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Abstract: In this paper, a class of nonautonomous SEIRS epidemic

models with vaccination and nonlinear incidence is investigated. Under

some quite weak assumptions, a couple of new threshold values in the

form of integral, i.e., R1, R
∗
1, R2 andR∗

2 on the extinction and permanence

of disease for the model are established. As special cases of our model, the

autonomous, periodic and almost periodic circumstances are discussed

respectively. The nearly necessary and sufficient criteria of threshold on

the extinction and permanence of disease for above cases are obtained as

well. Numerical examples and simulations are presented to illustrate the

analytic results.
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1. Introduction

As well known, mathematical models reflected in population dynamics of diseases have

played a increasingly critical role in the theory of epidemiology. Therein, the susceptible-

exposed-infected-removed compartmental models (SEIR models for short) with incubation
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of disease are especially classical for their accurate partition of the total population in-

to four compartments, i.e., susceptible (S), exposed (E), infected (I) and removed (R),

respectively. Recently, quite a number of significant works about SEIR models have

been achieved. The key issues are: calculation of basic reproduction number, stability

of disease-free equilibrium, extinction of disease, existence and stability of endemic e-

quilibrium, persistence of disease, and existence and stability of bifurcation phenomena

(see, e.g., [2, 3, 4, 5, 12, 14, 16, 17, 18, 19, 21] and references cited therein) etc. In ad-

dition, we see that the SEIR models have been successfully applied to investigate and

forecast the dynamical behaviors of many fatal infectious disease in reality, e.g., Ebola,

Zika, measles (see [13, 15, 20, 22, 23, 24, 25, 29, 40]) etc. For some diseases, e.g., in-

fluenza, when the removed individual is not perpetual immune for the disease, then the

removed will afresh return to the susceptible as immune system loses its efficacy. There-

fore, SEIRS epidemic model is further developed to characterize such diseases. Presently,

we see that there is quite a few works on the autonomous SEIRS epidemic models (See

[26, 27, 28, 31, 33, 36, 37, 38, 41, 42] and the references cited therein).

Obviously, the nonautonomous phenomena are very prevalent in our real life, e.g., the

seasonal alternations, climatic variation etc. As results of these variable factors, many

parameters in above epidemic models, e.g., the recruitment of susceptible, transmission of

the disease, natural birth and death rates, mortality rate due to disease, remove rate etc.,

are fluctuant as time t. Therefore, nonautonomous epidemic models are more consistent

with the real environment, and more realistic to model the dynamics of disease. However,

up to now, to our best knowledge, there is very few research on the periodic and general

nonautonomous SEIRS type epidemic models (See [1, 7, 10, 11, 30, 32, 34, 35, 39]).

Particularly, in [7], Zhang and Teng studied a nonautonomous SEIRS epidemic model.

By a new technique of analysis, some new sufficient conditions for the permanence and

extinction of disease were established. In [30], the authors investigated a periodic SEIRS

epidemic model with a time-dependent latent period. The basic reproduction number

R0 was calculated, and the threshold type results on the global dynamics in the term

of R0 were established. In [34], a non-autonomous SEIRS model with general incidence

rate was considered. The sufficient conditions for the extinction and strong persistence

of the infectives were obtained, and as some special cases, including autonomous and

periodic circumstances, were discussed as well. In [35], the permanence and extinction

for a nonautonomous SEIRS epidemic model with bilinear incidence were investigated.

A novel and interesting method was introduced, by which the sufficient conditions were

established.

In [10], the author studied the following SEIRS epidemic model with periodic vacci-
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nation and transmission rates:

dS(t)

dt
= µN(1− p)− β(t)S(t)I(t)− (µ+ r(t))S(t) + δR(t),

dE(t)

dt
= β(t)S(t)I(t)− (µ+ σ)E(t),

dI(t)

dt
= σE(t)− (µ+ γ)I(t),

dR(t)

dt
= µNp+ r(t)S(t) + γI(t)− (µ+ δ)R(t),

(1)

where β(t) and r(t) denote the vaccination and transmission rates, respectively, which

are continuous positive periodic functions with common period ω > 0. All the other

parameters are positive constants. The basic reproduction ratio R0 was calculated by the

method given by Wang and Zhao in [6]. The authors showed that the global dynamics

of model (1) is completely determined by the basic reproduction ratio R0. That is,

when R0 < 1 then the disease-free periodic solution is globally asymptotically stable

by the comparison principle of differential equations, and when R0 > 1 then the disease

is permanent by the theory of persistence in dynamical systems.

In this paper, we consider the following general nonautonomous SEIRS model with

vaccination and nonlinear incidence

dS(t)

dt
= Λ(t)(1− p(t))− β(t)f(S(t), I(t))− (µ(t) + r(t))S(t) + δ(t)R(t),

dE(t)

dt
= β(t)f(S(t), I(t))− (µ(t) + σ(t))E(t),

dI(t)

dt
= σ(t)E(t)− (µ(t) + γ(t))I(t),

dR(t)

dt
= Λ(t)p(t) + r(t)S(t) + γ(t)I(t)− (µ(t) + δ(t))R(t),

(2)

where S(t), E(t), I(t) and R(t) denote the susceptible, the exposed, the infectious and

the recovered population at time t, respectively. Λ(t) denotes the recruitment rate of

the susceptible at time t. β(t) is the transmission rate of the disease at time t. p(t)

is the vaccination rate of all new-born children at time t. r(t) is the vaccination rate

of the susceptible population at time t. µ(t) is the common per capita birth and death

rate at time t. σ(t), γ(t) and δ(t) are the per capita rates of leaving the latent stage,

infected stage and recovered stage at time t, respectively. Function f(S, I) is called the

incidence rate, which is defined in R2
+ = {(S, I) : S ≥ 0, I ≥ 0} and is nonnegative and

continuous. It is assumed that all parameters Λ(t), β(t), p(t), r(t) µ(t), δ(t), σ(t) and

γ(t) are continuous and nonnegative functions and 0 6 p(t) 6 1 for all t > 0.

Our purpose in this paper is to investigate the global dynamical behaviors of model

(2). By developing the technique of analysis given in [8, 9, 11], we will establish some new
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threshold conditions of integral form for the extinction and permanence of disease of model

(2). Furthermore, as the consequences of these results, we will discuss the autonomous,

periodic and almost periodic cases of model (2), and establish the nearly necessary and

sufficient threshold criteria on the extinction and permanence of disease for these models

as well.

This paper is organized as follows. In section 2, we introduce main assumptions for

model (2) and some preliminary lemmas which will be used in the statements and proofs

of main results. In section 3, the sufficient condition of integral form for the extinction

of disease for model (2) is stated and proved. In section 4, the sufficient condition of

integral form for the permanence of disease for model (2) is stated and proved. In section

5, the autonomous, periodic and almost periodic cases of model (2) is discussed and the

threshold conditions for the extinction and permanence of disease are stated and proved.

In section 6, the theoretical results are illustrated by some special examples and numerical

simulations. Finally, a conclusion is given in section 7.

2. Preliminaries

For model (2), we always assume that the following conditions hold.

(H1) Functions Λ(t), µ(t), p(t), β(t), γ(t), r(t), σ(t) and δ(t) are nonnegative, bounded

and continuous on R+ = [0,+∞).

(H2) There exist constants ωi > 0 (i = 1, 2, 3) such that

lim inf
t→+∞

∫ t+ω1

t

β(s)ds > 0, lim inf
t→+∞

∫ t+ω2

t

µ(s)ds > 0, lim inf
t→+∞

∫ t+ω3

t

Λ(s)ds > 0.

(H3) Function f(S, I) is continuously differentiable for (S, I) ∈ R2
+ and nondecreasing

for S ≥ 0, f(S,I)
I

is nonincreasing for I > 0, f(S, 0) = f(0, I) ≡ 0 for S ≥ 0 and I ≥ 0,

respectively.

Let f(t) be a continuous and nonnegative function defined on R+. We define f+ =

supt≥0 f(t) and f− = inft≥0 f(t). Furthermore, if f(t) also is periodic with period ω > 0,

we denote by f̄ the average value of f(t), that is f̄ = 1
ω

∫ ω

0
f(t)dt, and if f(t) also is almost

periodic, we denote by m(f) the average value of f(t), that is m(f) = limt→∞
1
t

∫ t

0
f(s)ds

(see [18]) .

Remark 1. When model (2) degenerates into ω−periodic model, that is, all coeffi-

cients Λ(t), µ(t), p(t), β(t), γ(t), r(t), σ(t) and δ(t) are ω− periodic, then (H2) degenerates

into the following form

β̄ > 0, µ̄ > 0, Λ̄ > 0.

Remark 2. When model (2) degenerates into almost periodic model, that is, all

coefficients Λ(t), µ(t), p(t), β(t), γ(t), r(t), σ(t) and δ(t) are almost periodic, then (H2)
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degenerates into the following form

m(β) > 0, m(µ) > 0, m(Λ) > 0.

Remark 3. When f(S, I) = SI (bilinear incidence), f(S, I) = SI
(1+α1S)(1+α2I)

(satu-

rated incidence), f(S, I) = SI
1+α1S+α2I

(Beddington-DeAngelis incidence), and f(S, I) =
SI

1+α1I2
(non-monotonous incidence), where α1 ≥ 0 and α2 ≥ 0 are constants, then as-

sumption (H3) is satisfied.

By the biological background of model (2), for any solution (S(t), E(t), I(t), R(t)) of

model (2) the initial condition is given by

S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0 > 0. (3)

Firstly, on the nonnegativity and boundedness of solution (S(t), E(t), I(t), R(t)) of

model (2) we have the following results.

Lemma 1. Assume that (H1)− (H3) hold. Then for any solution (S(t), E(t), I(t),

R(t)) of model (2) with initial condition (3) we have:

(a) (S(t), E(t), I(t), R(t)) is positive for all t ∈ R+.

(b) limt→∞(S(t) + E(t) + I(t) + R(t) − z0(t)) = 0, where z0(t) is the solution of the

following equation
dz(t)

dt
= Λ(t)− µ(t)z(t) (4)

with initial condition z(0) = z0 > 0.

(c) There exists a constant M0 > 0 which is independent any solution (S(t), E(t), I(t),

R(t)) of model (2) such that

lim sup
t→∞

S(t) < M0, lim sup
t→∞

E(t) < M0, lim sup
t→∞

I(t) < M0, lim sup
t→∞

R(t) < M0.

Proof: Let the solution (S(t), E(t), I(t), R(t)) is defined on interval [0, t0), where

t0 ≤ +∞. We firstly prove that (S(t), E(t), I(t), R(t)) is positive for t ∈ [0, t0). Let

m(t) = min{S(t), E(t), I(t), R(t)}, then m(t) is continuous for t ∈ [0, t0), and m(0) =

min{S0, E0, I0, R0} > 0. Suppose that there is a t̄ ∈ (0, t0) such that m(t̄) = 0, and

m(t) > 0 for all t ∈ [0, t̄). Then, we have the following four case: (1) m(t̄) = S(t̄) = 0,

(2) m(t̄) = E(t̄) = 0, (3) m(t̄) = I(t̄) = 0, (4) m(t̄) = R(t̄) = 0. If case (1) occurs, then

from the first equation of model (2) we obtain

dS(t)

dt
≥ −(β(t)

f(S(t), I(t))

S(t)
+ µ(t) + γ(t))S(t), t ∈ [0, t̄).

Since S(t) > 0 for all t ∈ [0, t̄), S(t̄) = 0 and limS→0
f(S,I)

S
= ∂f(0,I)

∂S
exists, we obtain that

f(S(t),I(t))
S(t)

is defined for all t ∈ [0, t̄] and also is continuous. Consequently,

S(t) ≥ S0 exp(−
∫ t

0

(β(s)
f(S(s), I(s))

S(s)
+ µ(s) + γ(s))ds), t ∈ [0, t̄].
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From this, we further obtain S(t̄) > 0, which leads to a contradiction. Hence, case (1)

does not occur. Similarly, we also can obtain that cases (2), (3) and (4) do not occur.

Therefore, (S(t), E(t), I(t), R(t)) is positive for all t ∈ [0, t0).

Next, we prove that (S(t), E(t), I(t), R(t)) is bounded on [0, t0). Let N(t) = S(t) +

E(t) + I(t) +R(t), then from model (2) we have

dN(t)

dt
= Λ(t)− µ(t)N(t).

Consider the auxiliary equation (4), from assumptions (H1) and (H2), and [8, 9], we can

obtain that for any initial value z(0) = z0 ≥ 0, equation (4) has a unique positive solution

z0(t) defined for t ∈ [0,∞), z0(t) also is bounded on [0,∞), and z0(t) is globally uniformly

attractive. Thus, for any positive solution z(t) of equation (4) one has

lim
t→∞

(z(t)− z0(t)) = 0. (5)

From this, there is a constant M0 > 0, and M0 is independent of any positive solutions of

equation (4), such that

lim sup
t→∞

z(t) ≤ M0. (6)

Therefore, for N(t) = S(t) + E(t) + I(t) + R(t), from N(t) = z(t) with N(0) = z(0) for

all t ∈ [0, t0) and (6) we obtain that (S(t), E(t), I(t), R(t)) is bounded on [0, t0).

By the continuation theorem, we further have t0 = ∞, i.e., (S(t), E(t), I(t), R(t))

is defined on [0,∞) and also is positive. Furthermore, from (5) and (6) we also have

conclusions (b) and (c) of the lemma. This completes the proof.

From conclusion (b) of Lemma 1, without loss of generality, we can assume that for

any solution (S(t), E(t), I(t), R(t)) of model (2) with initial condition (3), S(t) + E(t) +

I(t)+R(t) ≡ z0(t) for all t ∈ R+, where u0(t) is a fixed solution of equation (4) with initial

value z(0) = z0 > 0. Thus, model (2) can be equivalent to the following three-dimensional

model: 

dS(t)

dt
= Λ(t)(1− p(t))− β(t)f(S(t), I(t))− (µ(t) + r(t))S(t)

+δ(t)(z0(t)− S(t)− E(t)− I(t)),

dE(t)

dt
= β(t)f(S(t), I(t))− (µ(t) + σ(t))E(t),

dI(t)

dt
= σ(t)E(t)− (µ(t) + γ(t))I(t),

(7)

and the initial condition (3) for model (7) becomes into

S(0) > 0, E(0) > 0, I(0) > 0. (8)
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Next, we consider the following linear equation

du(t)

dt
= Λ(t)(1− p(t)) + δ(t)z0(t)− (µ(t) + r(t) + δ(t))u(t). (9)

Directly from [8, 9], we have the result as follows.

Lemma 2. Assume that (H1)− (H3) hold. Then we have

(a) There are constants M1 > m1 > 0 such that for any solution u(t) of equation (9)

with initial value u(0) = u0 ≥ 0, one has m1 < lim inft→∞ u(t) ≤ lim supt→∞ u(t) < M1;

(b) Each fixed solution u∗(t) of equation (9) with initial value u∗(0) > 0 is globally

uniformly attractive on R+.

Lemma 2 indicates that model (7) has the disease-free equilibrium state (u∗(t), 0, 0).

Further, we easily verify that model (2) has the disease-free equilibrium state (u∗(t), 0, 0,

z0(t)− u∗(t)).

Further, we consider linear equation as follows

dv(t)

dt
= Λ(t)(1− p(t)) + δ(t)z0(t)− (µ(t) + r(t) + δ(t))v(t)

−ε1(β
+∂f(M0, 0)

∂I
+ 2δ+ + δ+β+∂f(M0, 0)

∂I
ω2),

(10)

where constant M0 is given in conclusion (c) of Lemma 1. Let u(t) and v(t) be the

solutions of equations (9) and (10) with initial values u(0) = v(0) = v0 > 0, respectively.

Directly from [8, 9], we have the following result.

Lemma 3. Assume that (H1) − (H3) hold. Then there is a constant B > 0 only

dependent on µ(t) + r(t) + δ(t) such that

sup
t≥0

|u(t)− v(t)| ≤ Bε1(β
+∂f(M0, 0)

∂I
+ 2δ+ + δ+β+∂f(M0, 0)

∂I
ω2).

Let (S(t), E(t), I(t)) be any solution of model (7) with initial condition (8), and u∗(t)

be the fixed solution of equation (9) with initial value u∗(0) > 0. For constant q > 0 we

define

G(q, t) = β(t)
∂f(u∗(t), 0)

∂I
q + γ(t)− (1 +

1

q
)σ(t), W (q, t) = qE(t)− I(t).

We have the following result.

Lemma 4. Assume that (H1) − (H3) hold. If there is constant q > 0 such that

lim supt→∞ G(q, t) < 0, then there is a T̄ > 0 such that either W (q, t) > 0 for all t ≥ T̄ or

W (q, t) ≤ 0 for all t ≥ T̄ .

Proof. Firstly, from conclusion (a) of Lemma 2, there are constants M2 > m2 > 0

such that

m2 < u∗(t) < M2 for all t ≥ 0.
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Next, from assumption (H3) we have that
∂f(S,0)

∂I
is uniformly continuous for S ∈ [0, 2M2].

From this, by lim supt→∞G(q, t) < 0, there are constants ε0 > 0 and T0 > 0 such that

β(t)
∂f(u∗(t) + ε0, 0)

∂I
q + γ(t)− (1 +

1

q
)σ(t) < −ε0 (11)

for all t ≥ T0. Furthermore, from model (7) we have

dS(t)

dt
≤ Λ(t)(1− p(t)) + δ(t)z0(t)− (µ(t) + r(t) + δ(t))S(t)

for all t ≥ 0. From the comparison principle and conclusion (b) of Lemma 2, there is a

constant T1 ≥ T0 such that

S(t) < u∗(t) + ε0 for all t ≥ T1.

Suppose that there does not exist such T̄ , then there exist two increasing time se-

quences tn and sn satisfying following properties: limn→∞ tn = ∞, 0 < tn < sn for any

positive integer n, W (q, tn) = 0, dW (q,tn)
dt

≥ 0, W (q, t) > 0 for all t ∈
∪∞

n=1(tn, sn) and

W (q, t) ≤ 0 for all t /∈
∪∞

n=1(tn, sn). Hence, we have

qE(tn) = I(tn) (12)

and by assumption (H3) when tn > T1

dW (q, tn)

dt
= q

dE(tn)

dt
− dI(tn)

dt
= q{β(tn)f(S(tn), I(tn))− (µ(tn) + σ(tn))E(tn)}

−{σ(tn)E(tn)− (µ(tn) + γ(tn))I(tn)}

≤ I(tn){β(tn)
∂f(u∗(tn) + ε0, 0)

∂I
q + (µ(tn) + γ(tn))}

−qE(tn){(µ(tn) + σ(tn)) +
1

q
σ(tn)}

(13)

Substituting (12) into (13) we obtain

qE(tn){β(tn)
∂f(u∗(tn) + ε0, 0)

∂I
q + γ(tn)− (1 +

1

q
)σ(tn)} ≥ 0.

We have E(tn) > 0 by conclusion (a) of Lemma 1, and hence,

β(tn)
∂f(u∗(tn) + ε0, 0)

∂I
q + γ(tn)− (1 +

1

q
)σ(tn) ≥ 0

for all tn > T1, which is a contradiction with (11). This completes the proof.
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3. Extinction of disease

Theorem 1. Assume that (H1)− (H3) hold. If there are constants λ > 0 and q > 0

such that lim supt→∞ G(q, t) < 0,

R1(λ, q) = lim sup
t→+∞

∫ t+λ

t

{β(s)∂f(u
∗(s), 0)

∂I
q − (µ(s) + σ(s))}ds < 0 (14)

and

R∗
1(λ, q) = lim sup

t→+∞

∫ t+λ

t

{σ(s)1
q
− (µ(s) + γ(s))}ds < 0, (15)

then the disease-free equilibrium (u∗(t), 0, 0) in model (7) is globally attractive.

Proof. From Lemma 4, we only need to consider the following two cases:

(i) qE(t) > I(t) for all t ≥ T̄ .

(ii) qE(t) ≤ I(t) for all t ≥ T̄ .

Firstly, we consider case (i). From (14), assumptions (H1) and (H2), and the uniform

continuity of ∂f(S,0)
∂I

for S ∈ [0, 2M2], there exist constants ε0 > 0, δ1 > 0 and T1 > T̄ such

that ∫ t+λ

t

[β(s)
∂f(u∗(s) + ε0, 0)

∂I
q − (µ(s) + σ(s))]ds < −δ1 (16)

for all t ≥ T1. For any solution (S(t), E(t), I(t)) of model (7) with initial condition (8),

since
dS(t)

dt
≤ Λ(t)(1− q(t)) + δ(t)z0(t)− (µ(t) + r(t) + δ(t))S(t)

for all t ≥ 0, by the comparison theorem of differential equations and conclusion (b) of

Lemma 2, there is a T2 ≥ T1 such that S(t) ≤ u∗(t) + ε0 for all t ≥ T2.

From assumption (H3) and the second equation of model (7), we have

dE(t)

dt
≤ β(t)

∂f(u∗(t) + ε0, 0)

∂I
I(t)− (µ(t) + σ(t))E(t),

≤ E(t)[β(t)
∂f(u∗(t) + ε0, 0)

∂I
q − (µ(t) + σ(t))]

(17)

for all t ≥ T2. Integrating (17) for any t ≥ T2, then

E(t) ≤ E(T2) exp
( ∫ t

T2

[β(s)
∂f(u∗(t) + ε0, 0)

∂I
q − (µ(s) + σ(s))]ds

)
.

From (16), we directly obtain limt→+∞ E(t) = 0. Then, from qE(t) > I(t) for all t ≥ T̄ ,

it follows limt→+∞ I(t) = 0.

Next, consider case (ii). Since we have E(t) ≤ I(t)
q

for all t ≥ T̄ , from the third

equation of model (7) it follows

dI(t)

dt
6 I(t){σ(t)1

q
− (µ(t) + γ(t))} (18)
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Integrating (18) for any t ≥ T̄ , then

I(t) 6 I(T̄ ) exp
( ∫ t

T̄

{σ(s)1
q
− (µ(s) + γ(s))}ds

)
.

From (15), we can easily obtain limt→+∞ I(t) = 0. Then, from E(t) ≤ I(t)
q

for all t ≥ T̄ ,

it follows limt→+∞ E(t) = 0.

Thus, for any small enough ε > 0, there is a T > T̄ such that E(t) < ε and I(t) < ε

for all t ≥ T . Then, we have

dS(t)

dt
≤ Λ(t)(1− q(t)) + δ(t)z0(t)− (µ(t) + r(t) + δ(t))S(t)

for all t ≥ 0, and by assumption (H3)

dS(t)

dt
≥ Λ(t)(1− q(t)) + δ(t)z0(t)− (µ(t) + r(t) + δ(t))S(t)− (β(t)

∂f(M0, 0)

∂I
+ 2δ(t))ε

for all t ≥ T . Let u(t) be the solution of equation (9) with initial value u(T ) = S(T ). We

have u(t) ≥ S(t) for all t ≥ T . Let v(t) = u(t)− S(t), then we have u(t) ≥ 0 for all t ≥ 0

and
dv(t)

dt
≤ −(µ(t) + r(t) + δ(t))v(t) + (β(t)

∂f(M0, 0)

∂I
+ 2δ(t))ε

≤ −µ(t)v(t) + (β+ ∂f(M0,0)
∂I

+ 2δ+)ε

for all t ≥ T . Hence,

v(t) ≤ v(T )e−
∫ t
T µ(s)ds + ε(β+∂f(M0, 0)

∂I
+ 2δ+)

∫ t

T

e−
∫ t
s µ(τ)dτds

for all t ≥ T . From assumption (H2), we easily obtain that there exist constants α > 0

and H ≥ 0 such that for any t2 ≥ t1 ≥ 0 one has
∫ t2
t1

µ(s)ds ≥ α(t2 − t1)−H. Therefore,

we further obtain

u(t) ≥ S(t) ≥ u(t)− v(T )e−α(t−T )+H −
ε(β+ ∂f(M0,0)

∂I
+ 2δ+)

α
eH

for all t ≥ T . Taking t → ∞, and by the arbitrariness of ε we can obtain limt→∞(S(t)−
u(t)) = 0. Finally, from conclusion (b) of Lemma 2 we further have limt→∞(S(t)−u∗(t)) =

0. This shows that disease-free equilibrium state (u∗(t), 0, 0) is globally attractive. This

completes the proof.

4. Permanence of disease

Theorem 2. Assume that (H1) − (H3) hold. If there exist constants λ > 0 and

q > 0 such that lim supt→∞ G(q, t) < 0,

R2(λ, q) = lim inf
t→+∞

∫ t+λ

t

{β(s)∂f(u
∗(s), 0)

∂I
q − (µ(s) + σ(s))}ds > 0 (19)

10



and

R∗
2(λ, q) = lim inf

t→+∞

∫ t+λ

t

{σ(s)1
q
− (µ(s) + γ(s))}ds > 0, (20)

then infected I in model (7) is permanent.

In order to prove Theorem 2, we firstly introduce the following lemma.

Lemma 5. Assume that (H1)− (H3) hold. If there exist constants λ > 0 and q > 0

such that condition (20) holds and lim supt→∞ G(q, t) < 0, then W (q, t) ≤ 0 for all t ≥ T̄ ,

where T̄ is given as in Lemma 4.

Proof. From Lemma 4 we have only two cases: W (q, t) > 0 for all t ≥ T̄ orW (q, t) ≤ 0

for all t ≥ T̄ . Suppose that W (q, t) > 0 for all t ≥ T̄ . Then, we have E(t) > I(t)
q

for all

t ≥ T̄ . It follows from the third equation of model (7) that

dI(t)

dt
> I(t){σ(t)1

q
− (µ(t) + γ(t))} = I(t){σ(t)1

q
− (µ(t) + γ(t))} (21)

for all t ≥ T̄ . Integrating (21) for t ≥ T̄ we have

I(t) > I(T̄ ) exp

(∫ t

T̄

{σ(s)1
q
− (µ(s) + γ(s))}ds

)
(22)

for all t ≥ T̄ . From condition (20), there exist positive constants η > 0 and T ∗ > 0 such

that ∫ t+λ

t

{σ(s)1
q
− (µ(s) + γ(s))}ds > η (23)

for all t ≥ T ∗. Since inequality (22) holds for all t ≥ max{T̄ , T ∗}, it follows from (23) that

limt→+∞ I(t) = +∞. This contradicts with the boundedness of I, stated in conclusion (c)

of Lemma 1. This completes the proof.

Proof of Theorem 2. Firstly, from the uniform continuity of ∂f(S,0)
∂I

for S ∈ [0, 2M2]

and inequality (19), there are constants ε̄ > 0, η0 > 0 and T0 > 0 such that m2 − ε̄ > 0

and for all t ≥ T0∫ t+λ

t

(β(s)(
∂f(u∗(s)− ε̄, 0)

∂I
− ε̄)q − (µ(s) + σ(s)))ds ≥ η0. (24)

Since limI→0
f(S,I)

I
= ∂f(S,0)

∂I
uniformly for S ∈ [0, 2M2], we have limI→0

f(u∗(t)−ε̄,I)
I

=
∂f(u∗(t)−ε̄,0)

∂I
uniformly for t ≥ T0. Hence, there is an I0 > 0 such that f(u∗(t)−ε̄,I)

I
≥

∂f(u∗(t)−ε̄,0)
∂I

− ε̄ for all t ≥ T0 and I ∈ (0, I0].

For any v0 ∈ R+ and t0 ∈ R+, let u(t) and v(t) be the solutions of equations (9) and

(10) with initial value u(t0) = v(t0) = v0, respectively. By Lemma 3, there is a constant

B > 0 which is only dependent on µ(t) + r(t) + δ(t) such that

|v(t)− u(t)| ≤ B(β+∂f(M0, 0)

∂I
+ δ+(2 + β+∂f(M0, 0)

∂I
)ω2)ε1

11



for all t ≥ t0. Therefore, for the above ε̄ > 0 there is a ε1 > 0 such that

|v(t)− u(t)| < 1

2
ε̄ for all t ≥ t0. (25)

Since u∗(t) is globally uniformly attractive from Lemma 2, then there is a T1 > 0 which

is independent of any t0 ∈ R+ and v0 ∈ [0,M0] such that

|u(t)− u∗(t)| < 1

2
ε̄ for all t ≥ t0 + T1. (26)

Further, for above ε1 > 0 we can choose constants ε2 > 0 and T2 ≥ T0 with ε2 <

min{ε1, I0} such that for all t ≥ T2∫ t+ω2

t

(β(s)
∂f(M0, 0)

∂I
ε2 − (µ(s) + σ(s))ε1)ds < −η0. (27)

Let (S(t), E(t), I(t)) be any solution of model (7) with initial condition (8). By the

conclusion (c) of Lemma 1, there is a constant T3 > T2 such that S(t) ≤ M0, E(t) ≤ M0

and I(t) ≤ M0 for all t ≥ T3. By Lemma 5, there is a constant T4 > T3 such that

W (q, t) ≤ 0 for all t ≥ T4. (28)

We firstly prove lim supt→∞ I(t) ≥ ε2. Suppose that this conclusion is not true, then

there is a T5 > T4 such that I(t) < ε2 for all t ≥ T5. Suppose that E(t) ≥ ε1 for all t ≥ T5,

then we have

E(t) = E(T5) +

∫ t

T5

[β(s)f(S(s), I(s))− (µ(s) + σ(s))E(s)]ds

6 E(T5) +

∫ t

T5

[β(s)
∂f(M0, 0)

∂I
ϵ2 − (µ(s) + σ(s))ϵ1]ds

for all t > T5. Thus, from (27), we have limt→∞E(t) = −∞, which contradicts with

conclusion (a) of Lemma 1. Therefore, there exists an s1 ≥ T5 such that E(s1) < ε1.

Suppose that there exists an s2 > s1 such that E(s2) > ε1 + β+ ∂f(M0,0)
∂I

ω2ε2. Then, there

exists an s3 ∈ (s1, s2) such that E(s3) = ε1 and E(t) > ε1 for all t ∈ (s3, s2]. Let n be an

integer such that s2 ∈ [s3 + nω2, s3 + (n+ 1)ω2]. Then, from (27) we have

ε1 + β+M0ω2ε2 < E(s2) = E(s3) +

∫ s2

s3

[β(s)f(S(s), I(s))− (µ(s) + σ(s))E(s)]ds

< ε1 + (

∫ s3+nω2

s3

+

∫ s2

s3+nω2

)[β(s)
∂f(M0, 0)

∂I
ε2 − (µ(s) + σ(s))ε1]ds

< ε1 +

∫ s2

s3+nω2

β(s)
∂f(M0, 0)

∂I
ε2ds

< ε1 + β+∂f(M0, 0)

∂I
ε2ω2

12



which is a contradiction. Therefore, we have that

E(t) 6 ε1 + β+∂f(M0, 0)

∂I
ω2ε2 (29)

for all t ≥ s1. Since for all t ≥ s1

dS(t)

dt
≥ Λ(t)(1− q(t)) + δ(t)u0(t)− (µ(t) + r(t) + σ(t))S(t)

−(β+ ∂f(M0,0)
∂I

+ δ+(2 + β+ ∂f(M0,0)
∂I

)ω2)ε1,

by the comparison theorem we have S(t) ≥ v(t) for all t ≥ s1, where v(t) is the solution

of equation (10) with initial value v(s1) = S(s1). Let v0 = S(s1), then v0 ∈ [0,M0]. From

the inequalities (25) and (26) we obtain for all t ≥ s1 + T1

S(t) ≥ v(t) ≥ u(t)− 1

2
ε̄ ≥ u∗(t)− ε̄. (30)

Since I(t) < ε2 < I0 for all t ≥ T5, from the second equation of model (7) and (28) we

obtain for all t ≥ T6 , s1 + T1

dE(t)

dt
≥ β(t)(

∂f(u∗(t)− ε̄, 0)

∂I
− ε̄)I(t)− (µ(t) + σ(t))E(t)

≥ [β(t)(
∂f(u∗(t)− ε̄, 0)

∂I
− ε̄)q − (µ(t) + σ(t))]E(t).

Integrating from T6 to any t > T6 we have

E(t) ≥ E(T6) exp
(∫ t

T6

[β(s)(
∂f(u∗(t)− ε̄, 0)

∂I
− ε̄)q − (µ(s) + σ(s))]ds

)
.

It follows from (24) that limt→∞ E(t) = +∞. This contradicts with the boundedness of

E(t) from Lemma 1. Therefore, we finally have lim supt→∞ I(t) > ϵ2.

Next, we prove that there is a constant l > 0, which is independent of any solution

(S(t), E(t), I(t)) of model (7), such that

lim inf
t→∞

I(t) > l. (31)

From inequalities (24), (27) and (H2), we can obtain that there exist constants P > 0

and η2 > 0 such that∫ t+P

t

[β(s)
∂f(M0, 0)

∂I
ϵ2 − (µ(s) + σ(s))ϵ1]ds < −M0 (32)

∫ t+P

t

[β(s)(
∂f(u∗(t)− ε̄, 0)

∂I
− ϵ̄)q − (µ(s) + σ(s))]ds > η2 (33)

13



and ∫ t+P

t

β(s)ds > η2 (34)

for all t ≥ 0. Let K > 0 be an integer satisfying

ε1 + β+∂f(M0, 0)

∂I
ω2ε2 ≤ e−(µ++σ+)Pη2

f(m,M0)

M0

v2e
Kη2 (35)

where v2 = ε2e
−(µ++γ+)(2P+T1) and m = m2 − ε̄. Since lim supt→+∞ I(t) > ε2, there are

only two possibilities as follows:

(i) lim inft→∞ I(t) ≥ ε2.

(ii) I(t) oscillates about ε2 for large t.

In case (i), we directly have inequality (31) with l = ε2. Consider case (ii). Let

t1, t2 ≥ T4 with t1 < t2 such that I(t1) = I(t2) = ε2 and I(t) < ε2 for all t ∈ (t1, t2).

Suppose that t2− t1 ≥ C +2P +T1 with C = PK. If E(t) ≥ ε1 for all t ∈ (t1, t1+P ),

then from (32) we have

E(t1 + P ) ≤ E(t1) +

∫ t1+P

t1

[β(s)
∂f(M0, 0)

∂I
ε2 − (µ(s) + σ(s))ε1]ds < M0 −M0 = 0,

which is a contradiction. Therefore, there exists an s4 ∈ [t1, t1+P ) such that E(s4) < ε1.

Then, similar to the proof of (29), we can show that

E(t) ≤ ε1 + β+∂f(M0, 0)

∂I
ω2ε2 < (1 + β+∂f(M0, 0)

∂I
ω2)ε1 for all t ∈ (s4, t2]. (36)

Since
dS(t)

dt
≥ Λ(t)(1− q(t)) + δ(t)z0(t)− (µ(t) + r(t) + σ(t))S(t)

−(β+∂f(M0, 0)

∂I
+ δ+(2 + β+∂f(M0, 0)

∂I
)ω2)ε1.

Similarly to above proof of (30) we can obtain

S(t) ≥ v(t) ≥ u(t)− 1

2
ε̄ ≥ u∗(t)− ε̄ (37)

for all t ∈ [t1 + P + T1, t2]. From third equation of model (7) we can directly obtain

I(t) ≥ ε2e
−(µ++r+)(2P+T1) , v2 for all t ∈ [t1, t1 + 2P + T1].

Since from (37) for any t ∈ [t1 + P + T1, t1 + 2P + T1]

dE(t)

dt
≥ β(t)

f(u∗(t)− ε̄, I(t))

I(t)
I(t)− (µ(t) + σ(t))E(t)

≥ β(t)
f(m,M0)

M0

v2 − (µ+ + σ+)E(t),
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we have from (34)

E(t1 + 2P + T1) ≥ e−(µ++σ+)(t1+2P+T1)(E(t1 + P + T1)e
(µ++σ+)(t1+P+T1)

+

∫ t1+2P+T1

t1+P+T1

β(s)
f(m,M0)

M0

v2e
(µ++σ+)sds)

≥ e−(µ++σ+)(t1+2P+T1)

∫ t1+2P+T1

t1+P+T1

β(s)
f(m,M0)

M0

v2e
(µ++σ+)sds

≥ e−(µ++σ+)Pη2
f(m,M0)

M0

v2.

(38)

Now, from (28) and (36) we further have

dE(t)

dt
= β(t)f(S(t), I(t))− (µ(t) + σ(t))E(t),

≥ β(t)(
∂f(u∗(t)− ε̄, 0)

∂I
− ε̄)I(t)− (µ(t) + σ(t))E(t),

≥ E(t)[β(t)(
∂f(u∗(t)− ε̄, 0)

∂I
− ε̄)q − (µ(t) + σ(t))]

(39)

for all t ∈ (t1 + 2P + T1, t2]. Let t
∗ = t1 + 2P + T1 + C. Then, from (33), (38) and (39),

we have

E(t∗) ≥ E(t1 + 2P + T1) exp(

∫ t∗

t1+2P+T1

[β(s)(
∂f(u∗(t)− ε̄, 0)

∂I
− ε̄)q − (µ(s) + σ(s))]ds)

> e−(µ++σ+)Pη2
f(m,M0)

M0

v2e
Kη2 .

Thus, from (36), we have

ε1 + β+∂f(M0, 0)

∂I
ω2ε2 > e−(µ++σ+)Pη2

f(m,M0)

M0

v2e
Kη2 ,

which contradicts with (35). Therefore, we finally have t2 − t1 ≤ t1 +2P +T1 +C. Then,

from third equation of model (7) we directly have

I(t) ≥ ε2e
−(µ++σ+)(2P+T1+C) , l for all t ∈ [t1, t2],

which implies lim inft→+∞ I(t) ≥ l. This completes the proof.

From the above results and the equivalence of model (2) and model (7), we can directly

have the following corollary on the extinction and permanence of disease for model (2).

Corollary 1. Assume that (H1)− (H3) hold and there is a constant q > 0 such that

lim supt→∞ G(q, t) < 0.

(a) If there exists constant λ > 0 such that conditions (14) and (15) hold, then the

disease-free equilibrium (u∗(t), 0, 0, z0(t)− u∗(t)) in model (2) is globally attractive.

(b) If there exists constant λ > 0 such that conditions (19) and (20) hold, then infected

I in model (2) is permanent.
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5. Some corollaries

In this section, we consider some special cases of model (2) as the applications of the

main results established in the above.

Firstly, we assume that all coefficients in model (2) are positive constants. Thus,

model (2) is autonomous. We see that equation (4) is autonomous, and hence solution

z0(t) can be chosen by z0(t) = Λ
µ

, z0. Then, equation (9) also is autonomous. The

solution u∗(t) can be chosen by u∗(t) = Λ(1−p)µ+δΛ
µ(µ+r+δ)

, u∗. Thus, the basic reproduction

number for autonomous model (2) is defined by

R0 =
σβ

(µ+ γ)(µ+ σ)

∂f(u∗, 0)

∂I
.

For constant q > 0, we define

R1(q) = β
∂f(u∗, 0)

∂I
q − (µ+ σ), R∗

1(q) = σ
1

q
− (µ+ γ)

and

G(q) = β
∂f(u∗, 0)

∂I
q + γ − (1 +

1

q
)σ.

Corollary 2. Suppose that (H3) holds, and all parameters Λ(t), β(t), p(t), r(t)

µ(t), δ(t), σ(t) and γ(t) in model (2) are positive constants. Then we have

(1) If R0 < 1, then the disease-free equilibrium (u∗, 0, 0, z0−u∗) of model (2) is globally

attractive.

(2) If R0 > 1, then infected I in model (2) is permanent.

Proof. For autonomous model (2), we have R1(λ, q) = R2(λ, q) = R1(q), R
∗
1(λ, q) =

R∗
2(λ, q) = R∗

1(q) and G(t, q) = G(q) in Theorem 1 and Theorem 2. We only need to

prove the following conclusions.

(i) There exists a positive constant q > 0 such that R1(q) < 0, R∗
1(q) < 0 and G(q) < 0

if and only if R0 < 1.

(ii) There exists a positive constant q > 0 such that R1(q) > 0, R∗
1(q) > 0 and G(q) < 0

if and only if R0 > 1.

We only prove conclusion (i). Conclusion (ii) can be proved in a similar manner.

Suppose that there exists a constant q > 0 such that R1(q) < 0, R∗
1(q) < 0 and G(q) < 0.

Then, it follows from R1(q) < 0 and R∗
1(q) < 0 that

σ

µ+ γ
< q <

µ+ σ

β ∂f(u∗,0)
∂I

. (40)

Hence, we obtain R0 < 1. Conversely, we assume R0 < 1. Since

G(
σ

µ+ γ
) = β

∂f(u∗, 0)

∂I

σ

µ+ γ
+ γ − (1 +

µ+ r

σ
)σ = (µ+ σ)(R0 − 1) < 1,
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there exists a constant q > 0 being close enough to σ
µ+γ

such that (40) hold and G(q) < 0.

Hence, for such q we have R1(q) < 0, R∗
1(q) < 0 and G(q) < 0. Thus, conclusion (i) holds.

This completes the proof.

Remark 3. Corollary 1 shows that the results on the extinction and permanence of

the disease established in this paper for nonautonomous model (2) cover the threshold-

type results in the autonomous case.

Secondly, we consider the periodic case of model (2), that is, all coefficients Λ(t), µ(t),

p(t), β(t), γ(t), r(t), σ(t) and δ(t) are nonnegative periodic functions with the common

period ω > 0. Firstly, for equation (4), when Λ(t) and µ(t) are ω-periodic functions,

then from [8, 9], z0(t) can be chosen by the unique ω-periodic solution of equation (4).

Furthermore, it can be proved that for ω-periodic equation (9) there is a globally uniformly

attractive ω-periodic solution u∗(t). Thus, function G(t, q) = β(t)∂f(u
∗(t),0)
∂I

q + r(t) −
(1 + 1

q
)σ(t) is ω-periodic. We see that conditions (14) and (15) given in Theorem 1 are

equipollent to λ = ω and

R1(ω, q) =

∫ ω

0

(β(t)
∂f(u∗(t), 0)

∂I
q − (µ(t) + σ(t)))dt < 0,

R∗
1(ω, q) =

∫ ω

0

(σ(t)
1

q
− (µ(t) + γ(t)))dt < 0,

and conditions (19) and (20) in Theorem 2 are equipollent to R2(ω, q) = R1(ω, q) > 0 and

R∗
2(ω, q) = R∗

1(ω, q) > 0. We have the following result.

Corollary 3. Suppose that (H3) holds, and all parameters Λ(t), µ(t), p(t), β(t),

γ(t), r(t), σ(t) and δ(t) in model (2) are ω−periodic continuous functions. Then we have

(i) The disease-free periodic equilibrium (u∗(t), 0, 0, z0(t)−u∗(t)) of model (2) is glob-

ally attractive if there exist q > 0 such that

σ

µ+ γ
< q <

µ+ σ

β ∂f(u∗(t),0)
∂I

(41)

and G(q, t) < 0 for all t ∈ [0, ω].

(ii) The infected I in model (2) is permanent if there exists q > 0 such that

σ

µ+ γ
> q >

µ+ σ

β ∂f(u∗(t),0)
∂I

(42)

and G(q, t) < 0 for all t ∈ [0, ω].

Proof. In fact, for conclusion (i) we directly obtain R1(ω, q) < 0 and R∗
1(ω, q) < 0,

and for conclusion (ii) then R2(ω, q) > 0 and R∗
2(ω, q) > 0. Therefore, by Theorem 1 and

Theorem 2, Corollary 2 is true. This completes the proof.
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Remark 4. Model (1) is the special case of model (2) with Λ(t) = µN , f(S, I) = SI,

and the parameters p(t), µ(t), δ(t), σ(t) and γ(t) are positive constants. Only the param-

eters β(t) and r(t) are ω-periodic continuous function. As a consequence of Corollary 3

we have the following result.

(i) The disease-free periodic equilibrium (u∗(t), 0, 0, N −u∗(t)) of model (1) is globally

attractive if there exists constant q > 0 such that

σ

µ+ γ
< q <

µ+ σ

βu∗
.

and G(q, t) < 0 for all t ∈ [0, ω].

(ii) The infected I in model (1) is permanent if there exists constant q > 0 such that

σ

µ+ γ
> q >

µ+ σ

βu∗
.

and G(q, t) < 0 for all t ∈ [0, ω].

Remark 5. Comparing Corollary 2 and Corollary 3, we can propose the following

open problem. For ω-periodic model (2), we define

R0 =
σβ ∂f(u∗(t),0)

∂I

(µ+ γ)(µ+ σ)
.

It is clear that if condition (41) holds, then we have R0 < 1, and if condition (42) holds,

then we have R0 > 1. However, conversely, from R0 < 1 (or R0 > 1) we not always

can obtain that there exists a constant q > 0 such that (41) holds (or (42) holds) and

G(q, t) < 0 for all t ∈ [0, ω]. Therefore, an important and interesting open problem is

whether only when R0 < 1 (or R0 > 1) we can exactly obtain the global attractivity of

the disease-free periodic equilibrium (u∗(t), 0, 0, z0(t)− u∗(t)) (or permanence of infected

I) in model (2).

Remark 6. Furthermore, as a well extension of periodic model (2), we can consider

the asymptotic periodic model (2). That is, all coefficients in model (2) are asymp-

totic periodic continuous functions with common period ω > 0. Thus, there exist ω-

periodic continuous functions Λ∗(t), p∗(t), β∗(t), µ∗(t), r∗(t), δ∗(t), σ∗(t) and γ∗(t) such

that limt→∞(Λ(t) − Λ∗(t)) = 0, limt→∞(p(t) − p∗(t)) = 0, limt→∞(β(t) − β∗(t)) = 0,

limt→∞(µ(t)−µ∗(t)) = 0, limt→∞(r(t)−r∗(t)) = 0, limt→∞(δ(t)−δ∗(t)) = 0, limt→∞(σ(t)−
σ∗(t)) = 0 and limt→∞(γ(t)− γ∗(t)) = 0. Assume that z0(t) is the unique ω-periodic so-

lution of equation
dz(t)

dt
= Λ∗(t)− µ∗(t)z(t),

and u∗(t) is the unique ω-periodic solution of equation

du(t)

dt
= Λ∗(t)(1− p∗(t)) + δ∗(t)z0(t)− (µ∗(t) + r∗(t) + δ∗(t))u(t).

18



Furthermore, define

G∗(q, t) = β∗(t)
∂f(u∗(t), 0)

∂I
q + r∗(t)− (1 +

1

q
)σ∗(t).

As an extension of Corollary 3, we have the following conclusions.

(i) The disease-free periodic equilibrium (u∗(t), 0, 0, z0(t)−u∗(t)) of model (2) is glob-

ally attractive if there exist q > 0 such that

σ∗

µ∗ + γ∗ < q <
µ∗ + σ∗

β∗ ∂f(u∗(t),0)
∂I

and G∗(q, t) < 0 for all t ∈ [0, ω].

(ii) The infected I in model (2) is permanent if there exists q > 0 such that

σ∗

µ∗ + γ∗ > q >
µ∗ + σ∗

β∗ ∂f(u∗(t),0)
∂I

and G∗(q, t) < 0 for all t ∈ [0, ω].

Finally, we consider the almost periodic case of model (2). Firstly, for equation (4),

when Λ(t) and µ(t) are almost periodic functions, then from [8, 9], z0(t) can be chosen by

the unique almost periodic solution of equation (4). Furthermore, it can be proved that

for almost periodic equation (9) there is a globally uniformly attractive almost periodic

solution u∗(t). Thus, function G(q, t) = β(t)∂f(u
∗(t),0)
∂I

q + r(t)− (1 + 1
q
)σ(t) is also almost

periodic. We have the following result.

Corollary 4. Suppose that (H3) holds, and all parameters Λ(t), µ(t), p(t), β(t),

γ(t), r(t), σ(t) and δ(t) in model (2) are almost periodic continuous functions. Then, we

have

(i) The disease-free almost periodic equilibrium (u∗(t), 0, 0, z0(t)− u∗(t)) of model (2)

is globally attractive if there exists q > 0 such that

m(σ)

m(µ+ γ)
< q <

m(µ+ σ)

m(β ∂f(u∗(t),0)
∂I

)
(43)

and lim supt→∞ G(q, t) < 0.

(ii) The infected I in model (2) is permanent if there exists q > 0 such that

m(σ)

m(µ+ γ)
> q >

m(µ+ σ)

m(β ∂f(u∗(t),0)
∂I

)

and lim supt→∞ G(q, t) < 0.
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Proof. We only prove conclusion (i). Conclusion (ii) can be proved in a similar

manner. From condition (43) and the properties of almost periodic functions (see [8]), we

obtain that there are constants λ > 0 and η > 0 such that for all t ≥ 0∫ t+λ

t

(β(s)
∂f(u∗(s), 0)

∂I
q − (µ(s) + σ(s)))ds < −η

and ∫ t+λ

t

(σ(s)
1

q
− (µ(s) + γ(s)))ds < −η.

Hence, we further have

R1(λ, q) = lim sup
t→+∞

∫ t+λ

t

{β(v)∂f(u
∗(v), 0)

∂I
q − (µ(v) + σ(v))}dv < 0

and

R∗
1(λ, q) = lim sup

t→+∞

∫ t+λ

t

{σ(v)1
q
− (µ(v) + γ(v))}dv < 0.

Therefore, by Theorem 1, conclusion (i) in Corollary 4 is true. This completes the proof.

Remark 7. For the almost periodic model (2), we define

R0 =
m(σ)m(β ∂f(u∗(t),0)

∂I
)

m(µ+ γ)m(µ+ σ)
.

Similarly to Remark 5, we also can propose the following open problem. That is, whether

only when R0 < 1 (or R0 > 1) we can exactly obtain the global attractivity of the disease-

free almost periodic equilibrium (u∗(t), 0, 0, z0(t) − u∗(t)) (or permanence of infected I)

in model (2).

Remark 8. Similarly to Remark 6, as an extension of almost periodic model (2),

we can consider the asymptotic almost periodic model (2). We can establish the similar

conclusions as in Remark 6.

6. Numerical examples

In order to illustrate the validity of our theoretical results, we give some examples and

numerical simulations in this section.

Example 1. Take Λ(t) = 20+0.1 sin(t), µ(t) = 1.2+0.1 sin(t), p(t) = 0.2+0.1 sin(t),

β(t) = 0.25+0.2 sin(t), r(t) = 0.2+0.1 sin(t), δ(t) = 0.2+0.1 sin(t), σ(t) = 0.8+0.1 sin(t),

γ(t) = 0.8 + 0.1 sin(t) and f(S, I) = SI
1+2I2

in model (2), which is a 2π-periodic model. It

is easy to verify that assumptions (H1)− (H3) hold. Solving equation (4), we obtain

z0(t) = exp(−1.2t+ 0.1 cos(t) + 0.1)

∫ t

0

(20x+ 0.1 sin(x)) exp(1.2x− 0.1 cos(x)− 0.1)dx

+
z0 exp(0.1 cos(t)− 1.2t+ 0.1)

exp(0.2)
,
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see Fig.1 (a), by which we can see that the periodic solution z0(t) is globally asymptotically

stable. Then, from numerical simulation, we can see that equation (9) has a 2π-periodic

solution u∗(t) (see Fig.1 (b)) which is globally asymptotically stable, by which we can see

that 10 < u∗(t) < 15.

Choosing q = 0.41, we can see ∂f(u∗(t),0)
∂I

= u∗(t), then we can obtain by the numerical

calculation

G(t, q) = β(t)∂f(u
∗(t),0)
∂I

q + r(t)− (1 + 1
q
)σ(t)

≤ (0.25 + 0.2 sin(t)) ∗ 15 ∗ 0.41 + 0.2 + 0.1 sin(t)− (1 + 100/41) ∗ (0.8 + 0.1 sin(t))

≈ −1.0137 + 0.9861 sin(t) < 0,

R1(ω, q) =

∫ 2π

0

(β(t)
∂f(u∗(t), 0)

∂I
q − (µ(t) + σ(t)))dt

≤
∫ 2π

0

((0.25 + 0.2 sin(t)) ∗ 15 ∗ 0.41− (1.2 + 0.1 sin(t) + 0.8 + 0.1 sin(t)))dt

≈ −2.9060 < 0,

R∗
1(ω, q) =

∫ 2π

0

(σ(t)
1

q
− (µ(t) + γ(t)))dt

=

∫ 2π

0

((0.8 + 0.1 sin(t)) ∗ 100/41− (1.2 + 0.1 sin(t) + 0.8 + 0.1 sin(t)))dt

≈ −0.3065 < 0.

Therefore, all conditions given in Corollary 3 are satisfied. From numerical simulations

(see Fig 1. (c)-(f)), we can see that the infected I(t) in model (2) is extinct, and disease-

free equilibrium state (u∗(t), 0, 0, z0(t)− u∗(t)) is globally attractive.

Example 2. Take Λ(t) = 100+0.1 sin(t), µ(t) = 1.2+0.1 sin(t), p(t) = 0.5+0.3 sin t,

β(t) = 10 + 0.4 sin t, r(t) = 0.2 + 0.1 sin(t), δ(t) = 0.8 + 0.4 sin t, σ(t) = 3 + 0.3 sin t,

γ(t) = 0.8+ 0.4 sin t and f(S, I) = SI
1+2S+3I

in model (2), which is a 2π-periodic model. It

is easy to verify that assumptions (H1)− (H3) hold. Solving equation (4), we obtain

z0(t) = exp(−1.2t+ 0.1 cos(t) + 0.1)

∫ t

0

(100x+ 0.1 sin(x)) exp(1.2x− 0.1 cos(x)− 0.1)dx

+
z0 exp(0.1 cos(t)− 1.2t+ 0.1)

exp(0.2)
,

see Fig.2 (a), by which we can see that the periodic solution z0(t) is globally asymptotically

stable. From numerical simulation, we can see that equation (9) has a 2π-periodic solution

u∗(t) which is globally asymptotically stable(see Fig.2 (b)), by which we can see that

32 < u∗(t) < 58.
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Choosing q = 0.07, we can see ∂f(u∗(t),0)
∂I

= u∗(t)+2u∗2(t)
1+2u∗(t)

= u∗(t),then we can obtain by

the numerical calculation

G(t, q) = β(t)∂f(u
∗(t),0)
∂I

q + r(t)− (1 + 1
q
)σ(t)

< (10 + 0.4 ∗ sin(t)) ∗ 58 ∗ 0.07 + 0.2 + 0.1 sin(t)− (1 + 1/0.07) ∗ (3 + 0.3 ∗ sin(t))

≈ −5.0571− 2.8617 sin(t) < 0,

R1(ω, q) =

∫ 2π

0

(β(t)
∂f(u∗(t), 0)

∂I
q − (µ(t) + σ(t)))dt

>

∫ 2π

0

((10 + 0.4 ∗ sin(t)) ∗ 32 ∗ 0.07− (1.2 + 0.1 ∗ sin(t) + 3 + 0.3 ∗ sin(t)))dt

≈ 114.3542 > 0,

R∗
1(ω, q) =

∫ 2π

0

(σ(t)
1

q
− (µ(t) + γ(t)))dt

=

∫ 2π

0

((3 + 0.3 ∗ sin(t)) ∗ 100/7− (1.2 + 0.1 ∗ sin(t) + 0.8 + 0.4 ∗ sin(t)))dt

≈ 256.7136 > 0.

Therefore, all conditions given in Corollary 3 are satisfied. From numerical simulations,

we can see that system that the infected I(t) in model (2) is permanent (see Fig.2 (c)-

(f)). In addition, model (2) has a positive 2π-periodic solution which may be globally

asymptotically stable.

7. Conclusions

In this paper, we investigate the global dynamic behaviors of a class of SEIRS epi-

demic models with vaccination, nonlinear incidence and all coefficients depending on time

t. Under the certain reasonable assumptions, some new threshold values are obtained to

determine the permanence and extinction of disease for model (2). The threshold con-

ditions for the permanence of disease has the integrable form of limit inferior, while the

threshold conditions for the extinction of disease has the integrable form of limit superi-

or. Particularly, in Section 5, we prove that when all parameters of model (2) degrade

into positive constants the conditions given in Theorems 1 and 2 become the threshold

conditions by the basic reproduction number R0.

For the special case of model (2) in which only β(t) and r(t) in model (2) is given as ω-

periodic functions, incidence function f(S, I) = SI and all other parameters are positive

constants, then we have model (1). We obtained the new threshold criteria on the global

attractivity of the disease-free periodic equilibrium and the permanence of infected I for

model (1) which are different from the threshold criteria given in [10]. It is easy to see that

the new threshold criteria more easily verify than those in [10]. However, unfortunately,
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an additional condition G(q, t) < 0 for all t ∈ [0, ω] is requested. Therefore, we proposed

an open problem in Remark 5.

We also see that in model (2) we do not introduced the disease-related death rate of

infected. Therefore, another open problem is to investigate the dynamical behaviors of

general nonautonomous SEIRS model with vaccination, disease-related death and nonlin-

ear incidence.
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Figure 1: (a): Time series of solutions z(t) of system (4) in Example 1 with initial values: z0 =

12 + 0.4 ∗ i, i = 1, 2, · · · , respectively. (b):Time series of solutions u(t) of system (9) with initial values:

u0 = 6 + i ∗ 0.5, i = 1, 2, · · · , 20, respectively. (c): time series of solutions of (S(t), E(t), I(t), R(t))

of system (2), (d)-(f): 3-dimensional phases of system (2) with initial values (S(0), E(0), I(0), R(0)) =

(5 + 0.5 ∗ i, 0.5 + 0.5 ∗ i, 0.3 + 0.5 ∗ i, 0), i = 1, 2, · · · , 20, respectively.
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Figure 2: (a): Time series of solutions z(t) of system (4) in Example 2 with initial values: z0 =

70 + i, i = 1, 2, · · · , respectively. (b):Time series of solutions u(t) of system (9) with initial values:

u0 = 2 + 3 ∗ i, i = 1, 2, · · · , 20, respectively. (c): time series of solutions of (S(t), E(t), I(t), R(t)) of

system (2), (d)-(f): 3-dimensional phases of system (2) with initial values (S(0), E(0), I(0), R(0)) =

(5 + 2 ∗ i, 0.5 + 0.5 ∗ i, 0.3 + 0.5 ∗ i, 0), i = 1, 2, · · · , 20, respectively.
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