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1. Introduction

We consider an original fractional PDE with multiplicative white noise:
cDα

0+ [u(x, t)− η(u(x, t))] = ∆u(x, t) + u(x, t) · ∇u(x, t) + g(u(x, t))W (t), (1.1)

with
u (x, 0) = u0 (x) , x ∈ D (1.2)

and
u (x, t) = 0, x ∈ ∂D, (1.3)

in which D ⊂ Rd is domain, ∆ is Laplacian operator, u (·) on a Hilbert space H
with 〈·, ·〉, W (t) is a white noise with filtration Ft−adapted, where Ft = σ {W (t)}.

cDα
t symbolizes fractional-order derivative operator in the sense of Caputo for

α ∈ (0, 1) is defined as:

cDα
t u (t, x) =

1

Γ (1− α)

t∫
0

∂u (ω, x)

∂ω

dω

(t− ω)
α . (1.4)

The existence and non-existence results for fractional-stochastic PDEs were dis-
cussed in [18]. Chemin et al. [6] studied the global regularity for the large solutions
to the NSEs. Miura [21] and Germain [13] focused on the uniqueness of mild solu-
tions to the NSEs. Several writers, see [22, 26, 27, 29], have acquired the presence
and uniqueness of the SNSEs equations. Just mention a few works of Navier-Stokes
time-fractional equations has become a hot topic of studies because of its important
role in simulating anomalous diffusion.

Time-fractional differential equations have resulted in numerous mathematical
applications of interest. Specifically, see [9, 28, 31, 32, 33] for modeling anomalous
processes of diffusion as it may characterize long storage procedures. In addition,
exact solutions of some fractional PDEs were studied by different techniques in
[14, 23].

Several authors, see for instance Ezzinbi and al. [10] and Cui et al. [5], acquired
the presence and regularity of solutions for some PDEs. Research is particularly
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interested in the stability of differential equations in stochastic concepts. A few
papers were in that direction. The comparison theorem was used in [6] to demon-
strate stability of stochastic PDEs for a mild solution. Caraballo and others. [3],
Liu [19] and Luo [20] provided three techniques for resolving SPDE with delays
based on well-known Gronwall inequality, functional Lyapunov and Razuminkhin
theorem.

This paper’s primary input is to create a mild solution to the(1.1)− (1.3) issue.
Using primarily Holder”s inequality, stochastic analysis, Darbo’s fixed-point theo-
rem coupled with Hausdorff’s methods of measuring non-compactness, we obtain
the presence of moderate issue solutions (1.1)− (1.3).

2. Preliminaries

Assume that
(

Ω, F, P, {Ft}t≥0

)
is a filter. Assume the operatorA as infinitesimal

generator of a strongly continuous semi group on the Hilbert space H = L2 (D). In
particular, let

A := −4, D (A) = H1
0 (D) ∩H2 (D) .

It is clear that he operator Ais a positive self-adjoint operator. Let ek denote the
eigenvectors corresponding to eigenvalues λk such that

Aek = λkek, ek =
√

2sin (kπ) , λk = π2k2, k ∈ N+.

For σ > 0, we have the following representation for the fractional power A
σ
2 =

(−∆)
σ
2 and its domain Hσ which can be defined by

σ > 0, A
σ
2 ek = λ

σ
2

k ek, k = 1, 2, . . .

and

Hσ = D
(
A
σ
2

)
=

{
v ∈ L2 (D) , s.t. ‖v‖2Hσ =

∞∑
k=1

λ
σ
2

k v
2
k <∞

}
,

where L2 (D) is a Hilbert space with,

vk = 〈v, ek〉 , ‖Hσv‖ =
∥∥Aσ

2 v
∥∥ .

B is B (u, v) = u · ∇v with domain D (B) = H1
0 (D) and B (u) = B (u, u). By

using these notations, it is possible to express the main equation (1.1) − (1.3) as
follows:{

cDα
t [u (t)− η (u (t))] = Au (t) +B (u (t)) + g (u (t)) W (t)

dt , t > 0,

u (0) = u0,
(2.1)

in which {Wt : t ≥ 0} is cylindrical L2−valued Brownian motion ( L2−valued sto-

chastic approachW (t) so that a trace class operatorQ denote Tr (Q) =
∞∑
k=1

λk <∞,

which satisfies that Qek = λkek, k = 1, 2, . . .. So

W (t) =

∞∑
k=1

√
λkβk (t) ek,

with {βk}∞k=1 is a family of Brownian motions.
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Define L2
0 := L2

(
Q

1
2 (H) , H

)
be a Hilbert-Schmidt space of operators from Q

1
2 (H)

to H with the norm

‖φ‖L2
0

=
∥∥∥φQ 1

2

∥∥∥
Hσ

=

( ∞∑
n=1

φQ
1
2 en

) 1
2

,

i.e.,

L2
0 =

{
φ ∈ L (H) :

∞∑
n=1

∥∥∥λ 1
2
nφQ

1
2 en

∥∥∥2

<∞

}
,

where L (H) := {φ : φ : H 7→ H is a linear bounded operator}.

Let K be a Banach space. Then,

‖v‖Lp(Ω,K) = (E ‖v‖pK)
1
p , ∀v ∈ Lp (Ω, F, P,K) , for every 2 ≤ p.

Lemma 2.1. ([32]) Suppose T (t) = e−tA is a semi group generated by an operator
A. For each µ > 0, we have a constant Cµ depending on µ so that

‖AT (t)‖Lp ≤ Cµt
−µ, t > 0.

Following Lemma will be introduced to assess the stochastic integrals containing
the inequality of the Burkhoder-Davis-Gundy.

Lemma 2.2. ([17]) For all 2 ≤ p and T > t2 > t1 ≥ 0, and u : [0, T ] × Ω → L2
0

holds for

E


 T∫

0

‖u (ω)‖2L2
0
dω


p
2

 <∞.
The identity

E

∥∥∥∥∥∥
t2∫
t1

u (ω) dW (ω)

∥∥∥∥∥∥
p < C (p)E


 t2∫
t1

‖u (ω)‖2L2
0
dω


p
2

 .
holds true under these assumptions.

Inspired by the time-fractional differential equations definition of the mild solution
(see [28]), we present the definition:

Definition 2.3. An Ft-adapted stochastic approach, u(t), is known as mild solution
for (2.1) if

u (t) = Eα (t)u0 + h (u (t)) +

t∫
0

(t− ω)
α−1

Eα,α (t− ω)B (u (ω)) dω

+

t∫
0

(t− ω)
α−1

Eα,α (t− ω) g (u (ω)) dW (ω) , (2.2)

where the Eα (t) and Eα,α (t) are stated as:

Eα (t) =

∞∫
0

ζα (θ)T (tαθ) dθ,
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and

Eα,α (t) =

∞∫
0

αθζα (θ)T (tαθ) dθ,

where T (t) = e−tA0 is a semi group produced by an operator −A. In this definition,
ζα (θ) is Mainardi’s Wright function:

ζα (θ) =

∞∑
m=0

(−1)
m
θm

m!Γ (1− α (1 +m))
.

Lemma 2.4. ([4]) For any α ∈ (0, 1) and −1 < ν <∞, it is clear that

ζα (θ) ≥ 0 ,

∫ ∞
0

θνζα (θ) dθ =
Γ (1 + ν)

Γ (1 + αν)
, (2.3)

for every θ ≥ 0.

{Eα (t)} and {Eα,α (t)} in (2.8) for t ≥ 0 possesses the conditions as follows:

Lemma 2.5. Let Eα (t) and Eα,α (t) be bounded-linear operators. For 2 > ν ≥
0, α ∈ (0, 1), there is a positive constant C for which the inequalities

‖Eα (t) y‖Hν ≤ Ct
−αν2 ‖y‖ , ‖Eα,α (t) y‖Hν ≤ Ct

−αν2 ‖y‖ . (2.4)

hold.

Proof. Let T > 0 and 2 > ν ≥ 0. The Lemmas 2.1, 2.4 imply that

‖Eα (t)χ‖Hν ≤
∞∫

0

ζα (θ) ‖AνT (tαθ)χ‖ dθ

≤
∞∫

0

Cνt
−αν2 θ−νζα (θ) ‖χ‖ dθ

=
CνΓ (1− ν)

Γ (1− αν)
t−

αν
2 ‖χ‖ , χ ∈ L2 (D) ,

and

‖Eα,α (t)χ‖Hν ≤
∞∫

0

αθζα (θ) ‖AνT (tαθ)χ‖ dθ

≤
∞∫

0

Cναt
−αν2 θ1−νζα (θ) ‖χ‖ dθ

=
CναΓ (2− ν)

Γ (1− αν)
t−

αν
2 ‖χ‖ , χ ∈ L2 (D) ,

so, Eα (t) and Eα,α (t) are bounded operators and linear. The proof is completed.
�

Lemma 2.6. Let t be a positive real number. Then,
(i) For 0 < α < 1 and 0 ≤ ν < 2 and 0 ≤ t1 < t2 ≤ T , there is a C > 0 for which

‖(Eα (t2)− Eα (t1))χ‖Hν ≤ C (t2 − t1)
αν
2 ‖χ‖ , (2.5)

and
‖(Eα,α (t2)− Eα,α (t1))χ‖Hν ≤ C (t2 − t1)

αν
2 ‖χ‖ . (2.6)
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(ii) Eα (t) and Eα,α (t) are strongly continuous operators.

Proof. It is not hard to show that for any 0 < T0 ≤ t1 < t2 ≤ T ,

t2∫
t1

dT (tαθ)

dt
dt = T (tα2 θ)− T

(
tθ1
)

=

t2∫
t1

αtα−1θAT (tαθ) dt,

and by (2.3) and Lemma 2.1, we have

‖(Eα (t2)− Eα (t1))χ‖Hν = ‖Aν (Eα (t2)− Eα (t1))χ‖

=

∥∥∥∥∥∥
∞∫

0

ζα (θ)Aν
(
T (tα2 θ)− T

(
tθ1
))
χdθ

∥∥∥∥∥∥
≤
∞∫

0

αθζα (θ)

t2∫
t1

tα−1 ‖A2+νT (tαθ)χ‖L2 dtdθ

≤
∞∫

0

Cναθ
− ν2 ζα (θ)

 t2∫
t1

t−
αν
2 −1dt

 ‖χ‖ dθ
=

2CνΓ
(
1− ν

2

)
νΓ
(
1− αν

2

) (t−αν21 − t−
αν
2

2

)
‖χ‖

≤
2CνΓ

(
1− ν

2

)
νTαν0 Γ

(
1− αν

2

) (t2 − t1)
αν
2 ‖χ‖ , χ ∈ L2 (D) .

Also

‖(Eα,α (t2)− Eα,α (t1))χ‖Hν = ‖Aν (Eα,α (t2)− Eα,α (t1))χ‖

=

∥∥∥∥∥∥
∞∫

0

αθζα (θ)Aν
(
T (tα2 θ)− T

(
tθ1
))
χdθ

∥∥∥∥∥∥
≤
∞∫

0

α2θ2ζα (θ)

t2∫
t1

tα−1 ‖A2+νT (tαθ)χ‖L2 dtdθ

≤
∞∫

0

Cνα
2θ1− ν2 ζα (θ)

 t2∫
t1

t−
αν
2 −1dt

 ‖χ‖ dθ
=

2αCνΓ
(
2− ν

2

)
νΓ
(
1 + α

(
1− ν

2

)) (t−αν21 − t−
αν
2

2

)
‖χ‖

≤
2CνΓ

(
2− ν

2

)
νTαν0 Γ

(
1 + α

(
1− ν

2

)) (t2 − t1)
αν
2 ‖χ‖ , χ ∈ L2 (D) .

We have
‖(Eα (t2)− Eα (t1))χ‖Hν → 0,

and
‖(Eα,α (t2)− Eα,α (t1))χ‖Hν → 0,

as t1 → t2 which implies the strongly continuity of operators Eα (t) and Eα,α (t) .
�
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Definition 2.7. Hausdorff measure of non-compactness of a bounded nonempty set

Γ of Ỹ is denoted by χ (Γ) and is defined as

χỸ (Γ) = inf
{
ε > 0 : Γ ⊂ S + εΓỸ , S ⊂ Ỹ , S is finite

}
.

We recall here the some basic facts about χỸ (·) .

Lemma 2.8. ([2]) Suppoe that Y is a Hilbert space and Γ, C ⊆ Ỹ are bounded.
Then:
(1) Γ is pre-compact if and only if χỸ (Γ) = 0,

(2) χỸ (Γ) = χỸ
(
Γ
)

= χỸ (convΓ), in which Γ is closure, convΓ is convex hull of Γ.

(3) χỸ (Γ) ⊆ χỸ (C) for Γ ⊂ C,
(4) χỸ (Γ + C) ≤ χỸ (Γ) + χỸ (C) in which Γ + C = {a+ b : a ∈ Γ, b ∈ C},
(5) χỸ (Γ ∪ C) = max

{
χỸ (Γ) , χỸ (C)

}
,

(6) χỸ (λΓ) ≤ |λ|χỸ (Γ) where λ is a real number.
(7) For a Lipschitz continuous map D (Φ) ⊆ Y 7→ B, the inequality

χB (ΦΓ) ≤ kχỸ (Γ)

holds for a bounded set Γ ⊆ D (Φ) in which B is a Banach space.

Definition 2.9. ([25]) The map : V : Ỹ → Y is called a χỸ−contraction if

χỸ (Φ (Γ)) ≤ kχỸ (Γ)

for 0 ≤ k < 1, where Γ ⊆ V is bounded and closed and Ỹ is a Banach space.

Lemma 2.10. (([1])) Let V ⊆ Y be a closed and convex subset of a Hilbert space Y
with 0 ∈ V. Then, the continuous transformation: V : Y → Y is a χY−contraction.
Furthermore, if {u ∈ V : u = λΦ (u)} is bounded where 0 < λ < 1, Φ has at least
one fixed point in V .

Next we present some outcomes on the presence of moderate (2.1) issue alterna-
tives. We create the following hypotheses in order to achieve this:
(H1) Suppose that the operator A is infinitesimal generator of {T (t)}t≥0 on H. We

are also assuming compactness of operator Eα (t) .
(H2) The map h : Ω×H → L2

0 holds the conditions of global growth and Lipshitz
continuity:

‖h (v)‖L2
0
≤ C ‖u‖ , ‖h (u)− h (v)‖L2

0
≤ C ‖u− v‖ ,

for each v, u ∈ H.

(H3) For the initial condition u0 which is a random variable with measure F0, the
inequality

‖u0‖Lp(Ω,Hν) <∞, for any 0 ≤ ν < α < 2.

holds.
(H4) Assume that g : L2

0 → L2
0 is a continuous function. Then,

E ‖g (u1 (t))− g (u2 (t))‖p
L2

0
≤ Lg ‖u1 (t)− u2 (t)‖p

L2
0
,

where Lg > 0, and t ∈ [0, T ] , u1, u2 ∈ L2
0.
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and

E ‖g (u (t))‖p
L2

0
≤ LgE ‖u (t)‖p

L2
0
, t ∈ [0, T ] , u ∈ L2

0.

(H5) The map Z : L2 (D)→ H−1 (D) satisfies

‖Z (u)‖H−1 ≤ Zc ‖u‖2 ,
and

‖Z (u)− Z (v)‖H−1 ≤ Zc (‖u‖+ ‖v‖) ‖u− v‖ ,
where Zc > 0, and u, v ∈ L2 (D).

Lemma 2.11. Let Φ1 be the operator expressed by for each u ∈ K

Φ1 (u) =

t∫
0

(t− s)α−1
Eα,α (t− s)B (u (s)) ds. (2.7)

Under assumptions (H1) and (H2), the operator Φ1 is continuous and maps K into
itself.

Proof. It is obvious that Φ1 is continuous. Next, we show that Φ1 (K) ⊂ K. By
(H1) and (H2) and the equation 2.7, we get

E ‖(Φ1u) (t)‖pHν = E

∥∥∥∥∥∥
t∫

0

(t− ω)
α−1

A1Eα,α (t− ω)Aν−1Z (u (s)) dω

∥∥∥∥∥∥
p

Hν

≤ Cpα

 t∫
0

(t− ω)
p(α−1

2 )
p−1 dω

p−1 ∫ t

0

E [‖Aν−1Z (u (ω))‖p] dω

≤ CpCα
[

2 (p− 1)

p− 2

]p−1

(T )
p−2
2

t∫
0

E [‖u (t)‖pHν ]

= γ1

t∫
0

E [‖u (ω)‖pHν ] dω , (2.8)

with γ1 = CpCα

[
2(p−1)
p−2

]p−1

(T )
p−2
2 . This complete the proof.

�

Lemma 2.12. Let K be a Hilbert space. The operator

Φ2 (u) =

t∫
0

Sα (t− ω) g (u (ω)) dW (ω) for each u ∈ K.

is continuous and maps K into itself by the assumptions of (H1) and (H2) .

Proof. By Lemma 2.2, we obtain

E ‖(Φ2u) (t)‖pHν = E

∥∥∥∥∥∥
t∫

0

(t− ω)
α−1

Eα,α (t− ω) g (u (ω)) dW (ω)

∥∥∥∥∥∥
p

Hν
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≤ C (p)E


 t∫

0

∥∥∥(t− ω)
α−1

Eα,α (t− ω)
∥∥∥2

‖Aνg (u)‖2L2
0
dω


p
2



≤ C (p)Cpα

 t∫
0

(t− ω)
2p(α−1)
p−2


p−2
2 t∫

0

E ‖Aνg (u)‖p
L2

0
dω

≤ C (p)Cpα

(
p− 2

p (2α− 1)− 2

) p−2
2

t∫
0

E ‖Aνg (u)‖p
L2

0
dω

= γ2

t∫
0

E [‖u (s)‖pHν ] ds, (2.9)

where γ2 = C (p)CpαC
p
[

p−2
p(2α−1)−2

] p−2
2

. This implies that Φ2 (Z) ⊂ Z.

�

Lemma 2.13. Assume that the operator Φ3 defined in Z, satisfies

(Φ3u) (t) = Eα (t)u0 + g (u (t)) .

By the assumptions (H1) and (H4), the operator Φ3 : Y 7→ Y is continuous.

Proof. The continuity in p− th moment of Φ3 follows from (H4).
Next, we show that Φ3 (Y ) ⊂ Y . By (2.9) and the assumptions (H1), (H5) , one
gets

E ‖(Φ3u) (t)‖p
L2

0
≤ E ‖g (u (t))‖p

L2
0
≤ LhE ‖u (t)‖p

L2
0
.

So, we conclude Φ3 (Z) ⊂ Z. �

Lemma 2.14. By (H1) and (H2), we have

E [‖Eα (t)u0‖Hν ] ≤ E [‖u0‖Hν ] .

Proof. The Lemma 2.1 implies that

E [‖Eα (t)u0‖Hν ] ≤ E

 ∞∫
0

ζα (θ)
(
‖AνT (tαθ)u0‖2

) 1
2

dθ



≤ E

 ∞∫
0

ζα (θ)

( ∞∑
n=1

〈
Aνe

−tαθAu0, en

〉2
) 1

2

dθ


≤ E

 ∞∫
0

ζα (θ)

( ∞∑
n=1

〈
Aνu0, e

−tαθλ
ν
2
n , en

〉2
) 1

2

dθ


≤ E

 ∞∫
0

ζα (θ) ‖u0‖Hν dθ

 = E [‖u0‖Hν ] .

�
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Now, we set T = T1 + T2, where

(T1u) (t) = Eα (t)u0 (s) + g (u (t)) ,

and

(T2u) (t) =

t∫
0

(t− ω)
α−1

Eα,α (t− ω)Z (u (ω)) dω+

t∫
0

(t− ω)
α−1

Eα,α (t− ω) f (u (ω)) dW (ω) ,

for t ∈ [0, T ].

Lemma 2.15. Assume (H2) , (H4), (H5) hold and 0 < ν < α ≤ 2, p ≥ 2. Then,

E ‖Eα (t2)− Eα (t1)‖pHν ≤ C
p
α,ν (t2 − t1)

αν
2 E ‖u0‖p .

Proof. We set

I1 = T1 (t2)− T1 (t1) = Eα (t2)u0 − Eα (t2)u0

For any p ≥ 2, by virtue of Lemma 2.6, one gets

E [‖I1‖pHν ] = E [A ‖Eα (t2)u0 − Eα (t2)u0‖p]

≤ Cpα,ν (t2 − t1)
αν
2 E ‖u0‖p .

It is clear that ‖(T1 (t2)− T1 (t1))‖Y → 0 as t1 → t2 which means that the operator
F1 is strongly continuous. �

Lemma 2.16. Assume (H2) , (H4), (H5) hold and 0 < ν < α ≤ 2, p ≥ 2, the
operator T2 is uniformly bounded.

Proof. From Lemma 2.7, using the estimate (2.8) , we have

sup
t∈[0,T ]

E [‖T2 (u (t))‖pHν ] ≤ ∞,

that is the operator T2 is uniformly bounded. �

Lemma 2.17. Assume (H2) , (H4), (H5) hold and 0 < ν < α ≤ 2, p ≥ 2, Then the
operator T2 is equi-continuous.

Proof. For T ≥ t2 > t1 ≥ 0,

(T2u) (t2)− (T2u) (t1) =

t2∫
0

(t2 − ω)
α−1

Eα,α (t2 − ω)Z (u (ω)) dω

−
t1∫

0

(t1 − ω)
α−1

Eα,α (t1 − ω)Z (u (ω)) dω+

t2∫
0

(t2 − ω)
α−1

Eα,α (t2 − ω) g (u) dW (ω) .

−
t1∫

0

(t1 − ω)
α−1

Eα,α (t1 − ω) g (u) dW (ω) = J2 + J3, (2.10)

where

J2 =

t2∫
0

(t2 − ω)
α−1

Eα,α (t2 − ω)Z (u (ω)) dω−
t1∫

0

(t1 − ω)
α−1

Eα,α (t1 − ω)Z (u) d (ω)
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=

t1∫
0

(t1 − ω)
α−1

[Eα,α (t2 − ω)− Eα,α (t1 − ω)]Z (u (ω)) dω

+

t1∫
0

[
(t2 − ω)

α−1 − (t1 − ω)
α−1

]
Eα,α (t2 − ω)Z (u (ω)) dω

+

t2∫
t1

(t2 − ω)
α−1

Eα,α (t2 − ω)Z (u (ω)) dω

= J21 + J22 + J23, (2.11)

and

J3 =

t2∫
0

(t2 − ω)
α−1

Eα,α (t2 − ω) f (u (ω)) dWω−
t1∫

0

(t1 − ω)
α−1

Eα,α (t1 − ω) f (u) dW (ω)

=

t1∫
0

(t1 − ω)
α−1

[Eα,α (t2 − ω)− Eα,α (t1 − ω)] f (u (ω)) dW (ω)

+

t1∫
0

[
(t2 − ω)

α−1 − (t1 − ω)
α−1

]
Eα,α (t2 − ω) f (u (ω)) dW (ω)

+

t2∫
t1

(t2 − ω)
α−1

Eα,α (t2 − ω) f (u (ω)) dW (ω)

= J31 + J32 + J33. (2.12)

For J21 in (2.11), by (H5) and Lemma 2.6, one gets

E [‖J21‖pHν ] = E

∥∥∥∥∥∥
t1∫

0

(t1 − ω)
α−1

[Eα,α (t2 − ω)− Eα,α (t1 − ω)]Z (u (ω)) dω

∥∥∥∥∥∥
p

≤ Cpαν (t2 − t1)
pα(ν+1)

2

 t1∫
0

(t1 − ω)
p(α−1)
p−1 dω

p−1 t∫
0

E
[
‖A−1Z (u (ω))‖pH1

]
dω

≤ CpCpανT pα
(
p− 1

pα− 1

)p−1
(
sup
t∈[0,T ]

E
[
‖u (ω)‖2pH1

])
(t2 − t1)

pα(ν+1)
2 . (2.13)

Using the assumptions (H5) and Lemma 2.6 and Holder inequality, we have

E [‖J22‖pHν ] = E

∥∥∥∥∥∥
t1∫

0

[
(t2 − ω)

α−1 − (t1 − ω)
α−1

]
[AνEα,α (t2 − ω)]Z (u (ω)) dω

∥∥∥∥∥∥
p

≤ Cpα

 t1∫
0

{[
(t2 − ω)

α−1 − (t1 − ω)
α−1

]
× (t2 − ω)

−α(ν+1)
2

} p
p−1

dω

p−1
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×
t∫

0

E
[
‖A−1B (u (ω))‖pH1

]
dω

≤ CpCpαT

 p− 1

p
(
α− α(ν+1)

2

)
p−1(

sup
t∈[0,T ]

E
[
‖u (ω)‖2pH1

])
(t2 − t1)

pα(1−ν)−2
2 ,

(2.14)
and

E [‖J23‖pHν ] = E

∥∥∥∥∥∥
t2∫
t1

(t2 − ω)
α−1

AνEα,α (t2 − ω)B (u (ω)) dω

∥∥∥∥∥∥
p

≤ Cpα

 t2∫
t1

(t2 − ω)
α−1−α(ν+1)

2 dω

p−1 t2∫
t1

E
[
‖A−1B (u (ω))‖pH1

]
dω

≤ CpCpα

 p− 1

p
(
α− α(ν+1)

2

)
− 1

p−1(
sup
t∈[0,T ]

E
[
‖u (ω)‖2pH1

])
(t2 − t1)

pα(1−ν)
2 .

(2.15)
Next, we can show via (2.13)− (2.15) and the Lemma 2.2:

E [‖J31‖pHν ] = E

∥∥∥∥∥∥
t1∫

0

(t1 − ω)
α−1

[Eα,α (t2 − ω)− Eα,α (t1 − ω)] f (u (ω)) dWω

∥∥∥∥∥∥
p

≤ C (p)E


 t1∫

0

∥∥∥(t1 − ω)
α−1

Aν [Eα,α (t2 − ω)− Eα,α (t1 − ω)]
∥∥∥2

‖f (u (ω))‖2L2
0
dω


p
2



≤ C (p)Cpαν (t2 − t1)
pαν
2

 t1∫
0

(t1 − ω)
2p(α−1)
p−2 dω


p−2
2 t1∫

0

E ‖f (u (ω))‖p
L2

0
dω

≤ CpCpανT
2pα−p−1

2

(
p− 1

2pα− p− 2

)p−1
(
ωup
t∈[0,T ]

E [‖u (ω)‖p]

)
(t2 − t1)

pαν
2 , (2.16)

and

E [‖J32‖pHν ] = E

∥∥∥∥∥∥
t1∫

0

[
(t2 − ω)

α−1 − (t1 − ω)
α−1

]
[AνEα,α (t2 − ω)] f (u (ω)) dWω

∥∥∥∥∥∥
p

≤ C (p)E


 t1∫

0

∥∥∥[(t2 − ω)
α−1 − (t1 − ω)

α−1
]

[AνEα,α (t2 − ω)]
∥∥∥2

‖f (u (ω))‖2L2
0
dω


p
2



≤ C (p)Cpα

 t1∫
0

{[
(t2 − ω)

α−1 − (t1 − ω)
α−1

]
× (t2 − ω)

−αν
2

} 2p
p−2

dω


p−2
2
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×
t∫

0

E
[
‖f (u (ω))‖p

L2
0

]
dω

≤ C (p)CpCpαT

(
2 (p− 2)

2pα (2− ν)− 2 (p+ 2)

) p−2
2

×

(
sup
t∈[0,T ]

E [‖u (t)‖p]

)
(t2 − t1)

2pα(2−ν)−2(p+2)
4 , (2.17)

and

E [‖J33‖pHν ] = E

∥∥∥∥∥∥
t2∫
t1

(t2 − ω)
α−1

AνEα,α (t2 − ω)Z (u (ω)) dω

∥∥∥∥∥∥
p

≤ C (p)E


 t1∫

0

∥∥∥(t2 − ω)
α−1

AνEα,α (t2 − ω)
∥∥∥2

‖f (u (ω))‖2L2
0
dω


p
2



≤ C (p)Cpα

 t2∫
t1

(t2 − ω)
α−1−αν2


p−2
2

×
t2∫
t1

E
[
‖f (u (ω))‖p

L2
0

]
dω

≤ C (p)CpCpα

(
2 (p− 2)

2pα (2− ν)− 2 (p+ 2)

) p−2
2

(
sup
t∈[0,T ]

E [‖u (t)‖p]

)
(t2 − t1)

2pα(2−ν)−2p
4 .

By expectation of (2.10) and (2.13)− (2.18), one gets

‖(T2u) (t2)− (T2u) (t1)‖Lp(Ω,Hν) ≤ C (t2 − t1)
γ
,

where γ = min
{
αν
2 ,

αp(1−ν)−2
2p , 2pα(2−ν)−2(p+2)

4p

}
when 0 < t2 − t1 < 1.

Otherwise, if t2 − t1 ≥ 1, then we set γ = max
{
α(ν+1)

2 , α(2−ν−1)
2 , 2pα(2−ν)−2p

4p

}
.

�

Lemma 2.18. F maps Y into itself by (H1) and (H2) .

Proof. Let the nonlinear operator F be given by,

(Fu) (t) = Eα (t)u0 + h (u (t)) +

t∫
0

(t− ω)
α−1

Eα,α (t− s)B (u (ω)) dω

+

t∫
0

(t− ω)
α−1

Eα,α (t− ω) g (u) dW (ω) .

Now, we construct mild solutions of (1.1)− (1.2) :
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Step 1. Let λ ∈ (0, 1), set {u ∈ T : u = λFu} is bounded.
Assume that u ∈ Y be a solution of u = λFu. Then, by (H1)− (H4) and applying
the similar arguments in Lemmas 2.9and 2.12, we get

E ‖u (t)‖pHν ≤ 3p−1 ‖Eα (t)u0‖pHν + 3p−1 ‖h (u (t))‖pHν + 3p−1E ‖Φ1 (u (t))‖pHν
+3p−1E ‖Φ2 (u (t))‖pHν

≤ 3p−1E [‖u0‖Hν ] + 3p−1 (γ1 + γ2)

t∫
0

E [‖u‖pHν ] ds.

sup
t∈[0,T ]

E ‖u (t)‖pHν <∞.

which implies boundedness of u(·).

Step 2. F : Y → C ([0, T ] , Hσ) is continuous. Let {un (t)}n≥0 with un →
u (n→∞) in Y . Then there is a number r > 0 such that E ‖un (t)‖2Hν ≤ r for

t ∈ [0, T ] and all n, un ∈ B (0, Y ) =

{
u ∈ Y : sup

t∈[0,T ]

‖u‖Hσ

}
and u ∈ Br (0, Y ).

By the assumptions (H2) and similar argument to get (2.8) and (2.9), we have

E ‖(Fun) (t)− (Fu) (t)‖pHν ≤ 3p−1 ‖h (un (t))− h (u (t))‖PHν+3p−1E ‖Φ1 (un (t)− u (t))‖pHν
+3p−1E ‖Φ2 (un (t)− u (t))‖pHν

≤ 3p−1 ‖h (un (t))− h (u (t))‖pHν + 3p−1 (Gγ1 +Kγ2)

 t∫
0

E ‖un − u‖pHν ds

 .

Then, for t ∈ [0, T ] ,

‖Fun − Fu‖pY −→ 0, while n −→∞.
Therefore, F is a continuous map.

Step 3. Let us write F as F = T1 + T2 to prove that F is χ−contraction.

(1) T1 is a contraction on Y . Let u, v ∈ Y . By the Lemma 2.11 :

E ‖T1u− T1v‖pHν ≤ LgE ‖u (ω)− v (ω)‖pHν
≤ Lg sup

ω∈[0,T ]

E ‖u (ω)− v (ω) dω‖pHν

≤ Lg ‖u (ω)− v (ω) dω‖pY
Taking supremum over t

‖T1u− T1v‖pY ≤ L0 ‖u (ω)− v (ω)‖pY ,
where L0 = Lg < 1.
Hence T1 is a contraction on Y .

(2) T2 is compact operator. Let u, v ∈ Y . It follows from (H2) , (H5) and Lemma
2.12 that

E ‖T2u− T2v‖2Hν ≤ 2p−1E

∥∥∥∥∥∥
t∫

0

(t− ω)
α−1

Eα,α (t− ω)Aν [g (u (ω))− g (v (ω))] dW (ω)

∥∥∥∥∥∥
2

Hν
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+2p−1E

∥∥∥∥∥∥
t∫

0

(t− ω)
α−1

Eα,α (t− ω)Aν [B (u (ω))−B (v (ω))] dω

∥∥∥∥∥∥
p

Hν

≤ (γ1 + γ2)E

 t∫
0

‖u− v‖2Hν dω

 ,

which implies

sup
t∈[0,T ]

E ‖T2u− T2v‖2Hν = (γ1 + γ2) sup
t∈[0,T ]

E ‖u− v‖2Hν .

Since 0 < L = γ1 + γ2 < 1, then F is contraction maping on Y .

From the Lemma 2.11 and Lemma 2.12, the operator T1 is relatively compact.

Because T1 is a compact operator,

χK (T1V ) = 0

for a bounded V ⊂ K. Hence,

χK (F ) = χK (F1V + F2V ) ≤ χK (F1V ) + χK (F2V ) ≤ LχK (V ) < χK (V ) .

Therefore, F is a χ−contraction mapping. Using the Lemma 2.10, we get F has at
least one fixed point u∗ ∈ V ⊂ K which is a mild solution of (1.1)− (1.2).

�
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