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A semiclassical phase-space perspective of band- and topological-insulator regimes of 2D Dirac
materials, and normal- and superradiant-phases of atom-field interacting models is given in terms
of delocalization, entropies, and quantum correlation measures. From this point of view, the low-
energy limit of tight-binding models describing the electronic band structure of topological 2D Dirac
materials like phosphorene and silicene with tunable band gaps, share similarities with Rabi-Dicke
and Jaynes-Cummings atom-field interaction models, respectively. In particular, the edge state of
2D Dirac materials in the topological insulator phase exhibits a Schrödinger cat structure similar
to the ground state of two-level atoms in a cavity interacting with a one-mode radiation field in
the superradiant phase. Delocalization seems to be a common feature of topological insulator and
superradiant phases.
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I. INTRODUCTION

Until quite recently, Landau theory constituted the
usual paradigm to describe phase transitions occurring
at a critical point of some control parameters. Roughly
speaking, this is based on the concept of “order param-
eter” (related to different organizations of the atoms or
particles in the materials) that is finite in a broken sym-
metry phase. Different orders correspond to different
symmetries in the organization of the constituent atoms
(liquids, crystals, etc). Gapless excitations (often called
Goldstone modes) are a well-known consequence of the
spontaneous symmetry breaking of a continuous underly-
ing symmetry; for example, the spontaneous breakdown
of the continuous translation symmetry of a liquid to the
discrete symmetry of a crystal in solidification.

Landau theory can be generalized to describe quan-
tum phase transitions (QPT), which are driven by quan-
tum fluctuations since they take place at zero tempera-
ture. Examples of physical systems undergoing a QPT
are: superconductor-insulator transitions, ferromagnets,
radiation-matter interaction models, etc [1, 2]. In this
article we shall pay attention to paradigmatic atom-field
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models displaying a superradiant phase above some criti-
cal value of the external electric field. For example: Rabi,
Dicke, and Jaynes-Cummings (JC) models [3, 4]. The JC
model is a theoretical model of great interest to atomic
physics, quantum optics, solid-state physics and quan-
tum information circuits, both experimentally and theo-
retically. It also has applications in coherent control and
quantum information processing (see [4] for a recent re-
cent reference reviewing the physics of the JC model).
Basically, it describes the system of a two-level atom in-
teracting with a quantized mode of an optical cavity (a
bosonic field) that can cause spontaneous emission and
absorption. It was originally developed to study the in-
teraction of atoms with the quantized electromagnetic
field in order to investigate the phenomena of sponta-
neous emission and absorption of photons in a cavity.

Investigation of quantum critical phenomena beyond
the Landau paradigm leads to topological phase transi-
tions (TPT) which represent a new class of quantum crit-
ical phenomena. In fact, it is usually said that TPTs can-
not be described within the usual framework of Landau
theory because they constitute a new king of order that is
beyond the usual symmetry description. Such is the case
of chiral spin textures (in high temperature superconduc-
tivity) and quantum Hall states with the same symmetry
but different “topological order”. In this article we shall
concentrate on 2D topological insulators (see [5–7] for
extensive reviews and [8] for the special case of silicene),
which are examples of “symmetry-protected topological
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order” (that respect time-reversal symmetries). Topolog-
ical insulators have gapless boundary (edge) conducting
states that are symmetry protected and dispersionless
(robust against impurities and perturbations), similar to
quantum Hall effect. We shall concentrate on 2D mate-
rials of the graphene family, in particular: silicene and
phosphorene. They are two-dimensional allotropes of sil-
icon and black phosphorus, respectively, with a hexag-
onal honeycomb structure similar to that of graphene
but with a buckled structure which gives them a tunable
band gap by applying external electric fields. They are
also called Dirac materials because their low energy (long
wave length) effective electron dynamics can be described
by a Dirac equation of electrons moving at the Fermi ve-
locity. Unlike graphene, silicene and phosphorene can de-
velop edge currents due to a non-zero spin-orbit coupling
(non-zero Dirac mass gap) which plays the role of an
“intrinsic” (versus external) magnetic field (when com-
pared to quantum Hall effect). These edge currents can
be controlled by tunning the band gap (Dirac mass) ap-
plying a perpendicular electric field to the material sheet,
thus inducing transitions from a band (standard) insula-
tor (BI) to a topological (edge conducting) insulator (TI)
phase. In general a TI-BI transition is characterized by
a band inversion with a level crossing (edge states) at
some critical value of a control parameter and, like topo-
logical phases, TI and BI phases can be characterized by
topological charges like Chern numbers [8]. Their partic-
ular structure confers Dirac materials interesting physi-
cal properties. In particular, phosphorene is relevant for
optical properties and it can be used as a photodetect-
ing material [9]. It also has interest in the framework
of field effect transistor applications in nanoelectronics
[10–12], because of its direct band gap (up to 2eV) and
a high carrier mobility (1000 cm2 V−1 s−1 ) at room
temperature. Phosphorene’s electronic devices have been
manufactured with considerable success, showing a great
performance [13–16].

Although topological and symmetry-breaking
(Landau-like) quantum phases are different in na-
ture, one can still identify some similarities between
them, and this is one of the purposes of this article. We
shall show that an information-theoretical analysis in
phase space of topological and standard quantum phases
reveals a similar structure around the critical points,
specially between edge and ground states. Actually,
localization, entropy and entanglement measures of
Hamiltonian eigenstates have proven to be good markers
of the QPT for the Dike model of matter-radiation in-
teraction [17–20], vibron model of molecules [21–23], the
ubiquitous Lipkin-Meshkov-Glick [24–27], Bose-Einstein
condensates [28], bilayer quantum Hall effect [29–31],
etc. As shown in [32], these entropic measures are even
capable of identify the order of the corresponding QPT.
Inverse participation ratio and several kinds of entropies
have also turned out to be useful to visualize the TI-BI
transition in phosphorene [33] and silicene [34–37],
where entropy-based Chern-like numbers distinguishing

TI and BI phases have been defined. In this article we
pay special attention to phosphorene, which has been
less explored. We shall see that the low-energy (long
wavelength) limit of tight-binding models of phospho-
rene and silicene share some similarities with traditional
Rabi-Dicke and Jaynes-Cummings atom-field interaction
models, respectively. There is a clear correspondence
between the TI (resp. BI) regime of phosphorene and
silicene and the superradiant (resp. normal) quantum
phase of Rabi-Dicke and Jaynes-Cummings models.
In particular, the edge state of 2D Dirac materials in
the topological insulator phase exhibits a Schrödinger
cat structure similar to the ground state of atom-field
models in the superradiant phase. Therefore, delocal-
ization seems to be a common feature of both kind of
phase transitions, and the extensive knowledge on Rabi-
Dicke and Jaynes-Cummings models can help to better
understand phosphorene and silicene, respectively.

The work is organized as follows. Firstly in section II
we introduce the low energy Hamiltonian describing the
properties of phosphorene in the presence of electric and
magnetic fields, comparing with the better known case of
silicene. In section III we solve the eigenvalue problem for
these Hamiltonians, numerically for phosphorene and an-
alytically for silicene, computing Landau levels and edge
states and classifying them according to their symmetries
(namely parity). In section (IV) we introduce coherent
states and the so called Husimi function of pure states
and reduced density matrices, which allows a visualiza-
tion of quantum states in phase-space across the TI-BI
transition in the vicinity of a critical point. We restrict
ourselves in this case to phosphorene (silicene has been
analyzed in [34]). In section V we use information mea-
sures (moments of the Husimi distribution) which turn
out to be good markers and descriptors of the TI-BI tran-
sition. In section (VI) we compare phosphorene and sil-
icene with Rabi-Dicke and Jaynes-Cummings spin-boson
models using the framework of coherent states. In par-
ticular, we show that edge states exhibit a Schrödinger
cat structure in the topological insulator phase, similar
to the ground state structure of atom-field systems in
the superradiant phase. Finally, section VII is devoted
to final conclusions.

II. LOW ENERGY MODEL HAMILTONIANS

We shall start discussing the less known case of phos-
phorene. Phosphorene is a monolayer of black phospho-
rus, belonging to the group of 2D gapped Dirac materi-
als similar to graphene, which has been synthesized and
studied theoretically and experimentally [13, 38–45]. In
phosphorene there are sp3 bonds with two different bond
angles (96.34o and 103.09o), each atom has two neigh-
bors at 2.224Å and a third one at 2.44Å and, due to
these characteristics, it has an orthorhombic structure
with a great stability (see Figure 1).
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A tight binding model Hamiltonian

H̃4 =
∑
〈i,j〉

tijc
†
i cj (1)

describing the electronic band structure of phosphorene
has been proposed by [46], where summation runs over
lattice sites, tij is the transfer energy between sites i and
j. It has been shown [46] that it is enough to consider
five hopping links t1, . . . , t5, like in figure 1, which even-
tually provide a band gap Eg = 4t1 + 2t2 + 4t3 + 2t5.

The term c†i (ci) represents the creation (annihilation)
operator of electrons at site i. The unit cell of phospho-
rene contains four phosphorus atoms: two in the upper
layer and two in the lower layer (see figure 1). Therefore,
in the momentum representation, the energy dispersion
of phosphorene is described by a four-band Hamiltonian
(see [47])

H̃4 =
∑
k

c†(k)H4(k)c(k), (2)

which can be reduced to a two-band model, due to the
D2h point group invariance (that is, considering two
points, instead of four, per unit cell). Expanding around
the Γ point of the Brillouin zone (up to second order in
k) and doing a coordinate rotation (for convenience, like
in [46, 48]) of the Pauli matrices (σx → σz, σy → σx),
one obtains the following simplified k ·p model for phos-
phorene (we use the same notation as in [48])

H2 =

(
Ec + αxk

2
x + αyk

2
y γkx

γkx Ev + βxk
2
x + βyk

2
y

)
. (3)

This will be our starting point. The hopping parame-
ters are t1 = −1.220eV, t2 = 3.665eV, t3 = −0.205eV,
t4 = −0.105eV, t5 = −0.055eV, and the lengths of the
unit cell are ax = 3.32Å and ay = 4.38Å. With these val-
ues, the conduction and valence energies are Ec = 0.34eV
and Ev = −1.18eV, respectively, so that the energy gap
is Eg = Ec − Ev = 1.52eV. The off diagonal parame-

ter γ = −5.2305eVÅ describes the interband coupling
between the conduction and valence bands. As in Refer-
ence [48], it will be useful to relate the Hamiltonian pa-
rameters αx,y and βx,y to some effective masses as αx,y =
~2/(2mcx,cy) and βx,y = ~2/(2mvx,vy). For phosphorene,
we have mcx = 0.793me,mcy = 0.848me,mvx = 1.363me

and mvy = 1.142me, where me denotes the free electron
mass.

We introduce a perpendicular magnetic field B =
(0, 0, B) through the minimal substitution p̂ → p̂ − eA.
Taking the Landau gauge A = (−By, 0, 0) and defining
the annihilation (and creation â†) operator,

â =

√
mcyωc

2~

(
y − y0 + i

p̂y
mcyωc

)
, (4)

where ωc = eB/
√
mcxmcy, y0 = `2Bkx and `B =√

~/(eB) denote the cyclotron frequency, the center

ax

ay

t5

t1 t4

t3

t2
θ

a

FIG. 1: Top view of phosphorene. Red (orange) balls rep-
resent phosphorus atoms in the lower (upper) layer. The in-
plane bond length and angle are a = 2.22Å and θ = 96.79o,
respectively. The primitive vectors ax = 3.32Å and ay =
4.38Å are denoted by dashed arrows. The first five neigh-
bor hopping sites tj necessary to describe phosporene [46] are
denoted by solid arrows.

and the magnetic length, respectively, the corresponding
Hamiltonian adopts the following form

ĤB
2 = ~ωγ(â+ â†)σx +

Ec + ~ωc(â†â+ 1/2)

2
(σ0 + σz)

+
Ev − ~ωv(â†â+ 1/2)− (â2 + â†2)~ω′

2
(σ0 − σz), (5)

where ωγ = γ/
√

2~`Bρ, ωv = (rx + ry)ωc and

ω′ = (rx − ry)ωc/2, with ρ = (mcy/mcx)1/4, rx,y =
mcx,cy/(2mvx,vy), σx and σz are Pauli matrices and σ0

denotes the two-dimensional identity matrix. In addi-
tion to the magnetic field, we shall add an electric field
interaction in the usual form Ĥ∆

2 = ∆σz, with ∆ the
electric potential. Therefore, our total Hamiltonian for
the phosphorene will be

ĤP = ĤB
2 + Ĥ∆

2 . (6)

The role of the electric field will be to provide a tunable
band gap.

Similarly, the low energy regime of a tight-binding
model describing the electronic band structure of silicene
under a perpendicular magnetic and electric field, is re-
ported by the 2D Dirac Hamiltonian (for simplicity, we
restrict ourselves to the linear expansion around the K
point of the Brillouin zone, and the fully polarized spin
1/2 case) [49–52]

ĤS = ∆gσz + ~ω(âσ+ + â†σ−), (7)

where σ± = 1
2 (σx + iσy), ω = v

√
2eB/~ is the cyclotron

frequency (v = 5 × 105m/s is the Fermi velocity) and
the “Dirac mass” ∆g = 1

2∆ + 1
2∆so provides a band gap,

written in terms of the spin-orbit coupling ∆so ' 4meV
and the electric potential ∆. Later in Section VI, we will
comment on some similarities between the phosphorene
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ĤP and silicene ĤS low energy Hamiltonians, and the
Rabi-Dicke and Jaynes-Cummings models for atom-field
interaction, respectively.

III. DIAGONALIZATION: PARITY
SYMMETRY, LANDAU LEVELS AND EDGE

STATES

Let us denote by |n, s〉 the basis states of our Hilbert
space, with n = 0, 1, 2, . . . , the eigenvalues of n̂ = â†â
and s = ±1 the eigenvalues of σz. For convenience, in
the following analysis, we are disregarding the degener-
acy in kx due to translational invariance in the x axis.
Firstly we notice that time evolution with ĤP preserves
the parity π(n, s) = eiπns of the state |n, s〉, with ns =

n+(s+1)/2. That is, the parity operator Π̂ = eiπn̂σ , with

n̂σ = n̂+(σz+σ0)/2, commutes with ĤP. Therefore, both
operators can then be jointly diagonalized. This means
that the matrix elements 〈n, s|ĤP|n′, s′〉 ∝ δπ(n,s),π(n′,s′)

are zero between states of different parity. This parity
symmetry helps in the diagonalization process. Indeed,
any (non-degenerate) eigenstate of ĤP has a definite par-
ity. We shall denote by

|ψk〉 =
∑
n,s

c(k)
n,s|n, s〉 (8)

the Hamiltonian eigenstates with LL index k ∈ Z (k > 0
for conduction and k < 0 for valence band). The sum∑
n,s is constrained to π(n, s) = ±1, depending on the

even (+) and odd (−) parity of k. The coefficients c
(k)
n,s

are obtained by numerical diagonalization of the Hamil-
tonian matrix, which is truncated to n ≤ N , with N
large enough to achieve convergent results for given val-
ues of the magnetic and electric fields. In order to
study the effect of a band inversion (topological phase
transition), we shall consider electric potentials around
∆ ' −Eg = −1.52eV, more precisely, we shall analyze
the window −1.9 ≤ ∆ ≤ −1.0. For a magnetic field of
B = 20T, convergence is achieved for N = 210 states
inside the range −1.9 ≤ ∆ ≤ −1.0. We have seen that
N must grow with |∆| for ∆ < −1.9 (TI region) in order
to achieve convergence. Similar qualitative results are
obtained for lower values of the magnetic field.

In Figure 2 we represent the electronic band structure
of phosphorene and silicene as a function of the elec-
tric potential ∆. We select the first 13 low energy LLs
k = −6, . . . , 0, . . . , 6: 6 valence states (even and odd),
6 conduction states (even and odd) and the edge state
k = 0 (black solid line). The edge state k = 0 undergoes
a band inversion around the critical value of the electric
potential ∆c = −Eg for phosphorene and ∆c = −∆so for
silicene, for which a topological transition occurs from
a band-insulator (BI) phase (∆ > ∆c) to a topological
insulator (TI) phase (∆ < ∆c).

Note that the diagonalization of the Hamiltonian ĤS

in (7) for silicene is much easier and can be done an-

-1.8 -1.52 -1.2
Δ

-0.1

-0.4

-0.7

Ek

-3Δso -2Δso -Δso Δso

Δ

-1

-0.5

0.5

1

En/Δso

FIG. 2: Low energy spectra Ek of phosphorene (top panel, in
eV units) and silicene (bottom panel, in ∆so = 4meV units)
as function of the electric field strength ∆ for 13 LLs k =
−6, . . . , 0, . . . , 6 (B = 20T for phosphorene and B = 0.5T
for silicene). Valence (conduction) band LLs k = −6, . . . ,−1
(k = 1, . . . , 6) are represented in red (blue) color (solid for
even and dashed for odd parity). The edge state k = 0,
represented in solid black, suffers band inversion around the
critical electric potential ∆c = −1.52eV for phosphorene and
∆c = −∆so for silicene (these transition points are marked
with a vertical orange gridline). Even and odd parity LLs for
phosphorene degenerate in the topological insulator region,
in particular, the edge state degenerates with the odd parity
conduction band LL k = 1 for ∆ < ∆c.

alytically. This is due to a larger symmetry which
makes the model integrable. Indeed, not only the par-
ity Π̂ = eiπn̂σ , but also the “total number of excitations”
n̂σ = n̂+ (σz + σ0)/2, commute with ĤS. Therefore, ĤS

and n̂σ can be jointly diagonalized, the corresponding
Hamiltonian eigenvalues being [49–52]

En =

{
sgn(n)

√
|n|~2ω2 + ∆2

g, n 6= 0,

−∆g, n = 0,
(9)

and the Hamiltonian eigenvectors

|ψn〉 = −icn+||n| − 1, 1〉+ cn−||n|,−1〉, (10)
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with coefficients

cn+ = sgn(n)

√
|En|+ sgn(n)∆g

2|En|
, n 6= 0, (11)

cn− =

√
|En| − sgn(n)∆g

2|En|
, n 6= 0, (12)

and c0+ = 0, c0− = 1 for the edge state.
Let us have a closer look to the structure of these first

low energy LLs. Actually, we shall restrict ourselves to
the even parity conduction k = 6 (solid blue) and va-
lence k = −6 (solid red) eigenstates, together with the
edge state k = 0 (solid black), since odd states display
a similar behavior. We shall visualize the structure of
these LLs in phase space, making use of the coherent
state representation of |ψk〉, that is, the Husimi distri-
bution function, and its moments, which turn out to be
good markers of the BI-TI transition.

IV. COHERENT STATES, HUSIMI FUNCTION
AND REDUCED DENSITY MATRICES

Coherent states are usually obtained by applying a
displacement operator (a unitary operation) on a high-
est/lowest weight state, namely |n〉 ⊗ |s〉 = |0〉 ⊗ |−〉.
We have two kinds of coherent states associated to each
sector. One is related to the oscillator or Landau sector

|α〉 = eαa
†−ᾱa|0〉 = e−|α|

2/2
∞∑
n=0

αn√
n!
|n〉, (13)

where α = q + ip is a complex number. The other is
related to the band (spin) sector

|θ, φ〉 = e
θ
2 (eiφσ+−e−iφσ−)|−〉

= cos
θ

2
|−〉+ eiφ sin

θ

2
|+〉, (14)

where σ± = 1
2 (σx± iσy), and (θ, φ) are the polar and az-

imuthal angles on the Bloch sphere. These are the usual
spin- 1

2 SU(2) coherent states (the N -band case would re-
quire SU(N) coherent states, in principle).

It is well known (see e.g. [53]) that coherent states
form an overcomplete set of the corresponding Hilbert
space and fulfill the closure relations or resolutions of the
identity:

1L =
1

π

∫
R2

d2α|α〉〈α|, d2α = dqdp, (15)

1B =
1

2π

∫
R

sin θdθdφ|θ, φ〉〈θ, φ|, R = [0, π]× [0, 2π],

in the Landau (L) and band (B) sectors, respectively.
The coherent state, or phase space, representation of a
basis state |n, s〉 is then given by:

ϕn,s(α; θ, φ) = 〈n|α〉〈s|θ, φ〉 =
e−
|α|2

2 αn√
n!

(tan θ
2e
iφ)

1+s
2

sec θ
2

.

(16)

-1.8 -1.52 -1.2
Δ

0.5

1

ρ++, ρ--

FIG. 3: Diagonal components %++ (red) and %−− (blue) of the
reduced density matrix (ρBψk ), for three Landau levels k = −6
(valence band, dotted), k = 0 (edge state, solid) and k =
6 (conduction band, dashed), as a function of the electric
potential ∆. The critical point ∆c = −1.52eV, separating
the band (∆ > ∆c) from the topological insulator (∆ < ∆c)
regime, is marked with a vertical grid line.

The Husimi or Q-function of a normalized state |ψk〉 like
(8) is defined as

Qψk(α; θ, φ) = |〈α; θ, φ|ψk〉|2∑
n,n′

∑
s,s′

c(k)
ns c̄

(k)
n′s′ϕn,s(α; θ, φ)ϕ̄n′,s′(α; θ, φ), (17)

and normalized according to:∫
R2×R

Qψk(α, θ, φ)
d2α sin θdθdφ

2π2
= 1. (18)

We are interested in visualizing the Landau and band
sectors separately. Therefore, we shall define the reduced
density matrices of the Landau sector

ρL
ψk

=
∑
n,n̄

∑
s

c(k)
ns c̄

(k)
n̄s |n〉〈n̄| (19)

and of the band sector

(ρB
ψk

) =

(
%++ %+−
%−+ %−−

)
=

( ∑
n |c

(k)
n+|2

∑
n c

(k)
n+c̄

(k)
n−∑

n c̄
(k)
n+c

(k)
n−

∑
n |c

(k)
n−|2

)
.

(20)
Parity symmetry implies that %−+ = %−+ = 0. In figure
3 we plot the populations %++ and %−− of three Landau
levels k = −6, 0, 6 as a function of the electric potential
∆. The plot reflects the fact that %++ + %−− = 1 and
therefore they are symmetric respect to the value 1/2.
In the BI region (∆ � −1.52eV) the band populations
of Hamiltonian eigenstates are polarized: %−− ' 1 for
edge and valence band and %++ ' 1 for conduction band
states; whereas in the TI region (∆� −1.52eV) we have
%−− ' %++ (balanced populations).
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We are also interested in visualizing the correspond-
ing “marginal” or reduced Husimi functions QL

ψk
(α) =

〈α|ρL
ψk
|α〉 and QB

ψk
(θ, φ) = 〈θ, φ|ρB

ψk
|θ, φ〉, respectively.

In Figure 4, the phase-space behavior of the Landau lev-
els is exhibited by the Husimi function QL

ψk
(α). One

can see a transition from a bimodal regime to a uni-
modal regime. Also, from the BI to the TI phases, there
is a continuous delocalization of the Landau levels in
phase space. We see in Figure 4 that the edge state
k = 0 displays a “Schödinger cat structure” structure,
that is, a quantum superposition of quasiclassical, macro-
scopically distinguishable (no overlapping) states (also
called “parity-adapted coherent states”). This structure
is shared by the ground state of atom-field systems in
the superradiant phase, as we show in section VI. This
delocalization property is quantified later on Figure 6 by
using the Husimi function second moment.

In Figure 5, we represent QB
ψk

(θ, φ) which, for Hamil-
tonian eigenvalues with defined parity, turns out to be
independent of φ. We find that QB0 (θ) ' 0.5 in the TI
region, that is, the Husimi band distribution of the edge
state is quite uniform between the north (θ = 0) and the
south (θ = π) poles of the Bloch sphere. This is con-
sistent with Figure 3, where we found that %−− ' %++

(balanced populations) for the edge state in the TI re-
gion. The analysis QB(θ) for the BI phase, and for the
valence and conduction states, is also consistent with the
results of the band populations in Figure 3.

V. INFORMATION MEASURES OF ENERGY
EIGENSTATES AND BI-TI TRANSITION

We have visualized the structure in phase space of the
reduced density matrices ρL

ψk
and ρB

ψk
across the critical

point ∆c, noticing a higher delocalization of the corre-
sponding Husimi distributions in the TI phase. Now we
want to quantify this delocalization by using the ν-th
moments of the reduced Husimi distributions of a state
ψ

ML,ν
ψ =

∫
R2

d2α

π
QL
ψ(α)ν , (21)

MB,ν
ψ =

∫
R

sin θdθdφ

2π
QB
ψ(θ, φ)ν .

When ψ = ψk is a Hamiltonian eigenstate, then the mo-
ments acquire an intrinsic dependence on the electric po-

tential M
L(B),ν
ψk

(∆) and will play the role of an order
parameter for the topological phase transition occurring
at ∆c = −Eg = −1.52eV, from the BI ∆ > ∆c to the
TI ∆ < ∆c regime. The definition of the moment is

not restricted to integer values of ν. Once M
L(B),ν
ψ are

known for all integers ν, there is a unique analytic exten-
sion to complex (and therefore real) ν. The “classical”
(versus quantum von Neumann) Rényi-Wehrl entropy is

FIG. 4: (Color online) 3D-Plot of the reduced Husimi distri-
bution QL

ψk
(α), as a function of α = q+ ip, for the edge state

k = 0 (right column) and the even-parity valence-band state
k = −6 (left column), for different values of the electric poten-
tial ∆ (from top to bottom): ∆ = −1.8 (topological-insulator
region), ∆ = −1.52 (critical) and ∆ = −1 (band-insulator
region).

then defined as:

W
L(B),ν
ψ =

1

1− ν
ln(M

L(B),ν
ψ ), (22)

which tends to the Wehrl entropy

W
L(B)
ψ = −

∫
dµL(B)Q

L(B)
ψ lnQ

L(B)
ψ (23)

when ν → 1, where dµL = d2α/π and dµB =
sin θdθdφ/(2π). Among all moments we shall single-out

the so-called “inverse participation ratio” (IPR) M
L(B),2
ψ ,

which somehow measures the inverse of the area (localiza-

tion) occupied by Q
L(B)
ψ in phase space. It is also related

to the purity P = tr(ρ2) (the trace of the squared reduced
density matrix) of the state and measures how entangled
they are the band (B) and the Landau (L) sectors across
the topological phase transition. The purity is related
to the linear entropy by S = 1 − P . The maximum val-
ues of ML,2

max = 1
2 and MB,2

max = 2
3 are attained when |ψ〉

is itself a coherent state |α′; θ′, φ′〉 (minimal area). This
is related to the Wehrl-Lieb’s conjecture [54, 55]. For
the sake of convenience, we shall normalize the second
moments in the Landau and band sectors according to

PLψ ≡ 2ML,2
ψ and PBψ ≡ 3

2M
B,2
ψ , respectively, in order to

set the maximum IPR values to 1 in both sectors. Per-
forming the integrals (21) for a Hamiltonian eigenstate
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FIG. 5: Reduced Husimi distribution QB
ψk

(θ), for the valence-
band state k = −6 the edge state k = 0 and the conduction-
band state k = +6, for different values of the electric po-
tential: ∆ = −1.8 (topologial-insulator region, dashed line),
∆ = −1.52 (critical point, solid line) and ∆ = −1 (band
insulator region, dotted line).

(8), we arrive to the explicit formula for the normalized
IPR in the Landau sector

PLk =
∑
n, n̄

n′, n̄′

∑
s,s′

(n+ n′)!c
(k)
ns c̄

(k)
n̄s c

(k)
n′s′ c̄

(k)
n̄′s′

2n+n′(n!n̄!n′!n̄′!)1/2
δn+n′,n̄+n̄′

(24)
and in the band sector

PBk = %2
++ + %2

−− + %++%−− + |%+−|2 (25)

where %±± are the components of (ρB
ψk

) in (20). In Fig-

ure 6 we plot PLk and PBk as function of the electric
potential strength ∆. Notice that the maximum delo-

-1.5 -1.0 -0.5
Δ

0.2

0.4

0.6

0.8

Pk
L

-1.8 -1.6 -1.4 -1.2
Δ

0.80

0.85

0.90

0.95

1.00

Pk

B

FIG. 6: Normalized inverse participation ratios (IPR) PLk and
PBk as function of the electric potential strength ∆ for the
edge state k = 0 (in blue) and the even-parity valence-band
state k = −6 (in orange). The critical point ∆c = −1.52eV,
separating the band from the topological insulator regime, is
marked with a vertical grid line.

calization (minimal IPR, high entanglement) of the en-
ergy eigenvectors in phase-space occurs in the TI phase
(∆ < −1.52eV), whereas in the BI phase (∆ < −1.52eV)
the corresponding wave functions are highly localized
(maximum IPR, low entanglement). This behavior is
also shared with silicene [34, 36]. In fact, delocaliza-
tion and entanglement in phase space turns out to be
a common feature also of QPTs [32]. In fact, in the next
section we analyze the phase space structure of normal
and superradiant phases of two paradigmatic spin-boson
systems (Rabi-Dicke and Jaynes-Cummings), comparing
with band and topological insulator phases of phospho-
rene and silicene, respectively.
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VI. COMPARISON WITH RABI-DICKE AND
JAYNES-CUMMINGS MODELS

In this section we want to highlight some analogies
between topological insulator and superradiant quantum
phases. To this end, we shall discuss on some similarities
between the effective Hamiltonian (5,6) for phosphorene
and the well known Rabi-Dicke Hamiltonian

ĤR = ~ω0
σz
2

+ ~ωâ†â+
~Ω

2
(â+ â†)(σ+ + σ−), (26)

originally introduced in the context of nuclear magnetic
spin resonance, but later extended to modeling the inter-
action (with coupling strength Ω) of a two-level system
(spin, atoms, superconducting qubits, etc) of transition
frequency ω0 with an harmonic oscillator (electromag-
netic field, resonator, phonons, etc) of cavity frequency
ω. As for phosphorene, Rabi-Dicke Hamiltonian also con-
serves the parity π(n, s) = eiπns of the state |n, s〉, with

ns = n+ (s+ 1)/2, since the parity operator Π̂ = eiπn̂σ ,

with n̂σ = n̂+(σz+σ0)/2, also commutes with ĤR. When
quickly oscillating “counter-rotating” terms â†σ+ and
âσ− are ignored (“rotating-wave approximation”), the
Rabi-Dicke Hamiltonian becomes the Jaynes-Cummings
Hamiltonian

ĤJC = ~ω0
σz
2

+ ~ωâ†â+
~Ω

2
(âσ+ + â†σ−), (27)

which now also conserves the number of excitations n̂σ =
n̂ + (σz + σ0)/2, and not only the parity Π̂, just like
the silicene Hamiltonian (7) does. This conservation law
leads to a U(1)-continuous symmetry. As for silicene, this
case is far simpler, and the diagonalization can be done
in the subspaces Hn = {|n, 1〉, |n + 1,−1〉}, the energy
eigenvalues being

E±n = ~ω(n+
1

2
)± 1

2
~
√
δ2 + Ω2(n+ 1), (28)

where δ = ω0−ω is the detuning parameter. The Hamil-
tonian eigenstates are

|ψ±n 〉 = cos
ϕn
2
|n+

1∓ 1

2
,±1〉 ± sin

ϕn
2
|n+

1± 1

2
,∓1〉,

(29)

where ϕn = arctan Ω
√
n+1
δ . Note the similarities between

this case and the silicene Hamiltonian eigenvalues (9) and
eigenstates (10), although here n is restricted to non-
negative numbers, n ≥ 0, due to the presence of ~ωâ†â
in the Hamiltonian.

When we have an ensemble of N identical two-level
atoms, the Rabi-Dicke Hamiltonian becomes the Dicke
Hamiltonian by replacing σ± → J±/

√
N , where J± are

angular momentum ladder operators for a pseudospin
j = N/2. In the thermodynamic limit N → ∞, and
at a critical value Ωc =

√
ω0ω of the atom-field coupling

strength Ω, this system undergoes a quantum phase tran-
sition from a normal (Ω < Ωc) to a superradiant (Ω > Ωc)

phase. For finite values of N we still can observe precur-
sors of this quantum phase transition.

Our two-band model of phosphorene shares many sim-
ilarities with the Dicke model for N = 1, j = 1/2
(i.e. the Rabi-Dicke model). Actually, there is a par-
allelism between the TI phase of phosphorene and the
superradiant phase of the atom-field system. In fact, the
phase space structure of edge states turns out to be sim-
ilar to the ground state structure of the atom-field sys-
tem across the critical point. Coherent states prove to
be an excellent variational approximation of the ground
state in QPTs. Let us denote for simplicity |z〉 = |θ, φ〉,
z = tan(θ/2)eiφ the coherent state (14). Using the direct
product |α, z〉 ≡ |α〉⊗|z〉 as a ground-state ansatz for the
Rabi-Dicke Hamiltonian (26), one can easily compute the
mean energy

H(α, z) = 〈α, z|H|α, z〉
= ω|α|2 + jω0

|z|2−1
|z|2+1 + Ω(α+ ᾱ) z̄+z

|z|2+1 ,
(30)

which defines a four-dimensional “energy surface”. Min-
imizing with respect to these four (two complex z, α) co-
ordinates gives the equilibrium points:

α0 =

{
0, if Ω < Ωc,

−
√

ω0

ω
1

ΩΩc

√
Ω4 − Ω4

c , if Ω ≥ Ωc

z0 =

{
0, if Ω < Ωc,√

Ω2−Ω2
c

Ω2+Ω2
c
, if Ω ≥ Ωc,

(31)

together with −α0 and −z0. Note that α0 and z0 are
real and non-zero above the critical point Ωc (i.e., in
the superradiant phase). The existence of two solutions,
(α0, z0) and (−α0,−z0) indicates that the ground state is
degenerate in the superradiant phase. This is related to
the parity symmetry Π̂ of the Hamiltonian (26). There-
fore, the variational approximation to the ground state
is a (even) parity-adapted coherent state

|ψ0〉 =
|α0〉 ⊗ |z0〉+ | − α0〉 ⊗ | − z0〉

N (α0, z0)
, (32)

where

N (α0, z0) =
√

2

(
1 + e−2|α0|2

(
1− |z0|2

1 + |z0|2

)2j
)1/2

(33)

is a normalization factor. This parity-adapted coherent
state is also called a “Schrödinger’s cat state” in the
literature, in the sense that it is a quantum superposi-
tion of two quasi-classical, macroscopically distinguish-
able states [56].

Taking into account the coherent state overlaps

〈α| ± α0〉 = e−
1
2 |α|−

1
2α

2
0±ᾱα0 ,

〈z| ± z0〉 =
(1± z̄z0)2j

(1 + |z|2)j(1 + z2
0)j

, (34)
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the Husimi function for the variational ground state
states (32), Q0(α, z) = |〈α, z|ψ0〉|2, can be simply written
as:

Q0(α, z) =
|〈α|α0〉〈z|z0〉+ 〈α| − α0〉〈z| − z0〉|2

N 2(α0, z0)
. (35)

A plot of this function in the normal (Ω < Ωc) and su-
perradiant (Ω < Ωc) phases and at the critical point
(Ω = Ωc) can be seen in Ref. [20]. One can appreciate the
similarities between this Husimi function and the reduced
Husimi distribution QL0 (α) of the edge state in Figure 4
(right panel). The normal phase of the matter-radiation
system (Ω < Ωc) corresponds to the band-insulator phase
(∆ > ∆c), where the Husimi distribution is highly lo-
calized (a single hump), whereas the superradiant phase
of the atom-field system (Ω > Ωc) corresponds to the
topological-insulator phase (∆ < ∆c), where the Husimi
distribution is delocalized (two humps), displaying a
Schrödinger cat structure.

The role of Landau and band sectors in 2D Dirac ma-
terials is now played by the field and the atom sectors in
the spin-boson system. Refs. [57–60] consider the entan-
glement between the atoms and the field in the ground
state of the Dicke model, showing that the entanglement
sharply grows in the superradiant phase. In this sense,
we also observe a clear analogy between the topological
insulator and the superradiant phases. Indeed, in Figure
6 we represent the purity of the reduced density matri-
ces in the band and Landau sectors for the edge state,
which shows that the edge state is far more entangled in
the topological than in the band insulator phase. This
reinforces the analogy between topological insulator and
superradiant phases.

VII. CONCLUSIONS

We have analyzed the low energy regime of two 2D
Dirac materials like phosphorene and silicene under the

influence of external perpendicular magnetic and electric
fields. The electric field is used to tune the band gap
(Dirac mass) and to control the appearance of edge cur-
rents in the topological insulator phase. We visualize the
structure of the edge and first Landau levels using differ-
ent information-theoretic measures, as a function of the
electric field in the vicinity of the topological phase tran-
sition. In particular, we use a representation of edge and
first LL states in terms of coherent states in phase-space
(the Husimi function). We show that the entanglement
between the band and Landau sectors is much higher
in the topological insulator phase. Under this perspec-
tive, we evidence a close analogy between the topologi-
cal insulator phase of 2D Dirac materials (in particular,
phosphorene and silicene) and the superradiant phase of
atom-field interaction systems (in particular, the Rabi-
Dicke and Jaynes-Cummings models).

This approach offers a new vision that could be extrap-
olated to general topological insulators and spin-boson
systems.
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