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Theoretical Prospects of the Solutions of
Fractional Order Weakly Singular Volterra
Integro Di�erential Equations and their
Approximations with Convergence Analysis

Pratibhamoy Das�, Subrata Rana�

In this work, we study a weakly singular Volterra integro di�erential equation with Caputo type fractional derivative. First,

we derive a su�cient condition for the existence and uniqueness of the solution of this problem based on the maximum

norm. It is observed that the condition depends on the domain of de�nition of the problem. Thereafter, we show that this

condition will be independent of the domain of de�nition based on an equivalent weighted maximum norm. In addition,

we have also provided a procedure to extend the existence and uniqueness of the solution in its domain of de�nition by

partitioning it. We also derive a su�cient condition under which the model problem will provide an analytic solution. Next,

we introduce a operator based parameterized method to generate an approximate solution of this problem. Convergence

analysis of this approach is established here. Next, we have optimized this solution based on least square method. For

this, residual minimization is used to obtain the optimal values of the auxiliary parameter. In addition, we have also

provided an error bound based on this technique. Several numerical examples are produced to clarify the e�ective behavior

of the convergence of the present method. Comparison of the standard method and optimized method based on residual

minimization signify the better accuracy of modi�ed one. In addition, we also consider an equivalent form of weakly singular

integro di�erential equation of a Heat transfer problem to show the e�ectiveness of the present approach. Copyright ©
2020 John Wiley & Sons, Ltd.

Keywords: Integral equation, Weakly singular integro di�erential equation, Parameterized approximation,
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1. Introduction

Fractional order weakly singular integro di�erential equations are very frequent in several modeling. For e.g., fractal wave equation

in shallow water surface leads to a time fractional model [9]. In addition, if the water wave scattering happens by a thin vertical

barrier, immersed in deep water, it produces an integral equation with weakly singular kernel [2]. Therefore, a consequent behavior

of two models leads to a fractional order weakly singular integro di�erential equations. It is observed that the fractional and

integral models also appear in 
ight trajectory movement [6]. One can also see mathematical models available in [22, 19].

There are several notions of fractional derivatives existed in the literature, out of which the Riemann-Lioville [7, 22] and Caputo

fractional derivatives [25, 7] are mainly popular in recent days. A coupled system of Riemann-Lioville type fractional di�erential

equations are studied in [27] to obtain a su�cient condition for existence of positive solutions. Under certain conditions depending

on the domain, it is observed in [25], that the uniqueness of the solution can be extended in in�nite dimensional Banach spaces

for fractional order boundary value problems in Caputo sense with � > �0;1�. A discussion on integro di�erential equations of

integer order and qualitative properties of Volterra integral equations of second kind with some special type of weakly singular

kernels can be observed in [26]. But the existence and uniqueness of a general fractional order integro-di�erential equations with

weakly singular kernels in any speci�ed domain are very little in literature, in our knowledge.

The approximate solutions of integral equations are also one of the interesting topic in recent researches. In literature,

approximations of a special type Abel integral equations appear in [15] by two-step Laplace decomposition algorithm, in [12] by

using fractional order Legendre functions and pseudospectral method and in [16] based on asymptotic behavior of the solution.

On the other hand, few speci�c class of fractional order Volterra integro-di�erential equations are also considered for numerical
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analysis, based on Wavelet methods in [24], using fast iterative re�nement method in [10] and using spline collocation method

in [21]. In recent days, semi analytical methods became popular over numerical methods in order to avoid of �nding suitable

discretization [23] of a general model. Very often, the semi analytical methods provide exact solution of the model. In this context,

the popular semi analytical approaches include- methods based on series solution, Laplace transform, variational iteration, to

solve fractional equations and integro-di�erential equations. Recently, homotopy based perturbation method [18, 8] became

noticeable due to its simplicity and reliability of solving di�erential equations. Later, it was modi�ed in [8] for solving mixed type

integral equations. Convergence analysis of approximation techniques for integral equations can be also observed in few articles,

say [3, 6, 11]. Recently, few numerical methods are proposed to solve fractional integral equation with weakly singular kernel

by considering the particular case of 0 @ � @ 1 [13]. However, in our knowledge, the approximate solutions of fractional order

weakly singular integro di�erential equations are very not known till today.

In the present work, our aim is to develop the existence and uniqueness result for the fractional order Volterra integro di�erential

equations with weakly singular kernel and provide an approximate solution for this model based on Homotopy perturbation method

(HPM) and modi�ed it by least square based Homotopy perturbation method (LSHPM) by choosing the parameters optimally.

Note that the present model generalizes the aforementioned problems which include the Abel type problems where the order of

the weakly singular kernel is �xed.

We address the present work as follows. In Section 2, few preliminaries of fractional calculus are provided which is required

to analyze our model in Section 3. In addition, this section provides few su�cient conditions for existence and uniqueness of

the solution. Here, we develop two di�erent theorems to extend the su�cient conditions independent of the domain. Section

4 describes the HPM and explains the convergence analysis of the method. We use the functions involved in this solution, to

construct another approximate solution, where the coe�cients are optimized by least square method on residual error. This can

be pointed as least square homotopy perturbation method. In addition, we also provide an error bound of this modi�ed solution

in L2 norm. Computational experiments are carried out in Section 5 to show the e�ectivity of the present method. It shows that

the optimized LSHPM provides better accuracy compared to HPM with very few number of terms in the approximation.

Notations: Through out the paper, we use N; R as the set of all natural numbers and real numbers. We de�ne 
 as the closure

of the domain 
. In addition, C�
� de�nes the set of all continuous functions on 
 and Cn�
� � �f �x�Sf n�x� exists and f n�x�
is continuous for x > 
�. For the analysis, we use the supremum norm for a function f �x� as Yf �x�Yª � Yf �x�Y � maxx>
 Sf �x�S
in a domain 
. The L2 norm for a function f �x�; de�ned in 
 is de�ned by Yf Y2 � S




f
2
dx . We also use the symbol O�p� to

denote the order of p. For x C 0, 
��; x� is denoted as incomplete gamma function of order � A 0 and is de�ned by


��; x� � S x

0

t
��1

e
�t
dt:

2. Preliminaries

In this section, we introduce some preliminaries of fractional calculus which will be used through out the work. For more details,

one can see [22, 19].

De�nition 1 Riemann-Liouville (R-L) Fractional Integral:- For a locally integrable function f de�ned on �0; T �, the R-L fractional

integral of order � A 0; is de�ned by

J
�
f �x� � 1

����S x

0

�x � ����1f ���d�; x A 0; (1)

where � de�nes the Gamma function.

De�nition 2 Liouville Caputo Fractional Derivative:- The fractional derivative of order � A 0 for a function f , where f and its

derivatives upto order n � 1 are absolutely continuous, is de�ned by

D
�
f �x� � ¢̈̈̈̈¦̈̈̈̈¤

1

��n ��� S x

0

�x � ��n���1 dnf ���
d�n

d�; if n � 1 @ � @ n;

dnf �x�
dxn

; � � n, n > N:

(2)

Riemann-Liouville fractional integral and Liouville-Caputo fractional derivative satisfy the following relations.

For a su�ciently function f and n � 1 @ � @ n; n > N, we have

D
�
J
�
f �x� � f �x�; and D

�
f �x� � Jn��Dn

f �x�; (3)

J
�
D

�
f �x� � f �x� � n�1

Q
k�0

xk

k!
f
�k��0�; x A 0: (4)

In addition, if � A 0; � A 0 and f �x� is continuous, then the following result holds

J
�
J
�
f �x� � J���f �x� � J�J�f �x�: (5)
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De�nition 3 Mittag-Le�er functions [19]:- The Mittag-Le�er function E��y� is denoted as

E��y� � ª

Q
k�0

y k

���k � 1� ; y > R; � A 0: (6)

3. Fractional Order Volterra Integro Di�erential Equation with Weakly Singular Kernel

We consider the following fractional order weakly singular Volterra integro di�erential equation on 
 � �0; T � with n � 1 @ � @

n; n > N; for the analysis: ¢̈̈̈¦̈̈̈¤
D�u�x� � f �x� � S x

0

�x � t���K�x; t�u�t�dt; 0 B � @ 1; x > 
;

u i�0� � 
i ; i � 0;1; :::; n � 1; n > N: (7)

Here, f is considered as a su�ciently smooth function and the kernel K�x; t� > C�
 �
� is considered to satisfy SK�x; t�S BM
for some constant M�A 0� with K�x; x� x 0 for x > 
. By means of weakly singular kernel, we note that �x � t���K�x; t� is a

continuous function in 
 �
, possibly except for x � t. Here, � de�nes the order of the weakly singular kernel. We are interested

to �nd an approximation of the solution u de�ned on u > C�
� with suitably smooth given data.

Now, we convert the fractional di�erential equation to a equivalent integral equation to obtain the existence and uniqueness

of the solution of (7), for analysis [7, Lemma 6.2]. Applying J� on both sides of (7), and using (3) and (4), we obtain

u�x� � n�1

Q
i�0

x i

i!

i � J

��f �x� � S x

0

�x � t���K�x; t�u�t�dt	: (8)

Let us write (8) as Bu�x� � u�x�; where B is de�ned by

Bu�x� � h�x� � J��S x

0

�x � t���K�x; t�u�t�dt	; (9)

where

h�x� � n�1

Q
i�0

x i

i!

i � J

�
f �x� � g�x� � J�f �x�: (10)

Now onwards, we denote Y:Yª as Y:Y. The following existence and uniqueness theorem provides a su�cient condition for the

solution of (7) for suitably smooth data.

Theorem 4 Under su�cient smoothness on the data, the solution of (7) will exist and unique in 
, if the condition

0 B
MT 1������1 � ��

��� � 2 � �� � � @ 1 is satis�ed.

Proof: Let us �rst consider B � C�
�� C�
� such that

Bu�x� � h�x� � 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t�u�t�dt	ds:
Assume u1; u2 > C�
�: Then,

SBu1�x� � Bu2�x�S
� W 1

���� S x

0

�x � s���1�S s

0

�s � r���K�s; r��u1�r� � u2�r��dr	dsW
B

M

����Yu1 � u2YS x

0

�x � s���1�S s

0

�s � r���dr	ds
B
M��1 � ��T 1����

��� � 2 � �� Yu1 � u2Y:
Since �C�
�; SS:SSª� is a Banach space, therefore, by Banach contraction principle, we can conclude that (7) has a unique solution
in C�
�; when

0 B
MT 1������1 � ��

��� � 2 � �� � � �say� @ 1: (11)

Remark 1 For any choice of K�x; t� whose bound satis�es M @
��� � 2 � ��

T 1������1 � �� for all x > �0; T �, the unique solution of the

model problem (7) will be de�ned in whole interval �0; T �.
Math. Meth. Appl. Sci. 2020, 00 1{17 Copyright © 2020 John Wiley & Sons, Ltd. 3
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Now, we discuss the existence and uniqueness of the solution of (7) by considering weighted maximum norm (see, for e.g.,

[1]) which is de�ned by YuYw � max
x>�0;T �

Se�xu�x�S. Since e
�T YuY B YuYw B YuY, the norm SS:SSw is equivalent to maximum norm. In

addition, C�
� is a Banach space with respect to SS:SSw , see [1]. If we show that the operator B in (9), is a contraction on�C�
�; SS:SSw�, we can conclude that equation (7) has a unique solution u�x� on �0; T �.
Theorem 5 Under su�cient smoothness on the data, the solution of (7) will exist and unique in 
, if the condition M @

1

��1���
is satis�ed.

Proof: Assume u; v > C�
�: Then, from (9), we have

SBu�x� � Bv�x�S � W 1

���� S x

0

�x � s���1�S s

0

�s � r���K�s; r��u�r� � v�r��dr	dsW:
Therefore

e�x SBu�x� � Bv�x�S
� e�x W 1

���� S x

0

�x � s���1�S s

0

�s � r���K�s; r��u�r� � v�r��dr	dsW
B
Me�x

���� S x

0

�x � s���1�S s

0

�s � r���e�r Su�r� � v�r�Serdr	ds
B
Me�xYu � vYw

���� S
x

0

�x � s���1�S s

0

�s � r���erdr	ds
�Me�x��1 � ��Yu � vYw� 1

���� S x

0

�x � s���1� 1

��1 � �� S s

0

�s � r�1���1erdr�ds�
�Me�x��1 � ��Yu � vYw� 1

���� S x

0

�x � s���1�J1���es��ds�
�Me�x��1 � ��Yu � vYwJ��J1���ex��
�
Me�x��1 � ��Yu � vYw

��1 �� � �� S
x

0

�x � s����esds:
By change of variable x � s � y , we have

e�x SBu�x� � Bv�x�S B
M��1 � ��Yu � vYw

��1 �� � �� S
x

0

y
���

e
�y
dy

�M��1 � ��Yu � vYw 1

��1 �� � �� S x

0

y
1�����1

e
�y
dy

�M��1 � ��
�1 �� � �; x�
��1 �� � �� Yu � vYw :

Since,

�1 �� � �; x�
��1 �� � �� B 1 for 0 @ � @ 1, � A 0 and for all x > 
, (see [17]) we have

e
�x SBu�x� � Bv�x�S BM��1 � ��Yu � vYw :

This implies YBu�x� � Bv�x�Yw BM��1 � ��Yu � vYw :
Since �C�
�; SS:SSw� is a Banach space, therefore, by Banach contraction principle, we can conclude that (7) has a unique solution
in C�
�; when

M @
1

��1 � �� ; (12)

which is the desired result.

In this above theorem, we discuss existence and uniqueness of the solution for our model problem on �0; T � with respect to

weighted maximum norm. Now, we consider this result with respect to maximum norm by dividing the whole domain into a

partition. We use the idea of the proof [20, Theorem 3:2] for Volterra integral equations of second kind. First, we discuss a

technical lemma which will be used to prove the existence and uniqueness of u on �0; T �.
Lemma 1 Consider q�x; t� � �x � t����

��1 �� � �� , where � A 0 and 0 B � @ 1. This function satis�es the following properties:

(I). For x C 0, q�x; t� is an absolute integrable function with respect to t on �0; x� and
lim
��0�

S
x��

x
Sq�x � �; t�Sdt � 0:

4 Copyright © 2020 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2020, 00 1{17
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(II). Let g�x� be a continuous function de�ned on �0; T � and 0 B �1 B �2 B x , then

S
�2

�1

q�x; t�K�x; t�g�t�dt
and

S
x

0

q�x; t�K�x; t�g�t�dt
are continuous on �0; T �.
(III). There exists a partition, based on � in the domain �0; T �, say 0 � T0 @ T1 @ T2 @ � @ TN � T; so that for all x > �Tj ; T � with
j � 0;1;2;�;N � 1, we have ÂM S min�x;Tj�1�

Tj

Sq�x; t�Sdt B � @ 1;
for some constant � @ 1; where ÂM �M��1 � �� and M is de�ned earlier.

Proof: The idea of the proof is similar to [7, Lemma 6:10].

Theorem 6 Under su�cient smoothness on the data and the assumptions given in Lemma 1, the solution of (7) will exist and

unique on 
.

Proof: From (8) and (10), we have

u�x� � h�x� � 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t�u�t�dt	ds: (13)

We start with the partition 0 � T0 @ T1 @ T2 @ � @ TN � T; given in (III) of Lemma 1. First we show the existence of a unique

solution of (7) in �T0; T1� by adopting the technique given in [7, 20]. Then, we extend the unique solution in whole interval�0; T � by induction. Let us de�ne
um�x� �� h�x� � 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t�um�1�t�dt	ds; (14)

for m � 1;2;3;�; and u0�x� �� h�x�: It is easy to see that the above functions are continuous on �T0; T1� by Lemma 1 �II� (see
also the procedure below, given in (16)). Let us de�ne �m�x� �� um�x� � um�1�x� for m � 1;2;3;�; and �0�x� �� u0�x� � h�x�.
Therefore, um�x� can be written as um�x� � m

Q
l�0

�l�x�. Again, for m � 2;3;4;�; we have

�m�x� � 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t��um�1�t� � um�2�t��dt	ds: (15)

For a partition �T0; T1� with x > �T0; T1�, we obtain
S�m�x�S � W 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t��um�1�t� � um�2�t��dt	dsW
B

1

���� S x

0

�x � s���1�S s

0

�s � t���SK�s; t�SS�um�1�t� � um�2�t��Sdt	ds
B
MY�m�1Y
���� S

x

0

�x � s���1�S s

0

�s � t���dt	ds
�

ÂMY�m�1Y
���� S

x

0

�x � s���1� 1

��1 � �� S s

0

�s � t�1���1dt	ds
�

ÂMY�m�1Y
���� S

x

0

�x � s���1�J1���s0��ds
� ÂMY�m�1YJ��J1���x0��
� Y�m�1Y ÂM

��1 �� � �� S x

0

�x � t����dt;

(16)

where the last inequality follows from (5). Using Lemma 1 �III� on �T0; T1�; and taking norm on left side of the above equation,

we get the following form Y�mY B �Y�m�1Y;
Math. Meth. Appl. Sci. 2020, 00 1{17 Copyright © 2020 John Wiley & Sons, Ltd. 5
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for m � 2;3;4; :::; and for some positive constant � @ 1. In addition, for m � 1, we have

S�1�x�S � W 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t��0�t�dt	dsW
B Y�0Y M

���� S x

0

�x � s���1�S s

0

�s � t���dt	ds
� Y�0Y ÂM

��1 �� � �� S x

0

�x � t����dt
B �Y�0Y:

This implies Y�mY B �Y�m�1Y holds true for m � 1. Therefore, for m � 1;2;3; ::::, we obtain

Y�mY B �mY�0Y:
Since � @ 1, the series

ª

Q
l�0

�l�x� is convergent on �T0; T1� and the convergence is uniform. Therefore, mth partial sum of
ª

Q
l�0

�l�x�;
i.e., �um�x�� is uniformly convergent and converges to a function, say v�x�, on �T0; T1�. In addition, continuity of um�x� implies
v�x� is continuous on �T0; T1�. Since, �um�x�� is uniformly convergent, therefore, for m �ª, we have from (14)

v�x� � lim
m�ª

um�x�
� lim

m�ª
�h�x� � 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t�um�1�t�dt	ds�
� h�x� � 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t� lim
m�ª

�um�1�t��dt	ds
� h�x� � 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t�v�t�dt	ds:
This implies v is a solution of (13) and hence there exists a solution for the model equation (7) on �T0; T1�. For uniqueness of
the solution, let us consider u�x� as another solution on �T0; T1�. Then, for u; v > C�T0; T1�,

Su�x� � v�x�S � W 1

���� S x

0

�x � s���1�S s

0

�s � t���K�s; t��u�t� � v�t��dt	dsW
BMYu � vY 1

���� S x

0

�x � s���1�S s

0

�s � t���dt	ds
� Yu � vY ÂM

��1 �� � �� S x

0

�x � t����dt
B �Yu � vY:

Here we have followed the procedure, used in (16). Taking norm on left side of the above equation, we get

Yu � vY B �Yu � vY:
Since, � @ 1, this implies u � v . Hence, the solution of (7) exists and unique on �T0; T1�. Now, we show that the existence and

uniqueness of the solution in �0; T �. For this, let us assume that the result holds true on �Tj�1; Tj� for j @ N. We prove that this

is also the case on �Tj ; Tj�1�. For x > �Tj ; Tj�1�, the solution can be written as

u�x� � hj�x� � 1

���� S x

Tj

�x � s���1�S s

0

�s � t���K�s; t�u�t�dt	ds; (17)

where

hj�x� � h�x� � 1

���� S Tj

0

�x � s���1�S s

0

�s � t���K�s; t�u�t�dt	ds: (18)

Note that the function hj�x� is a known function as the solution is known in the interval �0; Tj�. In addition, the solution is

continuous on �0; Tj� and h�x� is also continuous on �0; Tj�. Therefore, Lemma 1 �II� follows that hj�x� is a continuous function
in this domain. Hence, as in (14), we de�ne the following function on �Tj ; Tj�1�

u
j
m�x� �� hj�x� � 1

���� S x

Tj

�x � s���1�S s

0

�s � t���K�s; t�ujm�1�t�dt	ds; (19)

for m � 1;2;3;�; and uj
0
�x� �� hj�x� and �j

m�x� �� ujm�x� � ujm�1�x� for m � 1;2;3;�; and �j
0
�x� �� hj�x�. Therefore, ujm�x� can

be written as ujm�x� � m

Q
l�0

�
j
l �x�. Hence, for x > �Tj ; Tj�1�, by proceeding same as before, we obtain a uniformly convergent series

6 Copyright © 2020 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2020, 00 1{17
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ª

Q
l�0

�
j
l �x� whose mth partial sum will converge and leads to a unique continuous solution û�x� where û�x� � lim

m�ª
u
j
m�x� on�Tj ; Tj�1�. Now, from (19) and Lemma 1 �I�, we have

lim
x�Tj�

û�x� � hj�Tj�:
Since u�x� is de�ned on �0; Tj�, we have from (13)

lim
x�Tj�

u�x� � hj�Tj�:
This shows that the solution is continuous at Tj . Therefore, by continuous continuation, the solution exists and unique in whole

domain �0; T �. Hence, the proof is complete.
From above theorem, we can obtain a continuous solution throughout the interval of de�nition. Now we produce the following

result under which an analytic solution can be obtained.

Lemma 2 Let f �x� and K�x; t� are analytic in �
 and �
 � �
 respectively. Then, the solution u�x� of (7) is analytic if and only

if

S
x

0

�x � t���1�f �t� � �S t

0

�t � r���K�t; r�g�r�dr	dt� � 0; (20)

where g�x� is given in (10).

Proof: The idea of the proof is similar to [7]. From (8), we have

u�x� � g�x� � J��f �x� � S x

0

�x � t���K�x; t�u�t�dt	; (21)

where g�x� � n�1

Q
i�0

x i

i!

i is analytic in �
.

From (20), we have J��f �x� � S x

0

�x � t���K�x; t�u�t�dt	 � 0. This implies u�x� � g�x� is an analytic solution of (7), since

g�x� is analytic. For the converse, let us assume that u�x� is analytic. We show that this follows the condition (20). Since f �x�
is analytic at x � 0, it can be represented by a power series expansion at x � 0, i.e.,

f �x� � ª

Q
j�0

cjx
j
:

Let us de�ne a function r � �
 � �
� R such that r�x; t� � K�x; t�u�t�. Since K�x; t� is analytic at �0;0� and u�t� is also analytic,
this follows r�x; t� is analytic at �0;0�. So, r�x; t� can be represented as

r�x; t� � ª

Q
k;l�0

cklx
k
t
l
:

Now, from (21), we have

u�x� � g�x� � J��f �x� � S x

0

�x � t���r�x; t�dt	
�

1

���� S x

0

�x � s���1� ª

Q
j�0

cjs
j
� S

s

0

�s � r��� ª

Q
k;l�0

ckls
k
r
l
dr	ds

�

ª

Q
j�0

��j � 1�
��� � j � 1�cjx��j � 1

���� ª

Q
k;l�0

ckl S
x

0

�x � s���1sk�S s

0

�s � r���r ldr	ds
� x�

ª

Q
j�0

��j � 1�
��� � j � 1�cjx j � x1���� ª

Q
k;l�0

cklx
k�l ��l � 1���1 � ��

��2 � l � �� ��2 � � � k � l�
��2 �� � � � k � l� :

(22)

At the point x � 0, the left side of the above equation is analytic. Therefore, right hand side must be analytic. Again, for a

fractional number n � 1 @ � @ n; n > N and 0 B � @ 1, right hand side of the above equation cannot be analytic unless the series

terms are identically zero. This implies

S
x

0

�x � t���1�f �t� � �S t

0

�t � r���K�t; r�u�r�dr	�dt � 0;
and hence, u�x� � g�x� is a solution of (7). Combining both of the above results, we obtain the required condition.

Math. Meth. Appl. Sci. 2020, 00 1{17 Copyright © 2020 John Wiley & Sons, Ltd. 7
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Now we introduce the HPM which will be used to approximate the solution of (7). This analytical method attaches a

continuous mapping between exact and approximate solutions and uses the traditional perturbation analysis to obtain a suitable

approximation of the solution within few iterations. Here we discuss a modi�ed version of HPM based on least square approach,

and produce a residual based error analysis. Numerically it is observed that the modi�ed HPM is leading to a better accuracy

of the solution, compared to HPM. In particular, numerical experiments suggest that the modi�ed approach also requires less

number of iterations compared to HPM.

4. Solution Approximation

To de�ne the procedure of �nding an approximated solution, let us reformulate the model (7) to the following form

Lu �Ru � f �x�; for x > 
: (23)

Here L de�nes a linear fractional order di�erential operator, R de�nes a linear integral operator, f �x� is a su�ciently smooth

known function and L satis�es

Lv � 0; for v � 0: (24)

Now we construct a homotopy H�W;p� � F � �0;1�� R; denoted by H �� H�W;p� for W > F and p > �0;1�: Here F ��W �x; p�S�x; p� > 
 � �0;1�� de�nes a su�ciently smooth function space. We consider the homotopy H as

H�W;p� � �1 � p��L�W � � L�u0�� � p�L�W � �R�W � � f �x�� � 0; for x > 
: (25)

Here, p > �0;1� is an embedding parameter and u0 � u0�x� is an initial chosen approximation of the solution of (23) which can

be obtained by using the initial condition in (7) and L�u� � f �x�.
From �25�, note that p � 0 and p � 1 lead to

H�W;p�Sp�0 � L�W � � L�u0� and H�W;p�Sp�1 � L�W � �R�W � � f �x�: (26)

Therefore, from (24), we can say that W �x;0� � u0�x� and W �x;1� � u�x� are the solutions of the equation H�W;p�Sp�0 � 0
and H�W;p�Sp�1 � 0 respectively.

Now we can relate this approach in topological sense. In topology, it is possible to continuously deform one continuous

function, say W �x;0�, to another continuous function W �x;1� by means of homotopy. In the present case, we expect that the

initial approximation u0�x� will deform to the original solution u�x� when p tends from 0 to 1, i.e., W �x; p� approaches to the

solution u�x� from the initial approximation u0, see for e.g., [18].

Now, considering W �x; p� as a smooth function of p, we can write W �x; p� in the following series form of p:

W �x; p� � ª

Q
j�0

p
j
Wj�x�: (27)

We can obtain Wj�x� by substituting (27) in (25) and equating the powers of p: Therefore, we get the following relation¢̈̈̈̈̈
¦̈̈̈̈̈¤

W0�x� � u0�x� � n�1

Q
i�0

x i

i!

i � L�1f �x�;

Wj�x� � �L�1�RWj�1�; j C 1:
(28)

Now, if the series at (27) is uniformly convergent in p, then we can write

u�x� � lim
p�1�

W �x; p� � ª

Q
j�0

Wj�x�: (29)

The approximate solution �n�x� is de�ned by �n�x� � n�1

Q
j�0

Wj�x�:
Now we produce the convergence analysis of the above series in the next subsection.

4.1. Convergence Analysis

Here, we show that the series (27) and (29) are uniformly convergent.

Lemma 3 Let the function K�x; t� > C�
 �
� bounded by M�A 0� for all �x; t� > 
 �
 and f �x� > C�
�. In addition, assume

that the initial approximation u0 is continuous on 
 and 0 B � @ 1 in (11). Then, the series in (29) is uniformly convergent in 
.

8 Copyright © 2020 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2020, 00 1{17
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Proof: First, we prove absolute convergence of the series in (29) by producing a convergent geometric series as its upper bound.

By above assumptions u0 is continuous in 
, therefore there exist � A 0, such that Su0S B � for all x > 
. Using the stated

assumptions, we obtain the following estimates

SW0�x�S � Su0�x�S B �;SW1�x�S � SJ� S x

0

Sx � t S�K�x; t�W0�x�dt S B �M��1 � ��T 1����

��2 �� � �� � ��;

SW2�x�S � SJ� S x

0

Sx � t S�K�x; t�W1�x�dt S B �M���1 � ��T 1����

��2 �� � �� � ��
2
:

:

By induction, the j-th term of the series (29) satis�es

SWj�x�S B ��j
:

Therefore, for all x > 
;
ª

Q
j�0

SWj�x�S B ª

Q
j�0

��
j
:

For 0 @ � @ 1;
ª

Q
j�0

��
j
is a convergent geometric series. Therefore, by Weierstrass M-test, we conclude that

ª

Q
j�0

Wj�x� converges
uniformly on 
. Using the above Lemma 3, we can obtain the uniform convergence of the series in (27).

Theorem 7 For all p > �0;1�, the assumptions stated in Lemma 3 implies that the series (27) is uniformly convergent in 
. In

particular, an approximate solution of (7) can be obtained from (29).

Proof: For all p > �0;1� and for all x > 
; note that

ª

Q
j�0

p
j
Wj�x� B ª

Q
j�0

SWj�x�S:
Hence, by Lemma 3, the series

ª

Q
j�0

SWj�x�S converges uniformly on 
. Therefore, by Weierstrass M-test, we obtain the uniform

convergence of (27) on 
. Hence, we can write limp�1�W �x; p� � ª

Q
j�0

Wj�x�: Again, from (26), we have u�x� � limp�1�W �x; p�.
Now, by combining these estimates, we get an approximate solution of (7).

Note 8 Let
ª

Q
j�0

Wj�x� be the solution of (7). In practice, we only take a �nite number of terms of the series (29), say N terms,

to approximate the exact solution by a partial sum of (29). Note that the upper bound of the absolute error, based on this

partial sum will be given by ��N

1��
(see Lemma 3), where � is noted in Theorem 4 and � is de�ned in Lemma 3.

Remark 2 In addition, if � de�nes a tolerable error based on the partial sum up to N terms, then we can provide an upper bound

of N; which is

N C � ln���1 � ��~��
ln��� � � 1;

where 
x� de�nes the nearby least integer of x , � is mentioned in Theorem 4 and � is de�ned in Lemma 3.

4.2. Least square homotopy perturbation method

Now, we discuss a modi�ed version of HPM which can accelerate the convergence compared to the standard HPM. The method

is constructed by combing the HPM and least square method and known as least square homotopy perturbation method [4].

Here we observe that the modi�ed HPM provides less residual error compared to standard HPM. In addition, we also obtain an

estimate of the approximation error based on the residual error. First, we obtain the approximate solution �n�x� by taking a

�nite partial sum of (29). Let us assume that it contains m � 1 number of linearly independent functions �	n0;	n1;�;	nm� in

the vector space of continuous functions on �0; T �. Now, consider a set Sn �n � 1;2;�� which contains the linear combinations

of the functions �	n0;	n1;�;	nm� such that �n�x� can be written by a linear combination of these functions and Sn�1 b Sn.

For n C 0, let us assume ��n�x� � m

Q
k�0

C
k
n	nk be the approximate solution of (7) where Ck

n 's are unknown constants. Now, we

calculate the optimal value of the constants Ck
n by using least square residual minimization method. We do it by the following

algorithm:

Math. Meth. Appl. Sci. 2020, 00 1{17 Copyright © 2020 John Wiley & Sons, Ltd. 9
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(i) First, calculate the residual function by substituting ��n�x� at (23):
R�x; ��n�x�� � L��n�x� �R��n�x� � f �x�:

(ii) Now, Construct a functional

J�Ck
n � � S T

0

R
2�x; ��n�x��dx:

(iii) Minimize the functional de�ned in (ii) by computing Ck
n by solving the system of equations

@J

@Ck
n

� 0.

(iv) Use the calculated values Ck
n to obtain the approximate solution ��n�x�.

Lemma 4 Let ��n�x� be an approximation of (7). Then, it satis�es

lim
n�ª

S
T

0

R
2�x; ��n�x��dx � 0:

Proof: By the construction of ��n�x� we have

S
T

0

R
2�x; ��n�x��dx B S T

0

R
2�x;�n�x��dx:

Since, �n�x� is a convergent solution of (7), we have

lim
n�ª

S
T

0

R
2�x;�n�x��dx � 0:

Therefore,

0 B lim
n�ª

S
T

0

R
2�x; ��n�x��dx B lim

n�ª
S

T

0

R
2�x;�n�x��dx � 0:

This implies that the desired result holds true.

Error Analysis

By Lemma 4, for a given � A 0, there exists N > N such that whenever n A N; n > N, it follows that S�R�x; ��n�x��S @ �. This
implies WD� ��n�x� � f �x� � S x

0

�x � t���K�x; t���n�t�dtW @ �:
For x A t, the integral operator is monotonically increasing. Hence, from the above equation, we get

W��n�x� � h�x� � J��S x

0

�x � t���K�x; t���n�t�dt	W @ J���� B �1 say; (30)

where �1 �
�T �

��� � 1� : Let u�x� be the solution of the model equation (7). Then from equation (13) and (30), we have for all

x > �0; T � W���n�x� � u�x�� � � 1

���� S x

0

�x � s���1�S s

0

�s � r���K�s; r��u�r� � ��n�r��dr	ds�W @ �1
� Su�x� � ��n�x�S @ W 1

���� S x

0

�x � s���1�S s

0

�s � r���K�s; r��u�r� � ��n�r��dr	dsW � �1
� Su�x� � ��n�x�S @ �1 � M��1 � ��T 1����

��� � 2 � �� Yu � ��nY � �1 � �Yu � ��nY:
This implies Yu � ��nY @ �T �

��� � 1��1 � �� :
Also, we have

S
T

0

S�u�x� � ��n�x��S2dx B T Yu � ��nY2:
Error with respect to L2 norm is given by

Yu � ��nY2 Bº
T Yu � ��nY @ �T ��1~2

��� � 1��1 � �� :
10 Copyright © 2020 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2020, 00 1{17
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5. Computational Experiments

In this section, we produce several examples in favor of the convergence of the present method. These examples satisfy the

existence and uniqueness result from Theorem 4. Before going to the computation, we provide the key steps of HPM by the

following algorithm. This algorithm can be modi�ed for LSHPM appropriately.

5.1. Algorithm

Step 1. Fix � as an user chosen desired accuracy. Find N from Remark 2.

Step 2. Find Wj by ¢̈̈¦̈̈¤
W0�x� � u0�x�;
Wj�x� � �L�1�RWj�1�; j C 1:

for j � 0;1;�; n for some positive number n B N where L and R are de�ned in (23) and u0�x� is de�ned in (28).

Step 3. Consider �0�x� � 0. Now, compute the approximate solution by �j�x� � �j�1�x� �Wj�1�x� for j � 1;�; n � 1. �n�x� is

our desired approximate solution.

The mathematical model of Heat transfer problem is given by

@T �x; t�
@t

� A
@2T �x; t�

@2x
; x > �0;ª�; t A 0;

T �x;0� � 0; x > �0;ª�; (31)

with boundary conditions

K
@T �0; t�

@x
� H�T �0; t� � Tª�;

lim
x�ª

T �x; t� � 0; t A 0: (32)

Here, T �0; t� is the surface temperature, Tª is the temperature of surrounding medium, H is the convection coe�cient. We

assume thermal conductivity K and thermal di�usivity A are constant. The boundary condition

K
@T �0; t�

@x
� H�T �0; t� � Tª�

represents the heat 
ux across the surface, which is proportional to the temperature between the surface and surrounding medium.

Equation (31) can be written as an equivalent weakly singular integral form by using Fourier cosine transform. For more

details, see [14]. The solution of the equation (31) is given by

T �x; t� � ��S t

0

H�t � s��1~2�T �0; s� � Tª� � exp� �x2

4A�t � s��ds; (33)

where � �
1

K

¾
A

�
. If one evaluates the equation (33) by setting x � 0, the dimension of (33) would reduce. Therefore, at x � 0,

this equation can be written as:

T �t� � f �t� � �S t

0

H�t � s��1~2T �s�ds; (34)

where f �t� � �S t

0

HTª�t � s��1~2ds:
Here, T �t� � T �0; t� is the unknown surface temperature which can be easily obtained from (34). Since, T �xi ; t� only depends
on the surface temperature, we can obtain the temperature at any location of the domain from (33). In the following example,

we are interested to obtain the surface temperature of the environment by considering an equivalent fractional order weakly

singular integral equation.

Example 1 Consider: ¢̈̈¦̈̈¤ D
3

4 T �t� � f �t� � �S t

0

H�t � s��1~2T �s�ds; 0 @ t B 1;
T �0� � 0; (35)

where f �t� � �S t

0

HTª�t � s��1~2ds:
Math. Meth. Appl. Sci. 2020, 00 1{17 Copyright © 2020 John Wiley & Sons, Ltd. 11
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In our case, we will obtain the surface temperature for the given value of H � 1, � � 1 and Tª � 25XC. The exact solution

of Example 1 is unknown. The approximate solution of Example 1 is �n�t�, de�ned by �n1�t� � n1�1

Q
m�0

Wm�t�. Using the initial

condition and by equating the coe�cient of O�pj�, we obtain the following results

O�p0� � D3~4�W0�t�� � f �t� Ô� W0�t� � 25
º
�

��9~4� t5~4:
O�p1� � D3~4�W1�t�� � S t

0

�t � s��1~2W0�s�ds � 0 Ô� W1�t� � �40º�

3
t
5~2

:

Similarly, we can obtain the next terms of the series (29) by the relation

D
3~4�Wi�1�t�� � S t

0

�t � s��1~2Wi�s�ds � 0; for i � 1;2;�:
Now, we produce the absolute residual error Eªn1 �t� to show the e�ectiveness of our present method. It is de�ned as follows:

E
ª

n1
�t� � SD3~4��n1�t�� � S t

0

�t � s��1~2�n1�s�ds � f �t�S:
These errors are given at Table 1.

t Eª8 �t� Eª9 �t�
0.1 1.24345E-14 3.55271E-15

0.2 1.66125E-11 1.81188E-13

0.3 1.17317E-09 2.15081E-11

0.4 2.40557E-08 6.31999E-10

0.5 2.50480E-07 8.69788E-09

t Eª8 �t� Eª9 �t�
0.6 1.69893E-06 7.40958E-08

0.7 8.57271E-06 4.53334E-07

0.8 3.48364E-05 2.17683E-06

0.9 1.19987E-04 8.68692E-06

1 3.62734E-04 2.99582E-05

Table 1. Absolute residue errors of Example 1

Example 2 First, consider the Volterra integro-di�erential equation of arbitrary fractional order �:¢̈̈¦̈̈¤ D�u�x� � S x

0

u�t�dt; � > �0;1�; and x > �0;1�;
u�0� � 1: (36)

By considering L as the fractional operator at (25), we obtain the following relations by using initial condition and by equating

the coe�cient of O�pj�
O�p0� � L�W0�x�� � 0 Ô� W0�x� � u�0� � 1:
O�p1� � L�W1�x�� � S x

0

W0�t�dt � 0 Ô� W1�x� � x1��

��2 ��� ;
� � � � � �

O�pm� � L�Wm�x�� � S x

0

Wm�1�t�dt � 0 Ô� Wm�x� � xm�m�

��m � 1 �m�� :
Using the above terms, we can write from �29�

u�x� � 1 � x1��

��2��� �
x2�2�

��3�2�� �
x3�3�

��4�3�� ��� �
ª

Q
n�0

xn�1���

��n�1 ��� � 1�
� E�1����x1���;

where E��x� is the Mittag-Le�er function [19].

Example 3 Now, consider the following fractional problem with weakly singular kernel:¢̈̈¦̈̈¤ D
3

4 u�x� � f �x� � 1

20 S
x

0

�2 � 3x � 5t��x � t��1~2u�t�dt; 0 @ x B 1;
u�0� � 0; (37)

where f �x� � x1~4

��5~4� � ��9~2�
��15~4�x11~4 � 2x3~2

15
�

7x5~2

15
�

7�x4

256
�

105�x5

1024
:
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The exact solution of (37) is u�x� � x � x7~2. Now, we use HPM described in Section 4 to solve the above problem. Using (25),

the initial condition and equating the coe�cient of O�pj�, we obtain the following outcome

O�p0� � L�W0�x�� � f �x� � 0
�W0�x� � x � x7~2 � º

�x9~4

10��13~4� �
7
º
�x13~4

26��13~4� �
2�x19~4

627��9~4� �
105�x23~4

876��15~4� :

O�p1� � L�W1�x�� � 1

20 S
x

0

�2 � 3x � 5t��x � t��1~2W0�t�dt � 0
�W1�x� � � 32

º
�

175��6�x
7~2

�
32

º
�

35��6�x
9~2

�
568

º
�

495��6�x
11~2

�
7���5~2�
80��7� x6 �

17� ��5~2�
32��7� x7

�
333� ��9~2�
512��8� x8 �

º
�x9~4

10��13~4� �
7
º
�x13~4

26��13~4� �
2�x19~4

627��9~4� �
105�x23~4

876��15~4� :

Similarly, we obtain the next three terms W2�x�;W3�x�;W4�x� of (29). The approximate solution �n1�x� is de�ned by

�n1�x� � n1�1

Q
m�0

Wj�x�: Now, we produce the absolute error Erab�x� and the relative error (% ) Erre�x� to show the e�ectiveness

of our present method. These errors are de�ned as follows [5, 23]:

Erab�x� � Su�x� ��n1�x�S � Su�x� �Pn1�1
m�0

Wm�x�S and
Erre�x� � Tu�x�� n1�1

Q
m�0

Wm�x�T
Su�x�S � 100;

by taking the �rst 5 terms of the series �29�, i.e., n1 � 5. De�ne Ern1�x� � Erab�x�Sn1 : These errors are given at Table 2.

(a) First Subtable

x Erab�x� Erre�x�(%)

0.1 3.27044E-15 3.26013E-12

0.2 1.16559E-12 5.72552E-10

0.3 4.56740E-11 1.45094E-08

0.4 6.96185E-10 1.58052E-07

0.5 6.20180E-09 1.05403E-06

(b) Second Subtable

x Erab�x� Erre�x�(%)

0.6 3.89153E-08 5.07164E-06

0.7 1.90552E-07 1.93067E-05

0.8 7.75263E-07 6.16293E-05

0.9 2.73167E-06 1.71631E-04

1 8.58020E-06 4.29010E-04

Table 2. Absolute errors and relative errors for Example 3

Now, we produce the absolute residual error Erres�x� is de�ned as follows

Erres�x� � SL��n1�x�� �R��n1�x�� � f �x�S;
where L and R is de�ned in Section 4. For Example 3, it can be clearly seen from Figure 1 that the absolute residual errors are

converging to zero as the number of terms n1 in the approximate solution increases.

Note that, if we consider the absolute tolerable error � � :00001 at Remark 2, then we need at least 17 terms of the partial sum

for the desired accuracy for Example 3. However, Table 2 suggests n1 � 5 is su�cient for Example 3. It will be more bene�cial

to take the value n1 which is suggested in Remark 2 in the series of (29). In addition, we also produce the comparison of the

exact and approximate solutions in Figure 1 and their errors in Figure 2 to show the convergence behavior.
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Figure 1. Comparison of exact solution and approximate solution for Example 3
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Figure 2. Comparison of absolute maximum errors and absolute residual errors for Example 3 for di�erent values of n1

Example 4 Now, consider the following fractional problem with weakly singular kernel:¢̈̈¦̈̈¤ D
3

4 u�x� � 3x � 2x2 � 1

20 S
x

0

�5x � 3t��x � t��1~2u�t�dt; 0 @ x B 2;
u�0� � 1: (38)

The exact solution of (38) is unknown. Now, we use HPM described in Section 4 to solve the above problem. Using (25), the

initial condition and equating the coe�cient of O�pj�, we obtain the following outcome

O�p0� � L�W0�x�� � 3x � 2x2 � 0�W0�x� � 1 � 3x7~4

��11~4� �
4x11~4

��15~4� :

Similarly, we obtain the next terms of the series (29) by the relation

L�Wj�1�x�� � 1

20 S
x

0

�5x � 3t��x � t��1~2Wj�t�dt � 0:
The approximate solution �n�x� is de�ned by �n�x� � n�1

Q
m�0

Wj�x�:
We produce the error with respect to L2 norm over 
 � �0;2� as

E
2;HPM
n � �S 2

0

�u�x� ��n�x��2 dx�1~2 : (39)

Now, we use least square homotopy method de�ned in Subsection 4.2 to approximate the solution. For n � 1, the approximate

solution �1�x� is given by �1�x� � 1 � 3x7~4

��11~4� �
4x11~4

��15~4� : This implies that the set S1 contains the functions �1; x7~4; x11~4�;
which are linearly independent and continuous. Hence, for applying LSHPM, we construct the approximate solution ��1�x� as
��1�x� � A0 �A1x

7~4
�A2x

11~4, where A0; A1; A2 are unknown and obtained by residual minimization and given initial condition.

By initial condition, ��1�0� � 1, we get A0 � 1. Therefore, ��1�x� � 1 �A1x
7~4

�A2x
11~4. The residual error is

R�x; ��1�x�� � �1:60836A1 � 3�x � 0:3x3~2 � x2�2:21149A2 � 2� � 0:137633A1

x13~4 � 0:11132A2x
17~4:

Next, we compute the functional J�A1; A2� as
J�A1; A2� � S 2

0

R
2�x; ��1�x��dx:

The optimal value of A1; A2 are calculated by minimizing the functional J�A1; A2�. For minimization, we need to solve the

following system of equations
@J

@A1

� 0;
@J

@A2

� 0:

By solving the above system of equations, we obtain A1 � 2:31021 and A2 � 0:275744. Therefore, the approximate solution is

given by ��1�x� � 1 � 2:31021x7~4 � 0:275744x11~4. Similarly, we can obtain ��2 and ��3, ��4, etc. Now we produce the error with

respect to L2 norm over 
 � �0;2� as
E
2;LSHPM
n � �S 2

0

�u�x� � ��n�x��2 dx�1~2 : (40)

At Table 3, the comparison of HPM and LSHPM is given for the Example 4, which shows that the solution accuracy by

LSHPM method is better than standard HPM. In addition we also plot the errors based on di�erent methods at Figure 3 for

this example.
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x > �0;2� n E2;HPM
n E2;LSHPM

n

2 2.58973 6.13537E-03

3 2.16748E-01 1.51576E-05

4 1.27902E-02 2.00751E-06

Table 3. L2 norm based errors for Example 4
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Figure 3. Comparison of errors for Example 4 for di�erent values of n1

Example 5 Now, consider the following fractional problem with weakly singular kernel:¢̈̈¦̈̈¤ D
4

5 u�x� � 2x � 3x3~2 � 1

15 S
x

0

�x � 2t��x � t��3~5u�t�dt; 0 @ x B 2;
u�0� � 0: (41)

The exact solution of (38) is unknown. Now, we use HPM described in Section 4 to solve the above problem. Using (25), the

initial condition and equating the coe�cient of O�pj�, we obtain the following outcome

O�p0� � L�W0�x�� � 2x � 3x3~2 � 0�W0�x� � 25x9~5

18��4~5� �
9
º
�x23~10

4��33~10� :

Similarly, we obtain the next terms of the series (29) by the relation

L�Wj�1�x�� � 1

15 S
x

0

�x � 2t��x � t��3~5Wj�t�dt � 0:
The approximate solution �n�x� is de�ned by �n�x� � n�1

Q
m�0

Wj�x�:
We compute the error with respect to L2 norm over 
 � �0;2� as

E
2;HPM
n � �S 2

0

�u�x� ��n�x��2 dx�1~2 : (42)

Now, we use least square homotopy method de�ned in Subsection 4.2 to approximate the solution. For n � 1, the approximate

solution �1�x� is given by �1�x� � 25x9~5

18��4~5� � 9
º
�x23~10

4��33~10� : This implies that the set S1 contains the functions �x9~5; x23~10�;
which are linearly independent and continuous. Hence, for applying LSHPM, we construct the approximate solution ��1�x� as
��1�x� � A1x

9~5
�A2x

23~10, where A1; A2 are unknown and obtained by residual minimization. Since ��1�0� � 0, this implies the
approximate solution satis�ed the initial condition. The residual error is

R�x; ��1�x�� � �1:67649A1 � 2�x � x3~2�2:01862A2 � 3� � 0:28126A1x
16~5

�0:26486A2x
37~10:

Next, we compute the functional J�A1; A2� as
J�A1; A2� � S 2

0

R
2�x; ��1�x��dx:

The optimal values of A1; A2 are calculated by minimizing the functional J�A1; A2�. For minimization, we need to solve the

following system of equations
@J

@A1

� 0;
@J

@A2

� 0:
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By solving the above system of equations, we obtain A1 � 3:37741 and A2 � �0:760781. Therefore, the approximate solution

is given by ��1�x� � 3:37741x9~5 � 0:760781x23~10. Similarly, we can obtain ��2 and ��3, ��4, etc. Now we produce the error with

respect to L2 norm over 
 � �0;2� as
E
2;LSHPM
n � �S 2

0

�u�x� � ��n�x��2 dx�1~2 : (43)

At Table 4, the comparison of HPM and LSHPM is given for this example, which shows that the solution accuracy by LSHPM

method is better than standard HPM. We also plot the errors at Figure 4 based on di�erent methods.

x > �0;2� n E2;HPM
n E2;LSHPM

n

3 1.281937 7.46274E-04

4 1.64422E-01 1.03303E-05

5 1.66611E-02 2.30637E-07

Table 4. L2 norm based errors for Example 5
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Figure 4. Comparison of errors for Example 5 for di�erent values of n

6. Conclusions

Here, several su�cient conditions for the existence and uniqueness of the solutions of fractional order weakly singular Volterra

integro di�erential equations are derived based on maximum norm and weighted maximum norm. In addition, we have also

noted the restricted conditions if one proceeds with the usual approaches. Hence, we provide a suitable approach to extend

the existence and uniqueness of the solution which is de�ned throughout its domain of de�nition. In addition, an approximate

solution of this model is proposed based on HPM. We have theoretically shown that the proposed approach is convergent to

the exact solution. This approach can be enhanced by LSHPM, where the constants multiplied with the involving functions in

HPM, can be chosen optimally. It turns out that this approach produces comparatively less error than HPM in L2 norm. We

have theoretically estimate an error bound based on LSHPM. Several experiments are produced which observe that the modi�ed

optimized method LSHPM is computationally e�ective than HPM for weakly singular fractional order Volterra integro di�erential

equations.
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