% -

(i) If X [gs K ()¢t ulde < [oq b(z)|u|*dx, then there exist a constant t which
satisfies

0 <t < Tu(u),
such that

tQue My, J(Bu)= sup Jy(tu).
0<t<Ty (u)

Proof. Define
ft) =t |ul|%. — tp_4/ a(x)|ulPdz for t > 0.
R3
It is easy to see that tu € M, if and only if

f+ M| Kx)¢lu’de — / b(x)|u|*dx = 0.
R3 R3
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Directly computation, we have that

fully. N7 ol \ )
1000 = ([ageraras) e~ (raaypgs) L ol

(lul2.) 7= (lul2.) 7=
fR3 ) |u|pdx) =2 ng ) |u|pdx) =2

and

lim f(r) = oo, lim f(r) =

t—0+
From 2 < p < 4 and

7ty =17 = 2ljul

e+ @-p? [ alolulrds).
R3

we know that f(¢) is decreasing if 0 < ¢t < (ﬁp)pf?Ta(u) and is increasing if
t > (12)77 Tu(u). Thus

int £(0) = f[(==) 7 Tu(w)]. (2.15)

For each A > 0 and v € H*(R3) \ {0} satisfying
_2

p 2)‘4_pK72na1 pT
[ atoluras > (2 (PEED S ) =,

4—p\ (p—2)5,52
By Lemma 2.3, Sobolev’s inequality, and (§ )P 2 > 1, we have
H(m ) - G2 (e ) 7

4—p @ 4—p'\(4—p) [ps a(x)uPdx He
2 2 —29, |14
< 2<p) K257 5 ulld
<—\[| K(z)¢iudr < —)\/ K(z)¢! u?dx +/ b(x)|ul*dz.
R3 RS R3

And, for 2 < p < 4, by Remark 1.1 we have

2\ 2 \#z

L) < VAG) (=) Tal) < (775) 7 Lulw) (2.16)

and it is not difficult to show that
p—2
(Z)AP)= -1 _ P2 (4—p>rz

Ap) )7z 24D

By using (2.15)-(2.17), we deduce that

1 (ﬁ)fl(p)pz;2 -1 ull2. S
f( A(p)(43p)ETu(u)) :_{ A(p)(ﬁp)ﬁ }(fRJ I ”Hu|pdm) ul2,.
< —\K?

2 52 ullh < A / K(2)¢lude
]R3

(2.17)

<—\[| K(z)¢ u*de + / b(x)|ul*dz.
R3

R3
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Now, we need to distinguish two cases.

(i) If X fps K (@)@l u?dx >[5, b(x)|u|*da holds, there exist two constants ¢ and
ty > 0 which satisfy

To(u) <t < \/M(ﬁp)"iz:ra(u) < ( 2 )ﬁTa(u) <t (218)

such that

4—p

JE) + A [ K(2)dhude - / b(a)|uf*dz = 0,
R3 R3

which implies that tfu € M,. Moreover, we have

iz = =25l + (=) [ alalizupds = 65)°F(65) <0
and
it (D) == 20 ullf + (4 - p) /}RS a(@)|tyul” = () f'(tX) > 0.
These yield that tFu € M. It is not difficult to verify that hy.(t) > 0if t €
(0,¢5) U(t], 00) and Ry (1) <0ift e (ty,t)). Hence, we obtain

Ja(tyu) = sup Jy(tu), Jr(tfu)= inf Jy(tu)
0<t<tf t2>ty

and Jy(t{u) < Jx(tyu). By Lemma 2.5, we get
+ e
Ia(tyu) = %gg I (tu) < 0.

(i) If X [oo K(2)¢lu?de < [os b(x)|u|*dz holds, similar to the proof of (i), there
exists a constant tg which satisfies

0 <t <Ty(u) (2.19)
such that

FB)+ X [ K(@)dkude - / b(a)[uldz = 0,
R3

R3

which implies that tgu € M. Moreover,
Nagu(D) == 2[tRulls + (4 —p) /]Rs a(z)[tjulPde = (£3)°f'(t5) < 0.

This means that (u € My and b, (t) > 0if t € (0,23), by ,(t) < 0if ¢ € (3, +00).
Hence,

IntQu) = sup  Jy(tu).
0<t< T (u)

This proof is completed. O
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3. PROOF OF THEOREM 1.2

In this section, suppose that K(z) = Ko > 0 and a(z) = as > 0, b(z) = boo =
0.
Now, we consider the following limit problem associated to problem (E}):
(—AYu+u+ AKudlu = asolulP2u in R®.  (EY)
The energy functional J{° : H*(R?) — R corresponding to (E5°) is defined by
1 A 1
T (u) = = ||lull3. + 7/ Koo u?de — 7/ aoo|ulPdz,
2 4 R3 D Jgrs

clearly, J3° € C'(H*(R?),R) and its critical points are weak solutions of (E°).
Define
MR = {u € H*(R*) \ {0} : ((J5°)' (), u) = O},
where (J3°)" is the Fréchet derivative of J3°. Then, v € My° if and only if

2. + A / Koo u?da — / e [ulPd = 0,
R3 R3

In particularly, when A = 0, equation E5° reduces to following fractional Schrédinger
equation
(—A)*u+u=ax|ufu inR> (E)
Let wp be the unique positive solution of E§° (see [12]), we know that

0) =
wo(0) = max wo(z),

2 SPN 722
ol = [ aceluode = (22) (3.1
and .
0o . oo b= 2 7;0) p—2
Qo = ueujbfgc J5° (wo) = T (Cloo )

where J§° is the energy functional of equation (ES°) in H*(R3) as follows

. 1 1
T = gl =5 [ aelul?de, (32)

and
Mge = {u € H*(R*)\{0}[((J5°) (u), u) = 0}.
Since K(z) = Ko and a(z) = as, we have

Ao L?tSZ
Ao =11~ A(P)](?g)p’z KL

For 0 < X\ < 2”772(47”)?%2./\0, by (3.1), wp is the unique positive solution of

2(4-p)\ p
equation (E§°), we have

2 p—2
D (PO DEN T ..
4— P (p — 2)St52

By (Hj), similar to the proof of conclusion (i) of Lemma 2.6, there exist two
constants t3°" and ¢5°” satisfying

/ too|wolPde =ace S, P wol3r. >
R3

2 1

1<t < /A (—) R e
A (p) 4—p A
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such that t?\o’iwo € Mf"’i. Moreover, we have that

(S we) = sup R (tw),
0<t<t>t
TR we) = inf  J(twp) = inf J5° (twy) < 0.
>3 t20
Lemma 3.1. J°(u) is coercive and bounded below on M. Furthermore, for
P
allu € M™™, there holds J5°(u) > %(%)ﬁ

Proof. Let u € M{®, by Sobolev’s inequality, we have that

Il <[[ull%. + /\/RS Kodlulds /]R ol < 8P armaslull%.

which leads to
P 2

S =3
/aoo|u|pdx2\|u||%32< )7 (3.3)
R3

Amazx

For u € M~ there holds
(h32,)" (1) =ull3- + 37 / Koodlalde — (p—1) / aoclufPdc
’ R3 R3

=2l + (@ =p) [ axlupPds <o

thus, we have

- 1 4—9p p—2 p—27 SP \+2s
I3 (u) :1||u\|§,s—W/Rsammwdxzﬁnunip z@( P ) . (3.4)

amaw

This completes the proof. (]

By a simple computation, we deduce that

_ 1 _ A _ 1 _
TR w0) =g I ol + 5 [ Kbl (5 w)de =5 [ ol ol
R3 A 0 P Jrs

1 _ 4—0p _
== (1577 Pllwollzrs — ——(t7) | aoc|wol?d
Pl = L2 [ afuopds
1 00, — 4_p 00, — (t007*)2 4_p 00, —\p—
= 5 ol = = PO P lhwollhe = 2= [1 = = P2 ol

2 \r2p—2 s p—2/7 250 N7
<AW) (=) g, Iwollie = A, (%M_p)) ,
(3.5)

and
. 2 \ilSEyes -
> wollme < VAW (77) 7 (72) 7 < D
- P Goo
Thus, ;7" wy € M;o’(l), which implies that M;o’(l) is nonempty.
Similar to Lemma 2.4, we know that M;O’(l) C M, Mj\X”(Q) C My>". On
the other hand, M:\X)’(l) or M;o’@) is a sublevel set, and thus the infimums of
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J5°(u) constrained on these two sets are equal. Hence, we can define the following
minimum problem

as T = inf J¥(w) = inf  JP(uw),
ue My ueM ™

o = inf  J¥(u) = inf J(u).

T R = R

By Lemma 3.1, (3.5) and Lemma 6.1 in Appendix A, we have that

—— < ay” A .
4p (am,w) say <APp) 2p (aoo(4 — p)) (3.6)
and
ot = —c0 (3.7)

Proof of Theorem 1.2.
Let {u,} € M;o’(l) satisfy

I (up) =™ +0(1) and (J5°) (un) = o(1) in H*(R?). (3.8)

By virtue of Lemma 6.2 in Appendix B, we get

(p —2)S;5? (aoo(4 *p)Q)ﬁ,

A
0< <2(4—p)K§o 2pSy

compactness holds for the sequence {u, }. Then for each 6 > 0 there exist a positive
constant R = R() and a sequence {z,} C R? such that

/ (|[(=A) 2w, (2)|* 4 2 (x))dz < 0 uniformly for n > 1. (3.9
[B(zn;R)]°
Let
Vp = Un (- + 2,) € H*(R?),
then {v,} C M;)O’(l), and
o = Or 4z a0d TP (0n) = a3 +0(1).

By (3.9), for each 6 > 0, there exists R = R(#) > 0 such that

/ (|(=A) 2w, (2)|> 4+ v2(z))dx < 0 uniformly for n > 1. (3.10)
[B(0;R)]*

Since {v,} is bounded in H*(R3), up to a subsequence, we can assume that there
exists wy € H*(R?) such that

vp — wy weakly in H*(R?), (3.11)
v, — wy strongly in L], .(R?) for 2 < r < 27, (3.12)

vy — wy a.e. in R3.
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By (3.10)-(3.12) and Fatou’s Lemma, for any # > 0 and sufficiently large n(> 1),

there exists a constant R > 0 such that

/ |v, — wy|Pdx

R3

§/ |, — wy|Pdx —|—/ |, — wx|Pda
[B(0;R)] [B(0;R)]*

Ip . (1**T)p TP
<0+ (/ vidm) : (/ visdx) % + (/ widm) : (
[B(0;R)]® [B(0;R)]° [B(0;R)]°

<0+2007,

which means that for every r € (2,2%), there holds
vn — wy strongly in L"(R?).
Since ¢ : L3 — Db2 (R3) is a continuous function, we get that

L= ¢!, in DY*(R?),

Un

/ (bfjnvfbdx — / gbfl,kw?\dx.
R3 R3
Since vy, € M;\’o’(l), by (3.3) and (3.13), we obtain

Sp -2
/ Aoo|wy|Pdr > ( L )p “>0.
]R3 amam
This implies that wy # 0 and

/ Aoo|wy|Pdz — )\/ Koo, wide > |lwy |3 > 0.
RS RS

Next, we prove that

and

vp — wy strongly in H*(R?),
suppose by the contrary that

lwall g < Uminf ||vg, | gs.
n—oo

Similar to the argument of Lemma 2.6, we have

/[B(O;R)]c

(3.13)

(3.14)

(3.15)

(3.16)

00 o] t2 2 )‘t4 t 2 P p
IR (twx) = (A3, ) () = EHU}/\”HS t | Kooty wide — — aos|wa|Pda,
R3 P Jgrs

and
(hw,) () =1t° (doo(t) + )\/ Koo(bfmwidx) for t > 0,
RS

where d>(t) = t2|lwal|}. — tP7* [gs @oo|wr|Pda. Clearly, d>° (T, (wy)) = 0. By

(3.15), we have T,_ (wy) = (2l 7% < 1. Then, by (3.13)-(3.16)

fRS Qoo ‘wk ‘sz

(h3w,) (1) <0,

( K?’UJ)\)/(TGOO (U})\)) = (Taoo (wA))?’)\ KoqufUAwidx > 0.
R3

Hence, there exists T, _(wy) <t < 1 such that
tywy € M® and  (RS,,)(ty) = 0.

(3.17)
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Since v, € M;>™ by (3.13), (3.14) and (3.16), we have
( ())\?uu)//(l) < 0'

This implies that ty wy € M.
By (3.13), (3.14) and (3.16), we know that (h3°, )'(ty) > 0 for sufficiently large

(1)

n. Owing to v,, € My, we get

(h3,) (1) = 0. (3.18)

A Un

Similar to the proof of Lemma 2.6, we have

(h$2,,) (8) = t° (f“(t) +A/ Kooqﬁf,nv;idx) for t > 0,
R3
where
o) =t 2||loa || % — tp_4/ Qoo |Vp [P d.
R3

. 2
f°(t)is decreasing, 0<t< (4 — p)pfz (fRs |(|11:Hv]j:1’dx) 17%27
2 w3
£°°(t)is increasing, t > (4 — p)piZ (fRs |(|;;0 vai de) = ,

by using (2.16) and (3.18), we have (;2,)77 (;—Lalie )72 > 1. This means
%8 Qoo|Un

that (h32,, ) (t) > 0 when 0 < ¢ < 1, which implies that (h3°, ) is increasing on

(ty,1) for sufficiently large n. Therefore, (h3°, )(ty) < (A3, )(1) for sufficiently

large n. That is
Ity vn) < J3°(vy,) for sufficiently large n.
By (3.13)-(3.16), we deduce that
JE(t3wn) < liminf J3°(85v,) < lminf J3(0,) = a3,
we get a contradiction. Thus we have v,, — w) strongly in H*(R3) and
I (vn) = 2 (wy) = a3 as n — oo.

Furthermore, we obtain that

~ (p—2)5,5? (aoo(4—p)2)pzfz - p—2 (4;]9)1%21&0.

S 204-p)EL\ 2pS) 24—p)\ p

Therefore, wy is a minimizer for J° on M~ for each 0 < A < A. By (3.5), we
deduce that

(3.19)

_ _ p—2 25P 23
I (wy) = a3 < IR wo) < A(p ( ) ,
A ( A AL ) 2p aoo(4 _p)
which implies that wy € M;\’O’(l). Therefore, by Lemma 2.4, we see that w) is a
nontrivial solution of problem (ES°). By standard argument as [23], it follows that
wx(z) > 0 in R3. This indicates that (wy, %, ) is a positive solution of system
(1.1). In addition, since

(4 —p)/ oo|wp[Pdr < 2|3 and t,_ (wy)wy € M§®,
R3
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where , )
4—p 1 lwallgzs 72
2 < 1, = (—) <1, 3.20
( 2 ) > (wk) f]R3 a/oo|w)\ Pdx ( )
similar argument as Lemma 2.6, there holds
I (wy) = sup JP(twy), (3.21)
o<t<tf

where ¢} > (4317)19%215(1oo (wy) > 1 by (3.20). Thus, we obtain

0 =) > I (yun) 2 i+ L / Koy, uide > of.

Thus, the proof is completed.

4. PROOF OF THEOREM 1.3

Proposition 4.1. Let {u,} be a bounded (PS)s — sequence in H*(R?) for Jy.
There exist a subsequence {u,}, a number m € N, a sequences {y},}°2, in R?, a
function vo € H*(R?), and 0 # w; € H*(R?) when 1 < i < m such that

(i) |yi] = oo and |yt —yl| — o0 asn — o0, 1 <i#j<m;

i) (=A)*vg + vg + AK (2)¢ vo = a(z)|ve[P~2vo + b(x) |vel*vo;

i) (—A)Sw' +w' + AKooQSfini = oW P20
i) up = vg + Yorey w4 yh) + o(1) strongly in H(R3);

I (tt) = Ja(50) + 0 TR (W) + o(1).

Proof. (1) Since {u,} is bounded in H*(R?), up to a subsequence, there exists a
vg € H*(R3) such that u, — vy in H*(R3). Next, we will prove Jj(vg) = 0. It is
suffice to prove (J}(un), ) = (J5(vo),¢) for all ¢ € H*(R?). Indeed,

(A (un), @)
— <um<p>Hs+/ K(x)q&tunungodx—/ a(x)|un|p*2ungadx7/ b(x)|un|2ung0dx,
R3 ) R3

R3

(i
(
(
(v

(J3(v0), ) = (vg,cp>Hs+/3 K(a:)qﬁf,ovocpdx—/3 a(x)|vo\1’*21)0g0dx7/3 b(x)|v0|2y0<pdx.
R R R

By the u,, — vy in H*(R3), we can conclude that (u,,¢)ms — (vo,@)ms. Since
|tp [P~2u,, is bounded in L7°T (R3) and combining with u,, — u almost everywhere
in R3, we have

[l 2upas [ aluP2upds, voe (@)
Similar to the above argument, we also have
/]R3 b(2) | |Punpde —>/ z)|vo|Pvopda, Vo € LP(R3).
From the fact that u,, — vy in H*(R?), we can deduce that
K(z)¢!, uppda — /]1@3 K(z)¢! vopdx, Ve € H*(R?).

R3
Hence, J} (vo) = 0.
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(2) We will prove that (J°)'(w}) = o(1) and Jx(up) = Jx(vo) + J5°(w)) 4+ o(1),

where w} = u,, — vg. By the Brezis-Lieb Lemma, we deduce that

lwn s = llunllZre = lvollre + o(1),

/RS a(a)|wh P dz = /]R a(@)|un|? dz — /R a@lool de+o(), )

/ b(x)|wp|* de = / b(x)|uy|* dz — / b(x)|vg|* dz + o(1).
R3 R3 RS
From (H;p), wl — 0 in L7 (R?) and (4.1), we conclude that

loc

/ oo |w} |P dz = / a(x)|u,|P doe — / a(x)|vo|P dz 4 o(1). (4.2)
R3 R3 R3
By (Hs), Ve > 0, there exist R(¢) > 0 such that

/ b(x)\w,ll|4dx <eg,
|z|>R(e)

and from the fact that w) — 0 in L (R®), we have that

lim b(x)|wk|*dr = 0.
700 |z | <R(e)
Thus,
/ b()|un |4z — / b()vo|*dz = o(1). (4.3)
R3 R3
By Lemma 2.4 in [22] (25 + 2¢ > 3), we obtain
Kood)wl (wp)?de = | K(z)¢!, uide — [ K(z)¢h vide = o(1). (4.4)
R3 R3 R3
Combining (4.2)-(4.4), we get that
In(1tn) = J(00) + J5= (wh) + o(1). (45)
By Lemma 8.1 in [27], we have that
| [ @l — o 20 — [k P2l ods] = oDllpllae, Vi € HORY)
R3
From the condition (H;), we have
| [ (al@) = alt P udoda] = o)l Ve € HERS)
Thus,
| [ @)l =lool=200) a2 utda] = o(D)lple, Vi € H*(R).

(4.6)
Similarly, we have

/ (K (@)(6, i — 61, 00) — Kooty 0|z = oD)lgllir-, Vi € H*(R®). (47)
R3
By (Hj), and Vi € H*(R3) we have that

[ bl Putipds = o)l
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and
| [ elid Pk = P, = oo Pooleda]| = o)l

Thus,

| [ oliunlun = eoolids] = oDl (18)

Combining (4.6)-(4.8), we have
(4 ) — T4 (w0),0) — {5 (wh). )| = (D) lgllme, Vo € HP(R).
Therefore,
(52 (h) = o1). (49)

Next, we will consider the following two cases.
Case 1.

lim sup/ lw}|2dz = 0.
Bi(y)

n—oo yEJR3

By the vanishing Lemma, we have that

wl — 0in LY(R?), Vte (2,2F). (4.10)

Combining (4.5) and (4.10), there holds
1 1
Ta(ua) = Iaen) = e + [ Kot wh)? =3 [ anchublPde +o(1)
R3 " b Jrs
and
Kool (wy)?dz < Cllwh||*ss .

R3 n 3+2s

Thus,

1
Ta(a) — In(w0) = Lble +o(1).
By (J5°) (w)) = 0, we have

Jwhlfe + [ Koty @hdo— [ anchullpds =0
R3 " R3
and by (4.10), we have
Kooy (w})2dx — 0, / oo W} [Pdx — 0,
R3 " R3
which yields ||w?||%. = o(1). Thus, Jy(u,) = Jx(vo).
Case 2. There is y; > 0 such that

lim sup / |U}L|2 dx >~ > 0.
Bi(y)

n—oo yeRg
In this case, there exists y. € R? with |y!| — oo such that fBl(yl) |wk|?dx >

L > 0. Up to a subsequence, we assume that wr(.+yl) = w! # 0 weakly in
H*(R?). Thus,

In(un) = Ja(vo) = JR° (wy (- + y)) + o(1),

(J3°) (wp (- + ) = o(1).
Therefore (J5°) (w!') = 0. Let w2 = w}(. 4+ y}) —w', then we have that ||w?|%}. =
lwl |3 — [[w!||%. 4+ o(1). Combining the first equality of (4.1), we have

lw s = llunllZze = lvollze = lw' I + o(1). (4.12)

(4.11)
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Similar argument as (4.5) and (4.9), we deduce that
Ia(n) = Ix(vo) = IS°(w') + o(1) = JR° (wy,),
(J3°) (wp) = o(1).

Next, similarly argue as above, we note that either

lim sup/ |w? |2dx = 0, (4.14)
Bi(y)

n—oo y€R3

(4.13)

or there is v, > 0 such that
lim sup / lw2|2dz > v5 > 0. (4.15)
n— oo €R3 B1 ('U)

If (4.14) holds, it is similar to the case 1, we can show that Jy(uy) = Jx(vo) +
Je (wh).

If (4.15) holds, it is similar to the case 2. There is y2 € R3 with |y2| — oo
satisfying f B, |w |2dx > & > 0. Up to a subsequence, we can assume that

w2 (. +y2 )Aw #Oweaklylan( 3), (J5°) (w?) = 0 and
Ia(un) = Ja(vo) — JR°(w") — I3 (w?) + (1) = J3° (wy),
(J3°) (wp) = o(1),
lwnllzrs = lunllzrs = lvollzrs — w7 — lw?|[3 + o(1),
where w? = w2(. + y2) — w?. Continuing this process, we have w?, € H*(R?),
v, € R3 with |y} | — oo satisfying w}, (. + y) = w’ # 0 weakly in H*(R3) and
(J3°) (w') =0, (4.16)
where wi ™ = wl (. +yl) —w’, j € N.
(3) From the above argument, we have that

J
Ir(un) — Jx(vo) ZJ,\OO w') +o(1) = J (wi ),

() (wi ) = 0(1)7 (4.17)

lwd e = lunllFre — llvollEre =Y lw'lFe +o(1).

Combining the fact that ((J5°) (w"),w’) = 0 and Sobolev embedding theorem, we
can find £ > 0 independent of ¢ such that
|w|? > K > 0.

From (4.17), it is obvious that w?*! — 0 at some j = m. Hence, we conclude that

Ia(un) = Jx vo+ZJA )+ o(1). (4.18)

1=1

O

Corollary 4.2. If {u,} C M)(\l) is a (PS)g — sequence in H*(R3) for Jy and
0 < B <ay". Then there exist a subsequence {u,} and a nonzero ug in H*(R3)
such that u, — ug strongly in H*(R®) and Jx(ug) = B. Furthermore, (ug, du,) is
a nonzero solution of equation (EY).



FRACTIONAL SCHRODINGER-POISSON SYSTEM WITH LOW ORDER TERM 23

By Theorem 1.2, we see that problem (ES°) admits a positive solution wy €
M, and
4—p

TRws) = o L =

/ oo [Pz < ([0
RS

Define T, (wy) as follows

1

- = 2. =
(Cooe=) <t = (o)

Lemma 4.3. For 0 < A < A, then there exists t3° > (L)P%?taoo (wx) > 1 such

4—p
that

I (wx) = sup J(twy) = a3, (4.19)
0<t<te

where tq__(wy) s given in (3.20).
Proof. Since

() () = [0 (1) + A | Kodhu?da],

R3
where
B2 () = £ 2[wn ||y — 7 / oo w5 [P for t > 0. (4.20)
RS
Observe that
b (1) + )\/Rg Kool widz =0, (4.21)

for all 0 < A < A, it is easy to show that
b (ta (wy)) =0, lim b (t) =oco and lim b5°(¢) = 0.
t—0+ t

—00
Hence,

RO == 2wl + (=)0 [ ancfurPda

(= sl + @ -pr2 [

aoo|w>\|pdz).
R

A straightforward calculation gives that

b3 (t) is decreasing, 0 <t < ( )12%275(1oo (wy),

2
b3 (t) is increasing, t> (4 )Pi2 ta. (wy)
-D
Thus, we get
o ercorn _ poo (2 \ly
nf (1) = 0% (=) 7t (02))- (4.22)
In view of (3.20), we know that
2 N\
(m) ta (wy) > 1. (4.23)

Hence, by (4.21)-(4.23), we obtain

inf b (1) <b(1) = =\ [ Koool, wida (4.24)
t>0 R3
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which implies that there exists t5° > (ﬁ—p)ﬁtaw (wy) > 1 such that

b (1) + )\/ Kooty widz = 0.
R3
By a similar argument as the proof of Lemma 2.6, we get (4.19). ]

Lemma 4.4. Assume that 0 < A < A and (Hy)-(Hs), (Hy) hold, the following two
statements are true:
(1) If X [os K(2)¢h, wide > [gs b(x)|wx|*dx, then there emist two constants tf\l)

W

and tg?) satisfying

T, (wy) <t < ( )7E T, (wy) < t82,

4—p
such that
tDwy e MY (i =1,2),

1 0o — p—2 259 73
Ia(ty wy) = sup  Jy(twy) < a0 < Ap)( 5 )( )
Ogtgtf) p Qoo )
and
JA(tg\g)’LU)\) = inf JA(tw)\).
>t
;2) If X [os K ()¢, wida < [os b(x)|wa|*de, then there exist a constant t&B) satis-
yng
(3)
0 <ty <Ta(wy),

such that
Oy e MO,
J,\(tf\‘g)w)\) = sup Jr(twy) <ay.
0<t<T,(wx)
Proof. Let

ba(t) = £ 2[wp ||y — 74 /R a(2)]wa|Pdz for ¢ > 0.
Clearly, twy € M) if and only if
ba(t) + A g K(z)¢!, wide — /R b(z)widx = 0. (4.25)
It is not difficult to verify that

ba(Ta(wy)) =0, m by(t) =0 and tlim ba(t) =0,

li
t—0t

bx(t) is decreasing when 0 < t < (42 )ﬁTa(wA) and is increasing when ¢ >

4—p

(ﬁp)ﬁTa(w)\). From (H,), we get

To(wy) < T, (wy) < 1and by(t) <b3°(t),
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where b3° is given in (4.20). By condition (Hy4) and (4.24), we have

%gg ba(t) =ba

<42> ()

(4
(5

/N

[N )‘%

2T,
) [N <W
0y

2

.b%»b”s
’BL\J’EL\D

)\H ( ||u))\||Hq )77’72
e Jgs Goo|wr[Pdz

3 00 _ t 2
= inf b (1) < /\/RB Koo, wide

<-A | K@), wid
RS

<-\[| K(x)¢, w,\dx+/ b(x)|wy|*dz.
R3

Similar to the argument of Lemma 2.6, we need to distinguish two cases.
Case 1:

A K(x)¢l, wAdx>/ b(x)|wy|*d,
RS RS

then there are two constants t& ) and tg\ ) satisfying T, (wy) < t(l) (= )Plea(w,\) <
t&) such that

bx ((Z))—i—)\ K(x)¢!, w)\dx—/ b(x)wy|*de =0 for i = 1,2
R3 R3

which implies that tf\i)wA € M (i = 1,2). Taking the derivative of h; A0 (t), we
w

(AP

have
1 1
W, (1) = = 21 sl + (4= p) /Rs o)V wa P
=3 (bn) (1) < 0,
and

o, (1) == 2 sl + (4= p) [ @t wnPda
1Y R3

=) (0)' () > 0,
which implies that t&l)w,\ € M, , t&Z)w,\ € Mj and

2 1 2 1 . 2 1
B0 < ()P Talwn) < (77) 7 o (w3) < min{ (7=)77, 157,
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where t$° is given in Lemma 4.3. By (3.6), Lemma 4.3 and (Hy), for every 0 < A <
A, we have

(1)y2 (1)\4

t A(t

I (#800) = g 4 A / K (@)}, wide
R

2 4
(1) (1)y4
)P t
(A)/ o) |wsPde — ) / b(a) wa| dz
p R3 4 R3
) )\(t(l))4
=Tty wy) + =2 ( K(z)e!, widm—/ Koo ¢!, widm)
4 R3 . R3 )‘
) (1)y4
)P t
R ey T
p R3 4 R3
(1) A(tﬁl))‘* to, 2 t 2
<JR(ty w>\)+T( K(z) wAwAda?—/ Koo @iy, wida)
RS RS
(1)
+Wyp
(A)/ (a(x) — aso)|w|Pdx
p R3

)\(t(l))4
< swp J(wn) + 2O ( [ K@l udde - [ Kedl, ubdo
0<t<tye R3 R3
)
+yp
_(A)/ (a(x) — aso)|wx|Pdx
p R3
00, — p— 2 28;17) ﬁ
<a, <A .
o < A0 ()
(4.26)
Therefore, t(;)w)\ € Mil) and J)\(tf\l)u»\) < a3y and
() O = (030 + A | K)ol wdde = [ sa)funfde).
R? R?
By computation, we get
(hawy)'(t) > 0 for all € (0,6)) (£, 00), o
2

(haw,)' (1) <0 for all ¢ e (£, (2.
Therefore, we deduce that

In(tPwy) = sup  Jy(twy) and Jy(tPwy) = inf Jy(twy).
0<t<t(? >t

By (4.26) and (4.27), we have J,\(tg?)w,\) < J,\(tg\l)u»\) <ay, tg?)w)\ € M>(\2)7
which yields the conclusion.
Case 2:
A K(x)¢fukw§dx§/ b(x)|w| dx.
R3 R3

)

Similar to the discussion of Case 1, there exists a constant tg\g’ satisfying

0< ¥ < Tu(wy)
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such that
ba(t$Y) +>\/ K(z) fwwidx—/ b(z)|wy | dz = 0
R3 R3

which implies that tE\S)u € M,.

Taking the second order derivatives of h (t), we have

)\,t(f')wA
Lo 0 == 21wl + 4= p) [ a@leus o
N R3
=6 () <0,
thus, tf\?’)w,\ € M, . Moreover,

p)ﬁn(m) < (

@ <1, 2 = nf(—2 Vit oo

< Talwn) < (= 157 taee (wa) < minf(—)7=2, 15},
Similarly, we have

(3) 00,— p—2 2579 s

I (1 wn) < a3 < A) ” )(aw(4_p)) .

Therefore, tE\S)w)\ € M;l) and JA(tg\B)wA) < aj". Since

() () = £ (00(0) +A [ K@)t s = /]R b)),

By computation, we know that h’)\’wA (t) > 0 holds if ¢t € (0 ) and by, (t) <0
holds if ¢ € (t¥), +00). This implies that
J)\(tg\g)uu) = sup  Jr(twy).
0<E<T, (wy)
(]

Lemma 4.5. For2 <p <4 and0< X <A, for each u € M)(\l), there exist o > 0
and a differentiable function:

B(0;0) C H*(R?) — R
such that
£(0) =1 and t*(v)(u —v) € MV
for all v € B(0;0), and there holds
(()'(0), <P>
2fR3 2u(—A) 2@+ up) + 4\ [ K ()¢, ugod:z?—pf]Rd @) |ulP2upde — 4 [s bz

N\,

x) |ulPupdx

—2||UHHs + (4= p) Jps a(@)|ulPdz
for ¢ € H*(R3).
Proof. For any u € M >(\1), we define the function F, : R x H*(R3) — R by
Fu(t,0) =((Jx)'(Hu — v)), t(u — v))
=t2|lu — vl||%. + Mt /]R3 K(z)¢! ., (u—v)*de

- tp/ a(x)|u — v|Pdx — t4/ b(x)|u — v|*dz.
R3 R3
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Clearly, F,,(1,0) = ((J)\)'(u),u) = 0, and
d

—F,(1,0) =2||ul|%. +4)\/ K(2)¢!u?dx fp/ a(x)|ulPdz — 4/ b(z)|u|*dx
dt R3 R3 R3

=2l = (p=4) [ awluPds <o,

By applying the implicit function theorem, there exist o > 0 and a differentiable
function t* : B(0;0) C H*(R3) — R such that ¢*(0) = 1,

((t)'(0). )

_ 2 fR3((—A)§u(—A)%g@ + up)dz + 4N [ps K (2)¢lupde — p [s a(z)|[ulP2upde — 4 [5q b(z)|uPupds

=2||ullF: + (4 = p) fgs a(2)|ulPdz
and
F.(t"(v),v) =0 for all v € B(0;0),
that is,
(J\) (t*(v)(u —v)), t*(v)(u — v)) = 0 for all v € B(0;0).

From the continuity of the map t*, if o is sufficiently small, we have

RS e ) ey (1) = = 2] () (u = )3 = (p — 4) /RS a()[t* (v)(u = v)[Pdx <0,

and

) p—2 258 N\
It (@) =) < AlP)(; )(am(4_p)) ~

Hence, t*(v)(u — v) € M)(\l) for all v € B(0;0). O

Similar reason as we define a3 '~ and aio’Jr in Section 3, we can define the
following minimum problem

a, = inf Jy(u)= inf Jx(u),

ue MV uEM;,
of = inf Jy(u) = inf Jy(u).
ue M ueM;

Proposition 4.6. For 0 < A < A, there exists {u, } C M)(\l) such that
Ia(un) = ay 4+ 0(1) and (Jx)'(un) = o(1). (4.28)

Proof. First, we will show that M il) is a complete metric space. It is obvious that
M /Sl) is a metric space. Then take any sequence u,, € M il) is a cauchy sequence.
We have d(uy,, ) — 0, that is ||u, — tm|zs — 0. Then there exists u € H*(R3),
such that u,, — u in H*(R3). It is easy to show that

.- S p=2. 25 7=
s < s < .
Jullae < timind oz < D, ) < A) T3 (o —05)

So, we have u € Mil). Hence, MS) is a complete metric space. Then, by Lemma2.1,

we know J)y(u) is bounded below on M il). Using the Ekeland variational principle
[11], there exists a minimizing sequence {u,} C M ﬁl) such that

1
J, n) < N )
A(un) a, + n

)
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and
1
Ia(un) < Ixn(w) + —|lw — uy || g for all w € M)(\l). (4.29)
n
By applying Lemma 4.5 with u = u,,, there exists a function ¢} : B(0;¢,) — R for
some €, such that ¢} (w)(u, —w) € M)(\l). Let 0 < § < €, and u € H*(R3) with

u Z 0. Set
ou

[l s

Clearly, zs € Mil), and by (4.29), we have

Wws = and zs = ¢ (ws) (uy, — ws).

1
J)\(Z(s) — J)\(un) > —ﬁHZ(s — Un||H5~
Using the mean value theorem, we have
1
((I2) (un), 25 = un) + o(llzs = nllzre) 2 =25 — unllar-,

and
((In) (un), —ws) + (t7,(ws) = 1){(JA) (un), tn — ws)

1 (4.30)
> = llzs = unllms +ollzs — unllar-)-

Observe that ¢ (ws) (un, — ws) € Mil). By (4.30), we deduce that

o )+ B O G ) )

+(th (ws) = D{(I2) (un) = (Jx) (26), un — ws)

>—|z5 = unllms + o(l[z5 — unl a2),

1
n
that is,
u tr(ws) — 1
() ). ) <O ) — (0 (25) o — i)
[[ll - o
25 = wallar, ollzs = tnllz)
On ) '
There exists a constant C' > 0 independent of d such that

(4.31)
+

|26 — wnllzs = ||, (ws) (Un — ws) — Un||ms
= [|(t;, (ws) = 1) (upn — ws) — ws|| ars

< Mwsllzs + [t (ws) — 1[|un — ws||l s <6+ Ct, (ws) — 1],

and

: ‘t:(wé) — 1| : t;(’w(s) — t;kz(o) *\/ *\/
lim ty (800 o) < sy o)) <

Owing to %ir% llzs — un |l s = 0, and letting § — 0 in (4.31), we have that
—

() ) =) < 5

thus, (4.28) holds true. O
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Proof of Theorem 1.3.
By Proposition 4.6, there exists {u,} C MS) such that
Ix(uy) = @y 4 o(1) and (Jy)'(un) = o(1).

By Corollary 4.2, Lemma 4.3, and Lemma 4.4, let vy € M, be a nontrivial solution
of equation (Ey) such that Jy(vy) = a). Hence, J\ has a minimizer vy on M; .
By ay <oy < A(p)(5° )(%)%, we obtain vy € M)(\l)
problem (E)) has a nontrivial solution vy. Therefore, system (1.1) has a nontrivial
solution (vy, @l ).

. By Lemma 2.2,

5. PROOF OF THE THEOREM 1.4

Recall that wg(z) is a unique positive solution of equation (E§°) (up to transla-
P
tion) such that J§° = af° = %(%)%2 and wy(0) = max,ers wo(x).
Define T, (wo) as follows

( oo )7 < Tu(wp) =

a”l’ﬂ(l(l}

1

l[woll% )zfz
_ MWolla=_\»=2 4 5.1
(fR3 x)|wo|Pdx (5-1)

Jg3 @oolwo|Pda

From (Hs) and 0 < A\ <

1
2 =3
where (4”7”0”11 ) =1.

47
2(4 p)( P

_ 204 —p)K?2 B2
wolP > oolwolPdr = s S, P LIS p 0 L.
/]R3 a(@)lwol /Rsa [wol?dr = a5, ¥ wol 4—10( (p—2)5:52 ) ol

Similar argument as Lemma 2.6, we can prove the following Lemma holds true.

2
PYp=2 Ap, we have

Lemma 5.1. If conditions (Hy)-(Hs) and (Hs) hold. Then there exists a positive
number A = min{A, /~\} < A, such that for every 0 < A < K, the following two
statements are true.

(1) If X [gs K ()@, wide > [os b(x)|wo|*d, there exist two constants t) and t,
satisfying

To(wo) < Ty < \/@(%)’%Qmwo) < (L)ﬁn(wo) <t

4—p
such thatt)\woeMi), woeMi), nd
N Q7 ifKy >0,
Ia(tywe) = sup Ja(two) < o f
0<t<if ag if Ko =

and

I (t*wo) = inf Jy(two) < 0.
t>1;

(2) If A s K (2)ot, widz <[5 b(x)|wo|*dz, there exist a constant &3 satisfying
0 <13 < T,(wp)
such that tQwg € M)(\l) and
ay,  if K >0,

I Qwg) = sup Ji(twy) < o ;
(txwo) 0<t<T, (wo) (tuwo) ag, if Koo =
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Proof. By (3.19), we have A < 4 210)(4 )P 2Ag. For each 0 < XA < A, similar to

the proof of Lemma 2.6:
) IE X fgs K (2)¢h, widz >[5 b(x)|wo|*dx, there exist two constants t{ and ¢,

satisfying

~ 2 \53 2 \rz -
To(wo) <ty < v A(p)(m) Ta(wo) < (m) To(wo) < ty,
such that th\Ewg € M;E7
Ia(tywe) = sup Jy(two),

0<t<t}
and
JA(%V;\rwo) = inf J,\(two) = inf J)\(t’wo) < 0.
t>ty t>0
2) If A s K (2)¢, widz < [gs b(z)|wo|*dz, there exists £ satisfying

0 <1} < Ty,(wo),
such that fgwo € M, and

J,\(Pf\wo) = sup  Jx(twp).
OStSTa(wO)

From (Hs) and (5.1), it follows that

i) = B . + 201 [ w@ol, uias
()P oo (B!
- L [ a@unpda - iT / bl 'z
~ |9 T\p
&) ao- L [ a@unpas

(’t\;)p P
- )‘T/Rs(a(x)—aooﬂwd do — / b()|wo|Ada

oo A 2 2 2
<o+ 3A0Y (7=5) 7 KaaSe S ol

4
l/a Fe ('{*)4
- = — Py — AL 4
p(amaz> /R3(a(a:) oo ) [woPda 1 /RS b(z)|wo|*dz
A 25P 4
<o+ A0 () eSS

71( oo )I%/RB(a(m)aooﬂwdpdz.

p amax

This, together with af® < a3~ (see Theorem 1.2), we obtain that there exists a
positive number A < A such that for every A < A, we have

~ oo™ if Koo >0
Intywe) < N7 I
)\( )\wO) {a(c;o’ lf Koo — 0
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In fact, if Koo > 0, then Kpa, > 0, there exists a positive number A < A such that
for every A < A, we have

= [ee] )\ 2 255 = )
Ia(tywo) <af® + ZA(P) <m> K25, 872wl
1/ ase \ 723 o
717?((1,”,11) As(a(x)*aoo)|wo|pd$<al\ .

If Koo = 0, then we need to distinguish two cases.
(1): when Kipq, = 0, we have Jy(t5 wo) < of°.
(2): when K., > 0, for every A < A, we have

~ LA 257\
) <o + 3 A0 (gt )T K5 S ol

(4-p)
1/ a0 72
S / (al2) — o) |wolPdc
P \Qmax R3
<ay =agc.

It implies that
= 00, — b— 2 2579 172?2
Ja(t < ol < A ( P ) )
Aty wo) < max{ay”, a5} ()( 2% ) a(d—p)
We know fgwo € M)(\l). Since JA(?j\er) < 0, we obtain %V;\rwo € M)(\Q).
Similarly, we have

()? 2
2

Ja(Bwo) = [wollr +

)P tO
-ary a(x)|w0|pdx—%/ b()|uwo*de
D Jrs R3

70\2 70\4 Z0\p
:(t)\) ||w0||%15 + /\(t)\) / K(x) t 2d (t/\) / aoolwo‘de
2 4 R3 p R3
70\p 70\4
- @/ (a(z) — aso)|wolPdz — @/ b()|wo|Ada
R3 4 R3

p
A 9)P 0R)*
<af + K25 15_2Hwo||§1{s Y / (a(x)—aoo)\wo\pdx—ﬁ/ b(x)|wo|*dx
p R3 4 R3

4 max

<og® +4K§m15 S 2Hw0||Hbf—/ x) — Qoo ) |wo|Pdz,

where ¥ > 0 sufficiently small. Using af® < a3~ (see Theorem 1.2), Similar
argument as above, there exists a positive number A < A such that for every
A < A, we have
o if Koo >0
In(BQwg) < A7 o
A (txwo) {0‘807 if K. =

that is

— 2 25P 25
70 00— o0 A p p PR
Ia(tywo) < max{ay ", 05"} < A(p)( % )(aoo(4_p))

We see f{?\wo € Mil). O



FRACTIONAL SCHRODINGER-POISSON SYSTEM WITH LOW ORDER TERM 33

Proof of Theorem 1.4.
Let {u,} Cc M il) be a sequence satisfying

Ja(un) = ay 4+ o(1) and (Jx)'(un) = o(1).

In terms of Lemma 2.1 and Lemma 5.1, we obtain

-2 o, if Koo >0,
P Co < oz; < éo .
4p g, if Koo =0.

Because {u,, } is bounded in H*(R?), we assume that there exists ug € H*(R?) such
that

U, — ug weakly in H*(R?), (5.2)
w, — ug strongly in L7 (R?) for 2 < r < 27, (5.3)
Up — ug a.e. in R, (5.4)

We claim that ug £ 0. Otherwise, ug = 0. Since {u,} C Mf\l) and o, > 0, we
have that
_ 1 9 4—p
0 <oy < Ja(un) =1||Un||Hs TR
which yields that |[u, | g= > v > 0 for some constant v and for all n. By concentra-
tion compactness principle [16], there are positive constants R, 6 and a sequence
{zn} C R? such that

1
(@) unlPd <
3

/ |tn (@ + 2,)|Pdz > 0 for sufficiently large n, (5.5)
B(0;R)

which implies that sequence {z,} is unbounded in R3. By contradiction, suppose
that z, — zo for some 29 € R3. Using (5.3), (5.5) we have

/ |uo|Pdz > 6,
B(z0:R)

which contradicts with ug = 0.
Set
Up () = up(x + 2n),
it is not difficult to prove that
J§° (un) — o and (J§°) (@n) = o(1) in H*(R3), if Ko, =0, (5.6)
J° () — ay and (J5°) (un) = o(1) in H*(R3), if Ko > 0. ’
In fact, up to a subsequence, we may assume that li_>m |x + 25| = +00. Hence, it

is easy to check that
/ o) un [P = / a(@ + 2) i |Pdz — / oo [P,
R3 R3 RS

b(@)|n [ dz = / bz + 20|z — / b |4 = 0,
R3 R3 R3

K(:c)qﬁinuidx = K(x+ zn)(b%nﬂidx — / Koogb%nﬁ%dx.
R3 R3 R3
Thus, when Ko, > 0, J°(u,) — o, when Ko =0, J§°(u,) — o .
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In virtue of {u,} bounded in H*(R?), we may assume that there exists 1y €
H*(R3) such that

U, — T weakly in H*(R?).
Similar argument as above can lead to the followings

(J3°) (i) = 0 if Koo =0,
(J$°) (i) = 0 if, Koo > 0.

But, using Theorem 1.2, we see that iy # 0 in R? and

170 S Mé’o and J(C)X)(ao) < O(;, if Koo = 0,
gy € M and J°(ug) < oy, if Koo > 0.

If Koo =0, it is easily seen that ay® < J§°(uo) < ), we achieve a contradiction
with af® < aj .

If Ko > 0, similarly argument as the proof of Theorem 1.2, it is not difficult
to obtain that %y € M, which indicates that J°(ig) > a5, and so o)~ <
J¥(ug) < )y, this is impossible.

Hence, ug #Z 0 and (Jy)'(ug) = 0, this means that equation (E)) has a nontrivial
solution wug.

Due to {u,} € M)(\l) and

257 14t

~ e
Unp||gs < D1 < [7] forallm=1,2...,
[[unl A=)

using Fatou’s lemma, we can easily get that
~ 25P 2
ol zr < liminf [[up|me < Dy < [71’} v
n—o0 Amazx (4 - p)
By Sobolev’s inequality, we have that

(Pauo)”(1) = = 2[Juol| G- + (4 = p) /RS a(x)luo|Pdx

< — 2||UOH§-IS + (4 _p)amax‘s’p_pHUOHg{S
<0.

Thus, ug € M, and then
Ia(ug) > oy . (5.7)

Now we are in a position to prove u,, — ug strongly in H*(R3). By contradiction,
suppose that there exists ¢y > 0 such that ||u, — uo||gs > co. Let v, = u, — up.
By (5.2)-(5.4), up to a subsequence, we may assume that

vp — 0 weakly in H*(R?),

v, — 0 strongly in Ly, (R?) for 2 < r < 2%,

v — 0 a.e. in R3.

In terms of conditions (H)-(Hs) and (5.6), we have

U0 1% —|—)\/R3 Koqutvnvidx = /RB oo |Vp |Pdz + 0(1),
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it means that
= i Ky >0
O S (5.8)
o, if Ko =0.
By (5.7), (5.8) and Brezis-Lieb Lemma in [4], we have

1 A 1 1
Ix(un) :fHunH%Is + f/ K(x)qﬁinuidx — f/ a(x)|u, [Pdx — f/ b(x)|un|4dx
P Jgrs 4 R3

1 1
|u0||H; /K Ly da:—f/ a(x)|u0|pdx—f/ b(@)uo|dz
p R3 4 R3
1
|Un||Hb /Koo L vide — /aoo|vn|pdx+o(1)
P Jrs

a, +ai®+o(1), if Ko =0,

A (uo) x (vn) +o(1) { a;+a§°’ Fo(1), if Koo >0,

which implies that

lim Jx(un) = o) >

n—roo

a, +ay® +o(l) if Ko =0,
ay +a" +o(1) if Ko > 0.

Thus, we get a contradiction. So, u,, — ug strongly in H*(R?) and Jy(up) = aj .
For 2 < p < 4, we have
p—2 25 2
)7
2p " aco(4—p)
That is ug € M)(\l). Similarly, we obtain that uo € M, and Ix(ug) = o, . By

Lemma 2.2, we see that equation (F)) has a nontrivial solution ug. Hence, system
(1.1) has a nontrivial solution (ug, ¢, ).

ay <maxf{a”, aF} < A(p)(

6. APPENDIX

6.1. Appendix A. As we know that the following fractional Schrédinger equation

(=8)*u+u = ace|uf~*u (E5°)
has a unique positive solution wp with wg(0) = max,egs wo(z).
Ifo< A< 2(4717)(4 p)p 7Ag, K(z) = Ko and a(x) = auo, b(T) = b = 0, we
have

1

Ta(wo) = Ta (U)o) = (M)ﬁ _ 1,
b Jgs @oo|wolPdz

and
- p (2\4—p) K2\
/ oo |wo|Pdz = aooSpprOHp s > ( ( J 2 ) ’ [[wollg- (6.1)
R 4—p\ (p—2)5,9
For 2 < p < 4, using Lemmas 2.5 and 2.6, there exists a constant tj\“ > 0 satisfying
b1 ~0)
(4_p)p—2 <tf <\,
such that
I (twe) = inf I (twg) = gg I (twg) < 0,

(£25)7- 2<t<?“)
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where fE\O) is given in Lemma 2.5. For R > 1, we define a function ¢z € C*(R?,[0, 1])

as
1 < B
Vr(e) = {o 2| > R,

and |Vg| < 1in R3. Let ug(z) = wo(z)yr(x). So, we have

/RS lug|Pde — /]RB |wo|Pdz as R — oo, (6.2)

/ |UR|4dx—>/ lwol*dz as R — oo,
R3 R3
lurllzs = [wollgs as R — oo, (6.3)
Koo, upde — / Kool wodz as R — occ. (6.4)
, .

R3
Since J° € CY(H*(R?),R?), and using (6.1)-(6.4) there exists an Ry > 0 such that

/ oo U, |Pdx > gaooSp_pHuROH%m (6.5)
R3 b
and
Jfo(t:\FURO) < 0.
Let _
u%zN(x) = wo(z +iN3e)Yp, (z +iN3e)

for e € S? and i = 1,2,..., N,where N® > 2R,. In terms of condition (H;), we get

) 5 l3e = llur, |4 for all N. (6.6)

In fact,

|u(1) —ug%l) (y)|2 O 1
A R R T e

_c / / lwo(x 4+ N3e)pg, (x + N3e) — w0(y+N3€)¢Ro(y+N3€)|2d d
= — o 13+2s ray
R3 JR3 |z — yl

+ / |wo(z + N3e)yg, (x + N3e)|*dx

|wo(2) ¥R, () — wo(y) YR, (v)|?
B C /]R3 ,/]RIS e |,1: — y|3+29 = dérdy—i_ /]R3 |w0(x)sz0(x)|2dx

|UR — UR ( )‘2 / 2
=y 2 5
: /3 /3 ‘x y|3+2s dxdy + . |MR0 ()| *dx

= Jlur, |17
/ a(m)| N|pdm—>/ Goo|UR,|Pdx as N — oo.
RB
CoK (2)K (y)[ujzy. (@) [z x ()
/ Km¢t(l) ug) N 2 / / o N3 2t flo. N dl’dy
R3 “Ro.N R3 JR3 lz —yl

/ / Ct x _ N3 ) ( N3 )[uRo (x)]Q[uRo (y)PdZ‘dy
R3 JR3

|z — y[3-2

2
—>K2 / / Ciluny (@)P[ur, (v)] dxdy as N — oo.
r3 JR3

|:1:— 32t
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If a(z) > aoo, K(v) < Ky and b(z) > bs = 0, then there exists an Ny with
Ng > 2R, such that for every N > Ny, we have

(4) 2aoo - 20,00 (%)
[ ey de = [ anchun, e > S funy . = 22 ) vl

and

%gg JA(tu%L ) < J,\(t+u( Y N) SIS (tug,),

foreeS?andi=1,2,...,N.
Let

N .
wren(r) =Y Ul y
=1

When N3 > Ng > 2Rg, by (6.6), we have

oo e = [ 18, 0 + (0 )

lwry N () — wry N (Y)]? 2
=C 9 9> dxdy + w dx
Jo L i UE Jgs 0]

| ) (@) = S ) v )P N
= C et a dxd / Y v |Pde,
// vy w2 e

where

// IS ) @) = SN WD ()2
R3 JR3 |

€T — |3+23

) (@) —uly) v ()2
_Z/RB/RS |m— |3+28 dxdy

ut? (4) (4)
(u! u ) —u
22/ / RO,N up, N () (up, N(2) RO,N(y))dxdy
— Jrs JR3

|.’E _ y|3+2s

_ 2
rs JRs |z —y[3+2s

2 . ) ' ‘
+ Z /R3 /]Rs |z — y|3t2s {uRo (z +iN?e)up,(z + jN3e) — up,(z + iN3e)ug, (y + jN’e)

dxdy

—up, (x + jN3€)ur, (y + iN3e) + ur, (y + iN3e)ur, (y + jN?’e)} dxdy.
Let

2 . ) . )
T= Z/B /]R3 EwEn Upy (r +iN3e)up, (x + jN3e) — up, (x +iN3e)ur, (y + jN>e)
i#]

—up,(z 4+ jN3e)ur, (y +iN3e) +ug, (y + iN3e)up, (y + jN3e)} dxdy.
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By [tR,| < 1, we have

Z/ / uR, (T lN €)“Ro(y+JN3 )dxdy
r3 JR3 y[3+2s

i#]
U’RO uRo(y)
= dxd
;/Rs /}R3 lz—y i) NBe|3t2s ray

< ZW(/ wr, (T )d$)2

— 0 as N — oo.

Similarly,

N3 NZe
Z/ / uROx—i—] e)uRO(y+z )dl‘dy—>0 as N — oo.
R3 JR3 “T - |3+2S

By Holder inequality, we have

Z/ / uRo Z'N?’e)’UJRO(SU+jN36) +URO(y+iNB@)URO(y+jN3€)dxdy
R3 JR3

_ q|3+2s
7,73] |$ y‘ s

/ / U, (T)ur, ( + (J — 1) N%e) + ur, (y)ur, (y + (i — j)N’e)

dad
[z —y+ (j — i) N3e|3H2e o

2 / s
< E ———————— wr, (T)wr, (x4 (j — i) N°e)dz
3 _ 3+2s 3 0 0
£« N3 2R Jy
al P
< —_— 2 % s 3 2 %
= Z . |N3 = 2R |32 (/R3 lwr, (2)|*dz) (/R3 |wr, (x + (7 —i)N>e)|*dx)

_Z|N3 2R, |3+2s/ lwg, (z)|*dz — 0 as N — oo,
i#j

where
342s
@ = iN%e = (y = GN*e)[ 2 = |li = jIN%e — [af = [yl| = [N® — 2Ro[**2*.
Hence, we have

[

_ 2
:NC’S/ / |“Rﬂ(x)_ ngs(y” dxdy—i—N/‘ lug, [2dz + T
R3 JR3 lz -yl RS

= Nlugy 3 +T.

So, we obtain

lwro, N1 = Nllugg s + T, (6.7)

/(W%mw~2/ D) P, (6.8)
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N
/. b, vl = 3 R (6.9)
’ 2, Ci K (2)K (y)[wry,n (2)* [wr,, N ()]?
/R3 Kw¢wRO.N[wR0,N] dz _/]R3 /]RB |1._ |372t dl‘dy

CLK (2)K () [uly) y(@)]?[uly) ()]
_Z/RS /]R?’ |z — yP2f dxdy

CLK (2)K () [uly) v (@)]?[uly) ()]
/RS /R3 T —y |3 o dxdy.
(6.10)

By simple calculation, we obtain
(&) (&)

- CrK () K (y)[uly) n (@)]P[ufy) x(1)]?
Z /Rs /Rs z — y[p—2t dxdy

Cy maa:(N2_N) 2
< (N3 — 2R;)3-2t (/R3 wg(x)dg;> )

which indicates that

O K W02 (2
Z/ / ! 2l o,V @ RO’N(y)] dxdy -0 as N — 0. (6.11)
R3 JR3 \x—y|3 2
i#]

Lemma 6.1. For2 <p <4 and0 < X < (4 2p)(4 p)p 2Ag. Let K(z) < Koo

and a(x) > a0, b(x) = by = 0. Then we obtain
ay = mf J,\( )= inf Jy(u) = —o0. (6.12)

ueM{? ueM;

Proof. For N € N, and let

() = t 2 wng .~ [ alo)uw, wPda for ¢ >0,
]R3
and
(t) =t 2||up, ||%. — P72 aoo|tg, [Pdz for t > 0.
ol H 0
RS

According to (6.7) and (6.8), it is easy to get

I (t) =t (N ugy |3 +T) — 10 42 / D)) y[Pde
(6.13)
<t=2Nlfup, |5 — tP~4N / ooy [P + 72T
RS
=Nf(t) +t°T.
So we observe that twg, ny € M) if and only if

IN®)+ X[ K(z)¢! wrg N w%mNdxf/ b(z)|wr, n|*dz = 0.
RS RS

By a direct computation, we can deduce that
J(Ta(ur)) = 0, lim f(t) = 0o and Jim (1) =0,
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where

1

To. (ugr,) = (—HURO”%’S )ﬁ
Qoo o fRa aoo|UR0 Pdr .

For 2 < p <4 and

(Y0 = =2 e = 0= 47 [ alun, P

2||urg % )%2

we can easily show that f°°(t) is decreasing when 0 < ¢t < ((4 ) oo s lunoTrdz)
R o 0

2||urg % )
(4—p) [z3 acolury|Pda

and is increasing when ¢ > ( . In view of (6.5) we can deduce

that

>0 4—p) [zs aoo|uR0|de
p—2< (4 —p) [gs Goo|ur, [Pdx

4-p 2”uRoHHS

<_p—2<(4—p)aoo\|wo|

o 710 = (el
)

gy I

—2
)7 N,

=\ oS B
__p=2/(4-plax
= e ) el
o 4-py 2
For 0 < A < 2&77211)(417”)%2A0, by (2.4) we have
p—2 4-p Gmaz 21 Qoo 2 StS2
A 1 Afp)(2mez 72 :
<2(4_p)< B - A () )
p— (4 p)aOO -2 K?na:r 1
- ( o7 )77 > 22— —
P 5i5% [1- A(p)(2ge) 73]
P—2 (4 =P, 2. K 2 g lg-2
P2 > A= S AK2 S, ST

4 — p( pSZ;l; ) StS max
hence, in terms of Lemma 2.3 and (6.13),
inf (1) < (el
£>0 (4= p) Jgs @oolur, I”dx

N(p—2) (4 =-plac 2ury |7 =
- U s 2T
> 4—p ( pS}Z ) H ROHH ((4—p)fR3aoo|UR0|pd$
- 2wy [ =
< ANK2_5,'S olH T
(T ) o el P
o [ [ CEORO b o (Al
r3 Jrs y|3—2t (4 =) [gs Goo|ur, [Pdz



FRACTIONAL SCHRODINGER-POISSON SYSTEM WITH LOW ORDER TERM 41

y (6.11), we can deduce that

2 2
inf (1) < AN/ / CiK )[uRo( )] [ur, (y)] dudy
R3 JR3 —y[3-

CiK u (2)]2[ut) 2 2 =y

/ / t )[ R03( 2)3 [ Rg(y)] dady + ( lwr | 7 )

Rr3 JR3 |33_ | (4—P)fRsaoo|UR0|pdiE

2||uRo||%IS =
=—A K w wh ydr + P2,
RS ( ) Rg,N ~ Ro,N ((4_p) fRa aoo|uR0|pdx)

From the above proof, we know that " — 0 as N — oo, hence, we get that

. 4 .
%gg Int) <=\ [ K(z)¢! wig NwRO Ndac—&—/R3 b(x)w, ndr for sufficiently large N.

R3
Hence, when 0 < \ < 2&7__21))(4;”)#&), by Lemma 2.6, we need to distinguish
two cases.
1) IE X foo K(2)0%, xWho,ndT > [gs b(@)why ydz there exist two constants tf\lg\,

and tE\ 3\, satisfying

1

2
(1) ( 2||ury [l ) (2)
1<t <t
AT N4 =) fgs asolur, [Pda AN

such that

PR+ [ K@)l e = [ by, iz =0

for i = 1,2 and for all N € N. So, t(;y)NwRO,N € M) for i = 1,2 and for all N € N.
Taking the derivative of hi\ D) (t), we have
w N

A, NWRg,
1 1 1 1
L ()= =2t wre v + (4 p) / a(@) [t N wr w17z = (85 0)° FA (E1%)
U, NWRo,N R3
<0,
and
2 2 2
Ny (1) = = 208N wm, 5 + (4= ) / a(@) [t N wre NPz = (823)° Fi (E0N)
>0.

Hence, we can easily deduce that
1 - 2
tg\}vaO,N € M, and tf\)szpw,]v € M;'_

In terms of (6.7)-(6.11), we get

(6.
TN R N) = inf Jx(twr,n) < IA(E Wy, )
< NJZ(tfugy) + (tfug,) 2T + Cy for some Cy > 0,

and
N (t()wRON)—>—oo as N — oo.

Hence, (6.12) is proved.
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(2) I X [ K(2)¢,, N Why ndT < fps b(x)why, yda there exist a constant tf\ogv
satisfying

0< t&% < To (wo) =1,

such that
0
fN(t(sz) + A . K(m)(beRoyNw%—io,Ndm -/, b(x)wh, ydz = 0.
Similar to the argument above we have tg\ongno, N € My . O

6.2. Appendix B. In order to prove (3.9), we will apply the concentration-compactness
lemma due to [16, 17], to get the compactness.

For 2 < p < 4, let {u,} C Mf\)o’(l) be a sequence as follows

lim J°(u,) = a3~ > 0. (6.14)

n—0o0

Define the functional ®%° : H*(R?) — R by

B3 (1) = 5=l - (4p) /R Koodtuda. (6.15)

Using Lemma 2.1, for any u € M;O’(l) C M®~ we obtain
I3 (u) = O3 (u) > 0.

In view of {u,} C M:\X)’(l), we have that {u,} is bounded in H?*(R3), it indicates
that there exist a subsequence {u,} and u., € H*(R3) such that

Up — Use Weakly in H*(R?),
Up — Uso Strongly in LT . for 2 < r < 2%, (6.16)

loc

Up — Uso G.€. in R3.

We need that sequence {u,} has compactness. Finally, using a concentration-
compactness argument on the positive measures which are defined as follows. For

1)

every u, € M ;O Y we define the measure v, (Q) by

p—2 Cs / [un () = un(y)|* 2 A4 -p) / ¢ 2
a@y =222 [ (G [ @) Z ), do— 222 [ g gt u2da,
un($Y) 2p Ja ( 2 Jrs |z -yt aH—un) v 4p Q d)“"z;”l:)
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1
where C; is a normalized constant. By w,, € M, o0,(1)
Lemma 2.3 and K (z) = K, we have

vn(Q) = p—2 ) (% /]RS |un () — un(y)[* do +u )d A4 —p) Kool u2dz

, we obtain |lup|| g < Di. By

2p 2 |z — y|3+2s 1p A
Z% Q(%/R?’ Wd T )d )\(441_710) KaaSt s [l 17 Q)HUnHHs (R3)
A R |3+28)|2d +h)da
- 5’24_25;5; e e [ PR I

p—2

= ||’LL ||2 ) (p 2) Kmaz <a00(4 _p)2>1)%2
op M) e, K2 2pSP,

p—2 9 1 K2 4—p\r=
>t Il 1 -5 382 (57) )

p—2 2 { (4—p)p%}
= n s 1—— —_—
% l[wn (®) 2\ p

> 0.

375 2y 12t 170 )

On the other hand, it is not difficult to check that v, (2) possesses the subadditivity
and monotonicity, Thus, v, () is a positive measure on R3. In terms of (6.14), we
have

v (R?) = 85 (un) = a3 +o(1),

and we have three possibilities as follows:
(a) Vanishing: for all r > 0,

lim sup/ dvy, =0, (6.18)
"0 ¢eRs JB(€)

where B,.(§) ={z € R?: [z — £| < r}.
(b) Dichotomy: there exist a constant o € (0,5 ), two sequences {,} and {r,},
with 7, — 0o and two nonnegative measures v and v2 such that

vy — (v, +02) =0, vr(RY) = a, 2R} oY —aq, (6.19)

and
supp(vy,) C By, (&),  supp(vy) C R\ By, (&) (6.20)

(¢) Compactness: there exists a sequence {£,} € R3 with the following property:
for any § > 0, there exists an r = r(d) > 0 such that

/ dv, > o5" — 4, for large n. (6.21)
Br(&n

Lemma 6.2. For 0 < \ < ;’(’4 21)5;(2 (a°°2(;§pp)2)ﬁ, 2 < p < 4, compactness holds

for the sequence of measures {u,} defined by (6.17).
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Proof. (I) Vanishing does not occur. Otherwise, for all > 0, (6.18) holds. We can
show that there exists an 7 > 0 such that

lim sup/ u?dr = 0.
n— 00 fERS B?(f)

It indicates that u,, — 0 strongly in L*(R?) for 2 < s < 2%. Hence, for u,, € M," ’(1)
by Lemma 2.1, we have

1
0 < IR (wn) =zlunlly + 5 [ Kl idx— = [ axlualrs
A ¢ o2
=—> [ Koo uldx iy oo |tun [Pdx — 0.
4 Jps " 2]7 R3
Hence, we get a contradiction.
(II) Dichotomy does not occur. Otherwise, there exist a constant a € (0,05"7),
two sequences {£,,} and {r,}, with 7, — oo and two nonnegative measures v} and
v2 such that (6.19) and (6.20) hold. Let p,, € C'(R?) satisfy that
pn =0 in Rs\B2r" (gn)a
0<pn <1l in Ba,(&)\Br, (&),
pn=1 in B, (&),
and [Vp,| < =. Let
hn = pptin, w, = (1 - pn)un
Similar argument in [23], we have
im inf B > im inf >a® —a. .
hnrr_1>10rolf ®3°(hy) > « and hnrggf P (wy) > ay @ (6.22)

Therefore, let §2,, := Ba,. (€,) \ By, (&), then we have

v (Qn) = 0 as n — oo,

|un(z w)* 2
//]RS |;v—y\3+25 ————————dxdy + A urdr — 0 as n — oo,

n

that is

/ Kood!, uzdz — 0 as n — oo. (6.23)
Qn

Similar arguments as that in [23], we have that

Lm0 = [ (1-a)nPae+ [ ((-8) 3w Pds+0,(1), (624

/uidat:/ hidm—l—/ w? de, (6.25)
RS RS RS

/ |un\pdac:/ |hn|pdx+/ |wp|Pdx + 0, (1), (6.26)
RS RS RS

and
Koo ¢!, uldx > / Koo, h2dx —/ Kood!, widz + 0,(1). (6.27)
. . o " - .

Thus, by (6.24)-(6.27), we deduce that
D3 (un) = OX(hn) + @5 (wn) + on(1).
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Hence, we have

o™ > lim O (uy,) > lim L (h,) + lim PP (w,) > a+ (oY —a)=a .
A A by A A A

T n—ooo n—oo n—o00

It indicates that lim ®$°(h,) + lim ®°(w,) = a5~ . By (6.22), we get
n—00 n— oo

: o B . o _oo—
nh_{r;o O (hy) =a >0 and nh_}rréo O (wy,) = o a. (6.28)

By (6.24), (6.25) and (6.26), (6.27) we have
0= ((JR) (un); un) = ((JR°) (hn), hen) + ((J3°) (wn), wn) +0n(1).  (6.29)
So for all » > 1 and 2 < p < 4, there holds

~ 25P s
max{||hn | s, [[wallgs} < D1 < (W[)_p)> (6.30)
and . .
A < (p—2)5:S (aoo(4—p) )I,_Q.
2(4 - p)KZ 2pSh
Furthermore, we get
(P pELN p2MA-p)EINTE e
e h"prS: )70 hnps B2,
4_p((p_2)5t52> Ioa 4—p((p_2)5t52) (7o |17 571
B () T
T as(4—p)*\ (p—2)5,5? i

<l < W+ [ Ko o

< / Uoo|hn |Pda.
R3

By Lemma 2.6, for any n > 1 there exists

Ta.. (hn) <ty,, < Ap)(

such that ¢y  h, € M{™", where

2
4—p

)72 T, (hn),

oo AT Jgs Qoo |hn|Pdz '

Next, we discuss the following three cases:

Case (i). Up to a subsequence, ((J3°) (hn), hy) < 0. We claim that ¢y < 1.
Since ty ,hy, € M{"™, we have

[ M e = (65,0l + (65,07 [ aslhoPdn (030
R3 ’ ’ R3
By (6.31), we obtain

0> () () Fon) = on 3 + A / Koot h2de— / oo Pd
R3 R3
Nl = () 2l + 65,07 [ ascltnlde = [ aclhaPds (632
R3 R3

= (65,2l + (65,0 - 1)

Goo|hn|Pda.
R3
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Suppose by contradiction that ¢y > 1. By (6.31), we have that

2
[ aslholrds < (65,02 (6.33)
R3 d—p >
By virtue of (6.32) and (6.33), we have
_ o 2 o\ _ oo
0 >[1 = (t5,) " hallfre + ﬂ[(t“) 2= (t,0) e
P—2, _ 5 2 - \2- 2
14—t - —(¢ Pl R | 775 .
1+ = 05,07 = o (5 ks (6.34)
—2py— 2, P2 2 — \4— 2
=(tx,) " [(ty,) +m - m(tx,n) Pl s
that is,
_ pP— 2 2 — \4—
t — = — (7 P <0.
()\,n) +4 P 4_p( )\,n) —0
Nevertheless, for 2 < p < 4, it is not difficult to get that
p—2 2 4
- ——t'"P">0 for t>1 6.35
tz PR > or t> (6.35)
In fact, let g(t) = + = Ept‘l*p, we have ¢'(t) = 2t — 2t3~P. When ¢'(t) = 0,
we obtain t =0 or ¢t = 1. H ence,

f@) >0, if t>1,
ft) <o, if t < 1.

The above facts gives a contradiction. Thus, iy, <1
Now, we define function ®$°(th,,) by

2)t? 4 — p)th
u||h I3 — (4pp)A Koo, hZdz for t > 0.
R3

O (thy,) =
Since 2 < p < 4, it is not difficult to prove that there exists a constant

o _ (p — 2) ||l
15 (hn) = [(4 —P)A Jps Koo, h2da

such that ®$°(th,,) is increasing when ¢t € (0,t3°(h,)) and is decreasing when t €
(t°(hy,), 00). By using Lemma 2.3 and (6.30), we deduce that

t‘/{o(hn)_{ (2 = 2|7 }% . {( p—2 ]

%
} >0,

N

(4= )X fos Kool h2dz 4—pIAS, 'S 2K2 || |2
(p— 2)AS:S?1% a0e(4 — p)?

> p— 2 >

—[ A(4—p)KgJ ( 2% )=

where

A<

(p —2)S,S* (aoo(4 —-p)° =
24-pK5 " 208y
Therefore, owing to by, <1, we have that

a" T S IR phe) = Xt hn) < BX(hn) & a <ol

this is impossible.
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Case(it). ((J5°) (wn),w,) < 0. Similar argument as the proof of Case (i), we
also get a contradiction.

Case(tii). Up to a subsequence, ((J$°) (hy), hy) > 0, ((J5°) (wp), wy) > 0.

By (6.29), we obtain that ((J{°) (hyn),hn) = 0,(1) , and ((J5°) (wn),w,) =
on(1). Repeating the arguments of Case (i), suppose by contradiction that

lim ¢y, =15 > L (6.36)

n—oo M7 As00

By (6.32), we have that
0n(1) = ((JR%) (hn), hn) = [1 = (5,,,) 7]
From (6.34), we deduce that

on(1) 2 (15,0 2[5, + 5= = 2= (6,0 e

il + 105,07 =1 |l P

which implies that
| hnll3e — 0 as n — oo,

and then
/ Kood,flnhidx —+ 0 as n — oo.
R3

Thus, it is easy to infer that ®$°(h,,) — 0 as n — oo, which contradicts with (6.28).
Therefore, dichotomy does not occur. ([l
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