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This function does not conform to the types proposed by Holling, since is not
bounded. Although this functional response is non-differentiable for x = O, it is
proved that the obtained system is Lipschitzian.

However, the existence of a separatrix curve X in the phase plane it is proven, which
divides the phase plane en two complemntary sectors. According to the relative posi-
tion of the initial conditions respect to the curve X, the trajectories can have differents
w-limit, which can be the equilibrium (0, 0), or else, a positive equilibrium point, or
a limit cycle or a heteroclinic curve.

These properties show the great diffference of this model with the original and well-
known Leslie-Gower model (when @ = 1), since this last has only a unique positive
equilibrium, which is globally asymptotically stable.

Then, it can concluded that

i) a small change in the mathematical expression for the functional response, it
produces a strong change on the dynamics of model.

ii) a slightest deviation in the initial population sizes, respect to the curve X, it can
signify the coexistence of populations or the extinction of both.

Numerical simulations are given to endorse our analytical results.
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1 | INTRODUCTION

The description of predator-prey models is frequently made by non-linear bidimensional autonomous ordinary differential
equations systems (ODES)1#, which can have interesting and rich dynamics.
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However, the properties arising of the analysis can be independent of the interaction, and they could not be in correlation
with the ecological phenomenon in study; for this reason it is neccesary an adequate and rigurosous mathematical study of this
systems, particularly when some modifications are incorporated in the model.

One of the characterizations of the predation interactions is the action of the predator consuming the prey, called functional
response or consumption rate®?, which can be represented by different functions in the basic models.

In this work, this consumption is described by a functional response proposed by the american ecologist Michael L. Rosen-
zweig at 19712; it is represented by the function & (x) = gx%, with 0 < a < 1,28333 where x = x () is the prey population
size. Itis called Rosenzweig or ath power functional responses=> or power law', being its main feature that is non-differentiable
when x = 0°7,

This functional response appears also proposed in the bioeconomic literature’™' and denomined as compensatory power func-
tional response, and is a particular case of a more general function called Cobb-Douglas type production function"?. As we will
show, this function has a strong implication on the dynamics of the system, which it may lead to unexpected behavior, such as
happens in the Volterra model=.

Above papers show that this particular Gause model, it can be proved that the system is non-Lipschitzian®
point in the vertical axis pass two trajectories.

Other interesting property in the Volterra model with Rosenzweig functional response is the existence of a separatrix curve
X determined by the stable manifold of the non-hyperbolic equilibrium (0, 0). Trajectories with initial conditions over the curve
¥ attain in finite time to the vertical axis=’.

According to Myerscough and al (1996)%, this function is unsuitable for modelling a interaction described by a Gause type
predation model, where the predator is approaching satiety’??. It also has some other problems??, since when is incorporated
into the basic Volterra model®”, these do not satisfy the conditions of the Kolmogorov Theorem2¢,

In that model could produce a situation where there are neither nonzero stable populations nor stable oscillations but where
one or both species becomes extinct®22237 sjtuation for which could not have an example in the real world.

A special case of the Rosenzweig functional response is given the function by A (x) = qx%, considering the value @ = %,
proposed by Georgii F. Gause in 1934'Y, called root square functional response*"*¥ and used to describe an antipredator behavior
(APB) named as prey herd behavior™=2.

A prey species exhibits this more elaborated collective social conduct, when "the individuals of one population gather together
in herds, to wander about in search of food sources and for defensive purposes".

This APB has received increasing attention of the modellers after to the work of Ajraldi et al', but its consequences have been
analized only in Gause-type predator-prey models“42

We postulate that the mentioned APB can se described using any value of the parameter a # %42.

31 since for each

124 which has two

On the other hand, to describe the interplay among the two species we will use the Leslie-Gower mode
essential properties:

i) the growth for predators predators is assumed as a logistic-like equation203%,

ii) the functional response is linear, as in the classic Lotka-Volterra® or in the Volterra model=2.

The model proposed by the British biologist Patrick Holt Leslie (b1900-d1972)% on 19482# incorporates the dependence on
the quotient between the population sizes of predators and prey as fundamental element to express the interaction”!, assuming
that the predator’s carrying capacity is dependent on quantity of available resources=2.

Of this way, Leslie established a great difference with the compartmentalized Gause-type models
russian ecologist Georgii F. Gause” (1910-1986), and based in the mass action principle®.

In the Leslie model is assumed that the conventional environmental carrying capacity for predators K, is proportional to the
prey population size x = x (t), that is K, = K(x) = nx0=2,

The model proposed by Leslie does not fit to the Lotka-Volterra framework? and it is not defined in x = 0. For this fact, it
has been strongly criticized, because it predices that even in very low prey population density, when the consumption rate per
predator is almost zero, predator population might increase, if the predator/prey ratio is very small2?, constituying anomalies in
their predictions.

Itis well-known that for the original Leslie-Gower model18205% there exists a wide set of parameter values for which the unique
positive equilibrium point is globally asymptotically stable!%1# i.e., it is a global attractor; this property is proved constructing

a suitable Lyapunov functionZ.

112 0 called after the
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In the modified Leslie-Gower model here studied, we establish conditions on the parameter values for which there exists at
least a limit cycle and for other parameter sets there exists a heteroclinic curve joining the equilibrium points (0, 0) and (1, 0),
i.e., there exist oscillations of the population sizes.

The outcome of the analysis shows that novel properties arise, impossible in simple Leslie-Gower model (a quadratic
systems)?9°?, in which there no exists periodic trajectories nor separatrix curve.

Although some of these results could also be obtained introducing other nonlinear functional response or different prey
growth functions?, the Rosenzweig functional response make here that render the system interesting. It shows that the observed
oscillations in the field for predator-prey interaction may be due to factors distinct than those assumed for example, in the
hyperbolic functional responses'.

The model proposed by Leslie assumes implicitly that the predators are specialist. However, some predator species can switch
over to other available food in the case of severe scarcity of their favorite prey; thus, it says that the predators are generalists.
In this situation the variable carrying capacity of predators is described by K, = K(x) = nx + ¢ being ca positive constant
expressing the population size of other available food?3438, If x = 0, then K(0) = ¢ and the equation for the predators is now

defined.

This paper is organized as follow: In the next section, the modified Leslie-Gower model is presented; in Section 3, the main
properties of model are presented and proved; in Section 4 some numerical simulations are shown to reinforced the analytical
results, and in the last section we discuss the obtained results, giving the ecological meanings of them.

2 | THE MODEL

The modified Leslie-Gower model is described by the system:

‘2—’; =r<l—%>x — gx%y
X, (x,y): dy

(1
= _x
dr § ( nx ) Y
where x = x (¢) and y = y (¢), indicate the prey and predators population sizes, respectively, for # > 0, measured as density
per unit area or volume, or biomass.
The parameters are all positives, i.e., 4 = (r, K, q,s,n,@) € R3 x ]0, 1[ and have the ecological meanings=®"** described in
the following table:

Table 1 Parameters and Meanings in system
parameters | meanings
intrinsic prey growth rate

prey environmental carrying capacity
consuming rate per capita of the predators

intrinsic predator growth rate

measure of the quality of food

Q:QQW\

measure of the aggregation of prey

The parameter # also indicates how the predators turn eaten prey into new predator births and a describes the slope of the
functional response near the origin.

From a bioeconomic point of view, C. W. Clark'l!, assure that the parameter a, called the catchability exponent''2, is a measure
of aggregation of the resources, which is reinforced in“? affirming that represents a kind of aggregation eficiency.

In system (1)) is assumed that the carrying capacity of the population of predators K, is variable and dependent on the quantity
of prey available at each time ¢ > 02,

As the model (T)) is not a Kolmogorov system'?, there is no guarantee that stable limit cycles will exist when the positive
equilibrium becomes unstable??.

The equilibrium points of system (1)) or singularities of vector field X, (x, y) are (K, 0) and (ue, Ue) over the isoclines y = nx

and y = g (1 - %)x““.



4 | Gonzélez-Olivares ET AL

As the functional response A (x) = gx*, with 0 < @ < 1, and system are non-differentiable in x = 0, it is required a non
usual analysis to established all properties of the proposed model.

To simplify the calculations, we make a change of coordinates and a time rescaling, described by the function ¢ : R? X Raf -
R2 x IR0+, such that

@ <Ku, nKv, Er) =(x,y,1)
r
The following result is obtained:

Proposition 1. Topologically equivalence
The vector field X, (x, y) or system (I is topologically equivalent to the system

du
— =((1-wyu—Qu*v)u
Y, o) q & @)
o= Su-vovv,
with 7 = (0, S, @) € R2 x 10, 1[, where Q = & 3
Proof. Let x = Ku and y = nKv; replacing it has
K% =r(l —u)Ku—q(Ku)*nKv
U, (u,v) :
WO ik = s (1= ) i
Simplifying and factoring it obtains
du — ((1 —u)u— qm"u"u)
U,wv): < 49 ’ r
E = S(l - ;)U
By means of a time rescaling given by T= it, and applying the Chain Rule we have
% = %‘Z = Z—:— analogously, = i:—“:.
Replacing and simplifying it is obtamed
d” = <(1 —wu-— qK 2 nya v)
V, ) :
dﬁ = >(u—v.
Defining the new parameter by Q = £ and .S = 2 the new system (2) is obtained. O
Remark 1. The Jacobian matrix of ¢ is
K 00
Do(u,v,7) = OnKO,
;0 3
then, det Do(u, v, 7) = L SURS}
Furthermore,

-1 _ [ gKn s
@ (r’K9q9s’n’a)_ [

=(0.5,a),
i.e, @ is a smooth change of varriables with a rescaling of the time preserving the time orientation.
System or vector field Y, (u, v) is defined in
Q={wv)eR?:0<u0<0},

i.e., defined in the first quadrant.

Hence, from system ' we obtained a qualitatively (topologically) equivalent vector field ¥, = @oX,,,
Y, = Pu, v) + P (u, v)— 14 where P(u, v) and O(u, v) are the equatlons of the right side of system .

Clearly, the assomated second order differential equation system (2)) is a polynomial Kolmogorov type system~, Moreover,
is topologically equivalent to a continuous extension of system (), defined in x = 0.

which has the form

The equilibrium points of system (2)) are (0,0), (1,0) and (H, H) where H satisfies the equation of the null isoclines
v= ﬁ(l—u)uandv=u.
Then, the abscissas H of that equilibrium points satisfies the trascendental equation:

pw=1-u—-Qu* =0 (©))
Proposition 2. Number of positive equilibrium points
system (2)) has a unique positive equilibrium point in the open interval ]0, 1[.
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Proof. In the equation , we consider the functions
giw=1-wuand g, (u) =Qu*, withO < a < 1.
Clearly, p (u) = g, (u) — g, (u). The solutions of equation (3)) correpond to the intersection of the curves g, («) and g, ().
Graphically, g; (u) is a decreasing slanted straight line passing by the points (0, 1) and (1, 0). Meanwhile, g, (v) is a increasing
power function with 0 < @ < 1, wich pass by the points (0,0) and (1, Q), forall Q € R,.
So, always there exists a unique intersection H between both curves in the interval ]0, 1[. Then, system has a unique
positive equilibrium point (H, H). O

To determine the nature of the equilibrium points of system (2)), the Jacobian matrix is required, which is

DYn (u,v) = <
We note that DY, (u, v) is defined for u = 0.

2u—3u? — (a +1)Quv —Qu**!
Sv S (u—2v)

3 | MAIN RESULTS

For system (2) or vector field Y, (u, v), we have the following properties:
Lemma 1. Existence of a region of invariance

The set T = {(u, eEQ:0<u<l,o> 0} is a positively invariant region.

Proof. Clearly, the axis u = 0 and v = 0 are invariant set, since the system (2) is one of Kolmogorov type.
Considering u = 1, we obtain

du
—_— = _QU
Y (1,0) : dar
n(1.0) < = S -y,
Hence, the orbits with initial condition outside of the set T will cross toward inside of this set, any be the direction of the
dv
component —= of vector field Y, (1, v). O]

We note that the subregion
FO={(u,u)e§:05u§1,osugu}

is also positively invariant.

Moreover, in system the set
I'i={(xy)eQ:0<x<K,0<y<nx}

is a positively invariant region.

Lemma 2. Boundedness of solutions
The solutions are bounded.

Proof. From the first equation of system (2)) we becomes
% <(-wu?, YveR,.

We have that

u(r) > l,whenz - coandu < 1.
Furthermore,

u(r) »> 1,whent »> oo and u > 1.
Considering L = max {u(0), 1}, we have

u(t) < L,Vr,v > 0.

Besides, 0 < v < u.
Let W(r) = u(r) + év(r). Clearly 0 < W (z), Vz > 0.
Now, we consider the sum % + W ().

dw(r) — du  Lldv 1
= +W(T)_dr+Sdr+<u+SU)
:uz—u3—Qu"+1U+uU—U2+u+§U

§u2+uv+u+§u



Gonzélez-Olivares ET AL

<wtuvtu+ éu
2 e_2 1
<u +uu-;-4 4+u+SU
< (u+§> - +u+-v
2_(L_1 Lo
<(u+v) <52 Ut )+u
2 1 v
<@+oP-(L-4) +ut
2 1
S@+v)y +u+ 5_12
2
<+ +1+5=R
Then,
0< P L w(r) <R
being a first-order linear inequality.
Applying the theorem of Comparison Theorem for differential inequality (Page 30 inZ), we obtain

W(r)e" < Re* +C.
When 7 =0

W(0)
W(0) - R

R+C

INIA

There exists n € N such that C < n (W (0) — R), then
W(r)e" < e"R+n(W(0)— R)
W) < R+e'n(W(0O)-R).
Clearly, when 7 — oo then W (r) < R.

Remark 2. The result above assures that there exists a set
B={wv)eQ: Wuv)<R+e, Ve >0}

which is the region where all the solutions of system (2)) with initial conditions in Q are confined. This property assures that
the model is well-posed, i.e., it is no possible the existence of many predators and a little prey population size, which would be

a counterintuitive situation, not sustainable ecologically.

Theorem 1. Uniqueness of solutions
The system is Lipschitzian in Q.

Proof. Letus P, (u;v) and P, (u; v) as before, i.e.,
P, (u;v) = (1 —w)u — Quv)u and P, (u;v) = S(u — v)v,
with (u;0,) and (uy;v,) in Q.
We will consider the differences
i)D, = ‘Pl (uj30,) = Py (u2;02)|
((1 = upuy = Quv,) uy = ((1 = upu, — Qulv,) u2|
(1 —upud = (1 — up)uZ — Qu;**v; + Qu)*v,
- ul)uf —(1- uz)ug‘ +0 |u;+"112 - ui“”ul
Let us F, (u) = (1 —wu? and F, (u) = u'**v.
Clearly F; € C*(R) and F, € C! (R).
Therefore, there exists constants K; and K, such as:
Dy <K, |u; —up| + Ky |uy —uy + v) — 0y
D, < (K, + K;) |uy — uy| + Ky [v), = vy
D) <K |uy —uy| + K |v; — v,
D, <K ’(ul;ul) - (”2§U2)H
with K = max {K, + K,, K, }.

IA
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Thus, P, (u; v) is Lipschitzian.
ii) Analogously considering D, = [P, (uy;v,) — P, (uy; vz)’ we proof the existence of a constant K’ such that
D, <K' ”(“ﬁvl) = (up307) ’
Thus, P, (u; v) 1s Lipschitzian.
From i) and ii) the system (2)) is Lipschitzian. O

3.1 | Nature of equilibria over the axis

Lemma 3. Nature of the point (1, 0).
The equilibrium (1, 0) is a saddle for all parameter values.

Proof. The Jacobian matrix DY, (u, v) evaluated in (1,0) is:

-1 =
DY, (1,0) = < 0 SQ>

As detDY, (1,0) = =S <0.
The result follows from the Hartman and Grobman Theorem. O

Theorem 2. Nature of the point (0, 0)
The non-hyperbolic equilibrium point (0,0) has a hyperbolic and a parabolic sector®’ determined by the stable manifold
W$(0,0) = £. Moreover, there exists a ustable manifold W*(0, 0) in the parabolic sector.

Proof. We note that in system , when v = 0, the derivative % is positive for all 0 < u < 1. Moreover, is differentiable at
the origin.
Nonetheless, the Jacobian matrix evaluated in the the origin is the null matrix.
To desingularize the point (0, 0) the horizontal blowing-up method#3Z is applied, defining the variables r and p by means of
the change of variables given by u = r, v = rp.
Then, % = %, % :p% +rj—i. Thus,% = % and % = %% - f%.
Replaging and factoring we have
& (r.p) = (A —r=-0Qrpr
= (r.p) = S(L=prp,

There%re, the vector field is
dr

L= (-r-0rpr

Z, (r,p):
P (1= pyp— (1= r = Oy,
Rescaling the time by T' = rz, we have dr — 44T gpd 22 = 22 9T 45 becomes
dt dT dr dt dT dt
dr a
={-r-0rp)r

Z,rp) 3 9
2 (rp) L= (SU=-p=U-r—0rp)p,

When r = 0, from the second equation de Zn it has
2=(SU-p-Dhp=0.
Then, p=0and p = % Thus, the equilibrium point od vector field Z_” are (0,0) and <O, E)
The Jacobian matrix of vector field Z, (r, p) is
- 1-2r—Qpr*(a+1 —Qrotl
bz, (r.p) = < p(Qprgﬂa-(l- 1) : S+r—ZSQp+2Qpr“ -1 >
Evaluating in the equilibrium points (0, 0) and (0, %) we have

i)  DZ,0,0)= <é S(11>

- 1 0
0 o (05)=(dh )
S

Thus, assuming .S > 1 in Z,] (r, p) we have
a) the equilibrium (0, 0) is a hyperbolic repeller, and
b) the equilibrium (O, %) is a hyperbolic saddle point.
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Assuming S < 1in Z, (r, p) we have
¢) the equilibrium (0, 0) is a hyperbolic saddle point, and
d) the equilibrium (O, %) is a hyperbolic repeller, but it lies in the fourth quadrant.
Then, in Z,
: S-1 . e
By the blowing-down, (0, 0) and (0, T) are non-hyperbolic equilibrium in Y, (u, v).

we have a non-hyperbolic repeller and saddle.

When S > 1, the non-hyperbolic saddle point (0, %) determines the separatrix curve Z, determined by the stable manifold
W0, 0).
When S < 1, the non-hyperbolic saddle point (0, 0) determines the separatrix curve . O

Remark 3. Let us W*(1,0) the unstable manifold of the hyperbolic saddle point (1,0) and £ = W* (0, 0) the stable manifold
of the non-hyperbolic saddle point (0,0), in system (2)). (See figure 1). The relative position of both manifold determines a
heteroclinic curve, when W* (1,0) N Z # ¢.
Notice that the unique positive equilibrium (H, H) is in the region
A= {(u, v) €T/0 <u,0 < v < vs, such that (u, Uz) e i}
and its nature depends of the relation between v, and v;.

| |
v | v |
| |
| |
| |
| |
v | |
K | |
| v, W (1,0) |
| |
| |
| |
W'1,0) [
“ ! W*(0,0) !
| v |
| s I
. [ . [
I , I
Y (M(} 'vz) ) | \ (ue ve ) |
| |
0,0< w0 u R > 10<u

FIGURE 1 Relative position of the stable manifold £ = W*(0,0) and the unstable manifold W* (1,0), in the region A of
system (2).

Theorem 3. Existence of a a heteroclinic curve

Let us W*(1,0) the unstable manifold of the hyperbolic saddle point (1,0) and £ = W* (0, 0) the stable manifold of the
non-hyperbolic saddle point (0, 0). Then, a subset of parameter values exists, for which W* (1,0) N £ # ¢, giving rise to a
heteroclinic curve Y, joining the saddle points (1, 0) and (0, 0).

Proof. Let us (u*,v°) € £ = W*(0,0) and (u*,v*) € W*(1,0), with v* and v* dependent on the parameters, i.e. v° =
F (Q,S,@)and " = F, (Q, S, a).

i) Assuming v* < v*, then the stable manifold £ = W* (0, 0) is above the unstable manifold W* (1, 0), for all 0 < u* < 1.

Moreover, the @ — limit of the W* (1, 0) can be the point (H, H) or a limit cycle surrounding that point, since this manifold
cannot cross the manifold .

Meanwhile, the @ — limit of ¥ cannot at infinity in the direction of the v — axis, since the solutions are bounded.

ii) Assuming v* > v*, then the stable manifold £ = W* (0, 0) is below the unstable manifold W* (1,0), for all 0 < u* < 1.

Furthermore, the w — limit of the W* (1, 0) cannot at infinity in the direction of the v — axis.

Therefore, W*(1,0)nZ # ¢, by continuity of the system (2)) with respect to the parameter values. Furthermore, by uniqueness
of solutions of the systems, this intersection must occur along a trajectory joining the saddle points (1, 0) and (0, 0).
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Thus, the equation F; (Q, S, a) = F, (Q, S, a) defines a subset in the parameter space, for which the heteroclinic curve Y,

exists.

O

Remark 4. In system (1) there is a separatrix curve X associated with the point (0, 0), although the system is not defined there.

We define the set
A={(x,y) €T/0<x,0<y< yy, suchthat (x,y5) €2},
and the phase plane is divided in the set Aand ¥ =T" — A.

Moreover, there exists a heteroclinic curve g, joining the saddle points (K, 0) and (0, 0).

In the following figure we show the sectors determined by the curve separatrix X in system ().

0 X

FIGURE 2 In the phase plane of the system

are shown the sets A and ¥ =T" — A, determined by the separatrix curve X, associated to the point (0,0), with 0 < x < K.

Theorem 4. Existence of a homoclinic loop

Let us W* (0,0) the unstable manifold, ¥ = W* (0, 0) the stable manifold of the non-hyperbolic saddle point (0, 0), respec-
tively, and (u®, Uuo) € W*(0,0) and (u°, USO) € X, with v,y < vy. Then, a subset of parameter values exists, for which

W (0,0) N Z # ¢, determining a homoclinic loop.

Proof. As v,y < vy, the stable manifold ¥ = W (0, 0) is above the unstable manifold W* (0,0), for all 0 < u** < 1.

Moreover, the w — limit of the W* (0, 0) can be the point (H, H) or a unstable limit cycle surrounding that point, since this

manifold cannot cross the manifold W* (1,0), when v* < v°, with (u**, v*) € £ = W*(0,0) and (u**, v*) € W*(1,0).

Assuming 0" > v, it has v,y < vy, < v“; then, the @ — limit of the W*(0,0) is the stable manifold £ = W* (0,0), for all

O<u™<1.

Thus, a subset of parameter values exists, for which W*(0,0) N £ # ¢ (The graph is similar to Figure 7).

3.2 | Nature of positive equilibrium point

For study of the equilibrium (H, H), let us make a change of parameters in the system (2)), given by:

Q=—

with H € ]0, 1, getting the system

du _ _ _1-H 4

dt

_1-H

L= Swu-v)v,

1-H

)u

O

“
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with v = (S, H,a) € I1 = R? x ]0, 1[. The vector field X, or system (@) has an equilibrium (H, H) and it is topologically
equivalent to the (@) in Q.

Theorem 5. Nature of the positive equilibrium
Let us
Ag = {(u,v) el/0<u<K,0<v < vy, such that (u, vg) € i} cA.
a) Assuming v, < vy, for (u*,v,) and (u*,v,) € Ag. Then, the positive equilibrium (H, H) is
i) an attractor, if and only if, S > 1 —a —2H + aH.
ii) arepeller, ifand only if, S < 1 —a —2H + aH.
iii) a weak (fine) focus, if and only if, S =1 —a —2H + aH.
b) Assuming v, > v,, for (u*, Uu) and (u*, Uu) € Ag. Then, the positive equilibrium (H, H) is a repeller (focus or node), and
(0,0) is an almost global stable pointZ8432,

Proof. The Jacobian matrix evaluated the equilibrium (H, H) is
2H -3H?>—-(a+1)(1-H)H —-(1-H)H
DXV(H,H)—< SH _SH .
Then,

det DX, (H,H)= SH*a+ H(1 —a)) > 0and
trtDX,(H,H)=H(1—-a—-2H +aH - S).
Hence, the nature of the equilibrium (H, H), depends on the sign of trace, which at once depends on thr sign of the factor
TS, Ha)=1—a—-2H+aH - S.
a) Assuming v, < v,.
DIfS >1—a—2H + aH, the equilibrium (H, H) is a hyperbolic attractor of system (@) for all trajectories with initial
conditions in A.
i) If S <1—a—-2H + aH, the equilibrium (H, H) is a hyperbolic repeller.
Clearly, Ay is a compact region; then the Poincaré-Bendixson Theorem applies in Ay and there exist at least a limit cycle in
system ().
Therefore, all trajectories with initial conditions in A have a this limit cycle as their w-limit.
i) If S =1—-a—-2H + aH, the equilibrium (H, H) is a weak focus.
b) Assuming v, > v,, (H, H) is a hyperbolic repeller (focus or node).
By the Existence and Uniqueness Theorem, the trajectories born in the neighborhoods of (0, 0) not cross the unstable manifold
W (1,0) of equilibrium (1, 0), and they have the point (0, 0) as their w — limit. O]

Remark 5. The set
Ag ={(x,y) €T/0<x <K,0<y<yy,suchthat (x,y;) €2}
is a compact region in system ().

Corollary 1. Transversality condition
If S =1—-a—-2H + aH, there exists at least limit cycle generated by Hopf bifurcation surrounding the positive equilibrium
point (H, H).

Proof. Applying the transversality Theorem=?,

Deriving TrDX,(H,H)=H (1 —a —2H + aH — ), respect to the parameter .S it has,

0TrD);3(H,H) - —H # 0. ]

Remark 6. Uniqueness of the limit cycle
We conjecture the limit cycle generated by Hopf bifurcation surrounding the positive equilibrium point (H, H) is unique.
Due to the difficulty applying the method of Lyapunov quantities'?23 due to the exponent a € 10, 1[, the determination of the
weakness of the equilibrium point (H, H) have not been proved.

16123

4 | SOME SIMULATIONS AND BIFURCATION DIAGRAMS

To reinforced the analytical results we show some numerical simulations. The figures 3 to 7 show the dynamic of system (2)
proved in the above section.
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1. Existence of two local attractors

0.5

FIGURE 3 For a = 0.2, Q = 0.75 and S = 0.175, system (T)) has two local attractors, (0, 0) and (u,, u,).

2. Existence of limit cycle and (0, 0) local atractor

05
Stable limit cycle

o %00 ‘ aof
"

FIGURE 4 For ¢ = 0.15, O = 0.75 and S = 0.175, ther e exists a limit cycle surrounding the repeller positive equilibrium
point (ue, ue).
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3. Existence of heteroclinic curve

. 05+ - —

éi@; \(Heteroclinic curve
. D)
I e

1.0°

FIGURE 5 For a = 0.15, Q = 0.75 and S = 0.1515, there exists a heteroclinic cuve joining the points (1,0) and (0, 0). The
equilibrium point (u,,u,) is a repeller focus and (0, 0) is a nearly global attractor2552,

4. Existence of an almost global attractor2832

0.5

FIGURE 6 For a = 0.15, Q = 0.75 and .S = 0.125, the positive equilibrium point (ue, ue) is a repeller focus and (0, 0) is an
almost global attractor?532,

5. Existence of an elliptic sector=?
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0.5 B

FIGURE 7 For a = 0.15, O = 1.9 and .S = 0.75, there exists an elliptic sector, generated by the stable and unstable manifolds
of the non-hiperbolic equilibrium (0, 0), £ = W* (0,0) and W* (0, 0), respectively.

4.1 | Bifurcation diagrams

To get the bifurcation diagrams we use the numerical bifurcation package MATCONT!3, following the realizaed in%; we will
distinguish three cases considering the bifurcation curves obtained from Theorem 14 and Corollary 16

1. When the bifurcation curves divide the (a, .S) parameter space into three parts. If the parameters a, S are located in Region
I (red area), the equilibrium point (H, H) is stable, while in Region II (blue area) the equilibrium point is unstable surrounded
by a stable limit cycle.

Moreover, when the parameters a, .S are located in Region III (grey area), the equilibrium point (H, H) is unstable. Addi-
tionally, we can observe that the modification of the parameter .S’ changes the stability of the positive equilibrium point (H, H)
of system (2), while the other equilibrium points (0, 0) and (1, 0) do not change their behaviour.

mRegion I
mRegion II
mRegion III

o

FIGURE 8 The bifurcation diagram of system (2) for Q = 0,75 fixed and created with the numerical bifurcation package
MATCONTX. The curve H represents the Hopf curve and H om represents the homoclinic curve.

2. When the bifurcation curves divide the (Q, .§) parameter space into three parts. If the parameters Q, S are located in Region
I (red area), the equilibrium point (H, H) is stable, while in Region II (blue area) the equilibrium point is unstable surrounded
by a stable limit cycle.
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Furthermore, when the parameters Q,.S are located in Region III (grey area), the equilibrium point (H, H) is unstable.
Additionally, we can observe that the modification of the parameter .S changes the stability of the positive equilibrium point
(H, H) of system (2), while the other equilibrium points (0, 0) and (1, 0) do not change their behaviour.

mRegion I
BRegion II
mRegion III

Q

FIGURE 9 The bifurcation diagram of system (2) for a = 0, 1652335 fixed and created with the numerical bifurcation package
MATCONT™3, The curve H represents the Hopf curve and H om represents the homoclinic curve.

3. When the bifurcation curves divide the (a,.S) parameter space into three parts, see left panel of Figure 8, in red. If the
parameters a, .S are located in Region I (red area), the equilibrium point (H, H) is stable, while in Region II (blue area) the
equilibrium point is unstable surrounded by a stable limit cycle.

Moreover, when the parameters a, .S are located in Region III (grey area), the equilibrium point (H, H) is unstable. Addi-
tionally, we can observe that the modification of the parameter .S changes the stability of the positive equilibrium point (H, H)
of system (2), while the other equilibrium points (0, 0) and (1, 0) do not change their behaviour.

Note that changing the parameter Q the bifurcation diagram (right panel of Figure 8 in red) has the same qualitative effect in
the stability of the equilibrium point (H, H).

mRegion I
BRegion II
mRegion III

Q

FIGURE 10 The bifurcation diagram of system (2) created with the numerical bifurcation package MATCONTL3, In the left
panel Q = 0.75 fixed and varying @ and .S and in the right panel @ = 0, 1652335 fixed and varying Q and S. The curve H
represents the Hopf curve and H om represents the homoclinic curve.



Gonzélez-Olivares ET AL 15

S | CONCLUSIONS

In this work, the dynamics of a class of modified Leslie-Gower type predation models24203 has been studied, in which was
incorporating the non-differentiable functional response proposed by Michael L- Rosenzweig=>, described by the mathematical
form h (x) = gx%, with 0 < @ < 1. This function is a generalisation of an expression used by G. F. Gause in 193417, and the
obtained system (T)) is not of the Kolmogorov type'2.

We have shown that this function has a strong influence on the dynamics of the system because new properties appear that
do not occur in the original model formulated by Leslie in 1948.

In order to simplify the calculations, a reparameterization and a time rescaling were made, obtaining the topologically
equivalent system (2), which is the Kolmogorov type'>.

It was established that the system can have up to 3 singularities, two of them are hyperbolic and the origin is non-hyperbolic.
This last equilibrium has a complicated behavior.

Using the directional blowing-up method to determine the nature of this point, we comprobe that there exists a separatrix
curve ¥ determined by the stable manifold of the non-hyperbolic equilibrium point (0, 0) (a separatrix curve X in the original
system).

An important results is the new system obtained (2)) is differentiable at the origin (Lemma 3.1), unlike the original (IJ), showing
also that the solutions of the system are bounded (Lemma 3.2).

We show that the only positive equilibrium point (H, H) is locally asymptotically stable for certain parameter conditions;
for other conditions in the parameter space, there is at least one limit cycle, a fact that establishes a clear difference with the
dynamics of the Leslie-Gower model proposed in 194824,

Due to the existence of the separatrix curve £, we can conclude that both population can go extinction, since there are many
trajectories have the point (0, 0) as their w — limit.

Furthermore, the both populations becomes extinction, when the stable manifold ¥ = W*(0,0) of the origin is under the
unstable manifold W* (1, 0) of the point free of predators, being the ratio prey/predator relatively great (many prey and few
predators).

We have demonstrated the existence of at least one limit cycle via Hopf bifurcation!23, We conjecture that it is unique,
according to the simulations performed and because in the case a = 1 (Leslie’s model“%), there is no limit cycle.

Therefore, in the model (1)) there is a subset of parameter values for which stable oscillations exist. In this case, populations
may not tend to these attractor oscillations, but instead may go to extinction”?, specially when the ratio prey/predator is small.

Although in the system there exists a separatrix curve £ of the trajectories in the phase plane, there are no trajectories that
attain at the vertical axis in finite time", as it happens with the Volterra model*® (a Gause type predation model) using the same
functional response=Z,

Moreover, it was shown that the system is Lipschitzian'lV, differentiating it from the Gause type model considering the same
Rosenzweig functional response and other modified Leslie-Gower model considering alternative food for predators2Y.

We reiterate that the particular case @ = % has been used to represent the called prey herd behavior™742; we estimate that
any value a € ]0, 1[ can be employed to describe this behavior, since the properties here shown are valid for that special case.

On the other hand, in the case of severe scarcity, some predator species can switch over to other foods, i.e., the predators
have an alternative food since they are generalist. This situation can be modelled by adding a positive constant c in the carrying
capacity K, (x), which is now described by K (x) = nx+ ¢,8, being a function of the prey population size and the other available
food 333438

We will assume this function in a future work, where an adequate comparison among the two models will be made, because
there exist significative differences on the dynamic of both systems?. According to the numerical simulations already carried
out, it is verified that the new modified Leslie-Gower model has trajectories that in finite time reach the vertical axis and possibly
be non-Lipschitzian on that axis.

We conclude that, in general, a small change in the mathematical expression for the functional response, it can produce a
strong change on the dynamics of a model. For this reason, modellers must have great care with the use of a more complicated
functional response, since non-usual mathematical properties can emerge, which could have not an adequate interpretation in
specific interactions of the real world.

Acknowledgment: The authors thank to the professor Claudio Arancibia-Ibarra, of the Universidad de las Américas, Vifia
del Mar, Chile, by the elaboration of the Diagram of Bifurcations. The fourth author (KVP) was partially financed by Conicyt
PAI/Academia 79150021.
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