FESHBACH REDUCTION SCHEME FOR GENERAL
HAMILTONIANS IN THE BORN-OPPENHEIMER
APPROXIMATION
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ABSTRACT. We study the spectral properties of resonances of general Hamil-
tonians in the Born-Oppenheimer approximation. We prove that this study
can be reduced to the one of a family of finite matrices of semiclassical h-
pseudodifferential operators. More precisely, we show that any resonance
which is close enough to the real axis can be obtained from the discrete spec-

trum of one of these matrixes.

1. Introduction

The Born-Oppenheimer approximation [2] consists in studying the spectrum of

the Schrodinger operator:
H=-h’A, — Ay +V(z,y)

where x € R" represents the position of the nuclei, y € R? is the position of the
electrons, h is proportional to the inverse of the square-root of the nuclear mass
and V (z,y) is the interaction potential.

Many efforts have been made in order to study in the semiclassical limit the
spectrum and resonances of H ( see e.g. [4], [8], [10], [13], [15],...). These authors
have shown that in many situations it is still possible to perform, by Grushin’s
method, semiclassical constructions related to the existence of some hidden effective

semiclassical operator.
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When one wants to study the eigenvalues and resonances of H, it is shown in [§]
that one can reduce the problem to a finite matrix of regular h-pseudodifferential
operators, even when V admits singularities of Coulomb-type.

It has been proved, both for diatomic molecules [13] and for polyatomic mole-
cules [8], that the study of resonances of H can be reduced to a matrix of h-
pseudodifferential operators.

Here we plan to give a unified version of the two results in [13] and [8], which

can be applied to the general class of operators of the type
P (h) = =h*Ay + P (z,y,Dy) on L? (R} x RP) n,p € N*,

where P (z,y,D,) is a pseudodifferential operator on L2 (Ri) (the so-called elec-
tronic Hamiltonian and its eigenvalues are the so-called electronic levels).

By using the h-pseudodifferential operators with operator-valued symbol (see [1,
19]) and the general Feshbach reduction scheme, the study of resonances of P (h) on
L? (RZ X Rg) is reduced to the discrete spectrum of a matrix of h-pseudodifferential
operators Fy (z) on (L? (Rg))@M (the so-called effective Hamiltonian) with princi-

pal symbol the diagonal matrix diag (52 + A (:cea)) where M > 0 depends

1<j<M

on the energy level and (\; (x)), <j<nr are the electronic levels. In particular, we

obtain the following equivalence:
z is a resonance of P (h) < 30 € C, Im0 > 0, z € 04;sc(Fp (2)).

2. ASSUMPTIONS

We study the resonances of a general class of Born-Oppenheimer Hamiltonian

of the type:
P (h) = —h*Ay + P (,y,Dy) on L* (R} x RP) ,n,p € N*

when h tends to 07, P (z,y, D,) is a pseudodifferential operator on L? (R‘y’) with
z-independent domain.

We assume that:
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(H1) For every z € R", P(z,y,D,) is selfadjoint and bounded from below on
L? (Rg) . P(z,y,D,) can be analytically extended on the complex strip

Ds={zeC", |Imz|<J<Rex >}, §>0.

(H2) The spectrum of the pseudodifferential operator P (z,y, D,) has two dis-

joint components for every z € R™:
Sp (P ($7y’ Dy)) = {)‘1 (LC) ) Az (.’E) PRER) AM ({E)} Uo ({E)

where A1 (z), A2 (), ..., Ap (@) are eigenvalues of P (z,y, Dy) depend continuously
on x € R™ and can be analytically extended on Ds. There is a gap between the two
components:
inf [Aj (z) — Al > 6.
A€o (z),j€{l,....M}
In particular, this implies that the spectral projector m (z) of P (x,y, D,) associated
to {1 (2), A2 (z) ..., A\as (z)} is C?-regular with respect to = (see [3]).

(H3) We also assume that A1 (z), A2 (z), ..., Ay () are separated at the infinity:

3C >0, inf I\ (z) — M (2)] > C, C>0.
J
|z|>C

This last assumption is essential in our work to obtain a good behavior of the
spectral projectors of P (x,y, D,) where |z| — 4o00. This is because our technique
stand strongly on pseudodifferential calculus, which requires a lot of regularity with
respect to x.

(H4) P(z,y,D,) € Cg° (R",L (D (P (z,y,D,)),L* (R))), here C;° denotes
the space of C'*°-functions that have their derivatives of any order uniformly bounded.

Examples:



4 TAYEB TAIFOUR AND ABDERRAHMANE SENOUSSAOUI

e The operator P (z,y, D) = —;L;z + (1 + :E2)2l y?, x € R,l € R satisfies the

assumptions (H1) to (H3) with domain
D(P(z,y,Dy)) = H*(Ry) N{p € L* (Ry); y’p € L*(R,) },
A(@) =2+ 1) (1+22)"; j=1,.., M and
o (z) = {(2j+1) (1+2%)"; j2M+1}.

e A second example is the Born-Oppenheimer Hamiltonian (see e.g [15, 8])

for the differential operator
P(Iay7Dy) = *Ay + V(x7y) )

where V' (z,y) is the Coulomb interaction potential. For the study of reso-

nances of P (h) in this example see the work of Martinez-Messirdi [13].

3. PRELIMINARIES AND MAIN RESULT

In this paper we characterize the resonances of P (h) by using the analytic dila-
tion introduced by Hunziker [6]. More precisely, for 6 real small enough we consider

the transformation x — ze? and the associated dilation operator Uy defined by:
Usp (z,y) = €"%p (e y), ¢ € CF° (RZ x RY)

Uy is an unitary operator on L? (R x RP) . Now let the dilation Py (h) = UsP (h) U,!

of the operator P (h):
Py(h) = —h*e A, + P (xeg,y, D).

Then using the assumption (H7) the family Py (h) can be extended to small enough

complex values of 6 as an analytic family of type A (see e.g [7, 17]).

Definition 3.1. We say that a complex number p is a resonance of P (h) if
Rep > infoess (P (h)) and if there exists 0 small enough, Im6 > 0, such that
p € 0gise (Po(h)) (see [12]). 0ess and ogis. are respectively the essential and the

discrete spectrum.
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Notation 3.2. We denote by T (h) the set of resonances of the operator P (h) .

We need to recall some basic facts about h-pseudodifferential operators (see e.g.
11, 18, 19)).

A family of unbounded operators A (h) on L? (R™), with fixed domain H*° (R™)
ko > 0, is said to be h-pseudodifferential if there exists a sequence (a; (z, f))J ey Of

C°°-functions on R?" satisfying:

Vj €N, Vo, 5 € N7,

9292 a; (m,{)‘ -0 (< ¢ >’f0*lﬁ|)

1/2
uniformly on R", with < £ >= (1 + |§|2) and for any N € N large enough, A (h)

can be written

N
A(h) = W Opy(a;) + N Ry ()

7=0
where Ry (h) is uniformly bounded on L? (R") as h — 0T, and Op? denotes the

Weyl h-quantization of symbols:

Opy, (a;) ¢ (x) = (2mh)™" / et <TTUE> g, <$;Ly§> ¢ (y) dyd€.

R2n

The function ag is called the principal symbol of A (h).
Denote now Ao = inf {Sp (P (z,y, Dy)) \ { 1 (z), A2 (z), ..., Ans (2) }}.

Our main result is:

Theorem 3.3. Under assumptions (H1) to (H4), and for any z complex close
enough to Ao, there exists a family of M x M -matrizes A;*(z), 0 complex small
enough, of h-pseudodifferential operators on R™ depending analytically on 6 such

that:

z€D(h) < 30€C, Imb > 0,0 € ogisc(A; " (2)).

In particular, F (z) = z2—A, " (2) has the diagonal matriz diag (52 + (xee))1<j<M

as principal symbol.
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4. THE DILATION FESHBACH METHOD

The Feshbach reduction is a way to construct an effective Hamiltonian of the
spectral problem of Py (h) . To get this construction in the context of h-pseudodifferential
calculus we make use of a so-called Grushin problem involving a convenient choice
of sections of Ranm (z), where 7 (x) denotes the orthogonal projector onto the
eigenspace of P (z,y, D,) associated to {A1 (), A2 (z), ..., Aar ()}

In fact, since we are interested in the resonances of P (h), we make all these
constructions for the analytic dilation Py (h) of P (h).

Using the constructions made in [14], we have the following lemma:

Lemma 4.1. Under (H1) to (H4), there exists an orthonormal family {v¢ (z) v} (z), ...
in D (P (z,y,D,)) depending analytically with respect to 6 complex small enough

such that:
1.: v/ (z) € Cp° (R, D (P (x,y,Dy))) for all j € {1, ..., M},

M
2.: {vf (z), ..., 04, (x)} generate the space € ker (P (a:e‘g, Y, Dy) — A (a:eg)) .
j=1

I églzpj = (b1, tnr) € (L2 (R)®M and o € L2 (R",D (P (z,y, D,))) then
i

we define the two following operators R;t by:

R(;:E]iéLQ(R") — L2 (R",D(P (z,y, D,)))

1
J ; N

v=04  —  Rpv=) vf@

= =
and
+ * M
Ry = (Ry) : L*(R",D(P(z,y,Dy))) — @B (R")
+ Mji 6
© — RG = 4@1 < P55 (m) >L2(Rn) -
j:

We then consider a Grushin problem that will lead to the Feshbach reduction. For

z € C, we consider the following matrix operator:

Py (2) = Po(h) =z Ry onL2(R",D(P(x,y,Dy)))@(L2(R"))@M.
RY 0
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Then we have:

Theorem 4.2. Assume (H1) to (H4). Then for any z complex such that Re z < Ao,
the Grushin operator Py (\) maps H?*(R",D (P (z,y,D,))) ¢ (L2 (R"))@M into

L? (R", L? (RP)) & (L? (R”))EBM , s tnvertible and its inverse is of the form:

Ao (2)  Af(2)
A5 (2) A7 ()

(Po(2)) " =

then Ag (2), A;t (z) and A, (2) are h-pseudodifferential operators. Moreover, we

have the following spectral reduction:
(4.1) z€Sp(Py(h))<=30eC, Imh >0, z€ Sp(Fy(z))

where Fy (2) = 2 — A, T (2) is a M x M matriz of h-pseudodifferential operators

on (L2 (R"))®M with the diagonal matriz diag (52 + A (zee))lngM as principal

symbol.

Proof. We can consider the Grushin operator Py (z) as an h-pseudodifferential op-

erator with operator-valued symbol py (z,; 2) given by:

§2+P(x69,y,D)—z Ry
(42) P (z,2) = ! ’
Ry 0

Using the fact that for any z € C such that Rez < A9 and z € R",
(4.3) Re (79 (z) P (mee, y, D) 7o (z) — 2) >0
the symbol pg (z,&; z) is invertible and its inverse gy (z,; 2) is given by:

To ('rag’ Z) RQ_

Ry (= - Sy (zee))lngM

(4.4) a0 (2,&;2) =
where

ro (2,&;2) = T (z) (62 + To () P (xe?,y, D) T (z) — Z)il T (),



8 TAYEB TAIFOUR AND ABDERRAHMANE SENOUSSAOUI

~

7o () =1 —mg (z), mp (x) denotes the orthogonal projection on the space

Ej\é ker (P (xee,y,Dy) —Aj (xee)) .

j=1Due to (H4) and (4.3), we can consider the Weyl quantification Qg (2) =
Opy (a0 (2.6 2)) : L2 (R", L2 (B)) & (L2 (R")) ™ — H2 (R", D (P (2., D,))) &
(22 (™) M

The symbolic calculus and especially the composition theorem of h-pseudodifferential

operators allows us to obtain,

Py (2) Qo (2) = I + hRq; HRlHE(LZ(RH7L2(Rp))@(L2(Rn))€BM) =0(1)

Qo (2)Po (2) = I +hRa; || Ballo(p2@n p(p(ey, 0, )2 @nyyen) = O (1)
Here, the estimates of |R1|| and ||Rz|| are uniform with respect to h. As a con-
sequence, for h small enough, Py (2) is invertible and its inverse is given by the
Neumann series:

“+o0 “+o0
(4.5) (P (=)' = Qo (2) <I +y hkR’f) = (I +y hkR’S) Qo (2)-

k=1 k=1

In view of (4.5) and the expression of the symbol ¢y (z,€; 2) it remains to prove the

equivalence (4.1) . This comes from the two following algebraic identities:
Mg
(Pp(h)—2)u=v) < Po(2)(ud0)=vd(<u, _691vj () >r2rr))
J:

09 (2) >r2(m0)))

[RSZESS

S (ud0)= (P (z))71 (v@ (<u,

Jj=1

u=Ag(z) v+ A5 (2) (< u, éév? (z) >r2rr))
(4.6) (Po(h) —2)u=v)<= T

0=A4, (»)v+ Ag‘*‘ (2) (< u,j@jlvg (%) >pr2rr))
and
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If 2 ¢ Sp(Py(h)), then from (4.7) we deduce:

1, M
A o=~ (P ()2 (E00 @) B)
AT ()a=8& Y 7= "
a=<—(Py(h)—2) (jejlvf (z) ),j@lvg () >r2(me) B

In particular,
0¢ Sp(4;7(2)) and (477 (2)) " == < (Ry(h) = =)' (
Conversely, if 0 ¢ Sp (4, (2)), then (4.6) gives:

<u, & o () >raen=— (457 () (47 (2)0)

(Po(h) —2z)u=0v< = o
u=Ag(z)v—Af (2) (4,7 (2)) Ay (z)v

As a consequence,

2 ¢ Sp(Py(h)) and (Py(h) —2)"" = Ay (2) — AF (2) (451 (2)) ' 45 (2).
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