5 Conclusions
In conclusion, evolutionary analysis suggests that INHs are essential for the regulation of sucrose metabolism in vascular plants, by balancing VIN activity. We demonstrated that PpINH1 interacts with PpVIN2 and inhibits VIN activity in peach fruit. Upregulation ofPpINH1 expression in trehalose-treated peaches resulted in decreased VIN activity, which slowed sucrose decomposition thereby enhancing chilling resistance. Our findings provide new insight into the regulation of sucrose metabolism during chilling stress in peach fruit, and has implications for developing more effective postharvest treatment methods and breeding fruits with cold tolerant genotypes.
ACKNOWLEDGEMENTS
The research was supported by the National Key R&D Program of China (No. 2018YFD1000200) and National Science Foundation of China (No. 31671903; 31972124).
CONFLICT OF INTEREST
Authors declare no conflicts of interest.
References:
Albert, V. A., Barbazuk, W. B., Depamphilis, C. W., Der, J. P., Leebens-Mack, J., Ma, H., … & Soltis, D. E. (2013). The Amborella genome and the evolution of flowering plants. Science, 342(6165) , 1241089. 10.1126/science.1241089
Bate, N. J., Niu, X., Wang, Y., Reimann, K.S., & Helentjaris, T.G. (2004). An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiology , 134(1) , 246-254. https://doi.org/10.1104/pp.103.027466
Benaroudj, N., Lee, D.H., & Goldberg, A.L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of biological chemistry ,276(26) , 24261-24267. https://doi.org/10.1074/jbc.M101487200
Borsani, J., Budde, C.O, Porrini, L., Lauxmann, M.A., Lombardo, V.A., Murray, R., … Lara, M.V. (2009). Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany ,60(6) , 1823-1837. https://doi.org/10.1093/jxb/erp055
Brummell, D.A., Chen, R.K.Y., Harris, J.C., Zhang, H., Cyril, H., Kralicek, A.V., & Mckenzie, M.J. (2011). Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants.Journal of Experimental Botany , 62(10) , 3519-3534. https://doi.org/10.1093/jxb/err043
Castrillón-Arbeláez, P.A., & Délano-Frier, J.P. (2011). The sweet side of inhibition: invertase inhibitors and their importance in plant development and stress responses. Current Enzyme Inhibition ,7(3) , 169-177. https://doi.org/10.2174/157340811798807588
Ding, F., Wang, R. (2018). Amelioration of postharvest chilling stress by trehalose in pepper. Scientia Horticulturae , 232 , 52-56. https://doi.org/10.1016/j.scienta.2017.12.053
Draffehn, A.M., Meller, S., Li, L., & Gebhardt, C. (2010). Natural diversity of potato (Solanum tuberosum ) invertases. BMC Plant Biology , 10 , 271. https://doi.org/10.1186/1471-2229-10-271
Elbein, A.D., Pan, Y.T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology ,13(4) , 17R–27R. https://doi.org/10.1093/glycob/cwg047
Glass, F., Härtel, B., Zehrmann, A., Verbitskiy, D., & Takenaka, M. (2015). MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana . Molecular Plant , 8 , 1466-1477. https://doi.org/10.1016/j.molp.2015.05.008
Greiner, S., Krausgrill, S., & Rausch, T. (1998). Cloning of a tobacco apoplasmic invertase inhibitor proof of function of the recombinant protein and expression analysis during plant development. Plant Physiology , 116(2) , 733-742. https://doi.org/10.1104/pp.116.2.733
He, X., Wei, Y., Kou, J., Xu, F., Chen, Z., & Shao, X. (2018).PpVIN2 , an acid invertase gene family member, is sensitive to chilling temperature and affects sucrose metabolism in postharvest peach fruit. Plant Growth Regulation , 1-12 . https://doi.org/10.1007/s10725-018-0419-z
Hothorn, M., D’Angelo, I., Márquez, J.A., Greiner, S., & Scheffzek, K. (2004a). The invertase inhibitor Nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension.Journal of Molecular Biology , 335 , 987-995. https://doi.org/10.1016/j.jmb.2003.10.066
Hothorn, M., Ende, W.V., Lammens, W., Rybin, V., & Scheffzek, K. (2010). Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Proceedings of the National Academy of Sciences of the United States of America ,107(40) , 17427-17432. https://doi.org/10.1073/pnas.1004481107
Hothorn, M., Wolf, S., Aloy, P., Greiner, S., & Scheffzek, K. (2004b). Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell ,16(12) , 3437-3447.  https://doi.org/10.1105/tpc.104.025684
Keunen, E., Peshev, D., Vangronsveld, J., Wim, V. D. E., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment ,36(7) , 1242-1255. https://doi.org/10.1111/pce.12061
Kosar, F., Akram, N.A., Sadiq, M., Al-Qurainy, F., & Ashraf, M. (2019). Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. Journal of Plant Growth Regulation , 38(2) , 606-618. https://doi.org/10.1007/s00344-018-9876-x
Lammens, W., Roy, K.L, Yuan, S., Vergauwen, R., Rabijns, A., Laere, A.V., … Ende, W.V. (2012). Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. The Plant Journal ,70 , 205-219. https://doi.org/10.1111/j.1365-313X.2011.04858.x
Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., Deyholos, M.K., Gitzendanner, M.A., Graham, S.W., … Wong, G.K.S. (2019). One thousand plant transcriptomes and the phylogenomics of green plants.Nature . 574 , 679–685 https://doi.org/10.1038/s41586-019-1693-2
Li, X., Xu, Y., Shen, S., Yin, X., Klee, H., Zhang, B., & Chen, K. (2017). Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany . 68(17) , 4929-4938. https://doi.org/10.1093/jxb/erx316
Lin, Y., Liu, J., Liu, X., Ou, Y., Li, M., Zhang, H., Song, B., & Xie, C. (2013). Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase. Plant Physiology and Biochemistry , 73 , 237-244. https://doi.org/10.1016/j.plaphy.2013.09.012
Lin, Y., Liu, T., Liu, J., Liu, X., Ou, Y., Zhang, H., … & Xie, C. (2015). Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and sucrose nonfermenting1-related protein kinase. Plant Physiology ,168 , 1807-1819. https://doi.org/10.1104/pp.15.00664
Link, M., Rausch, T., & Greiner, S. (2004). In Arabidopsis thaliana , the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Letters , 573 , 105-109. https://doi.org/10.1016/j.febslet.2004.07.062
Liu, X., Lin, Y., Liu, J., Song, B., Ou, Y., Zhang, H., Li, M., & Xie, C. (2013). StInvInh2 as an inhibitor of StvacINV1 regulates the cold‐induced sweetening of potato tubers by specifically capping vacuolar invertase activity. Plant Biotechnology Journal ,11 , 640-647. https://doi.org/10.1111/pbi.12054
Liu, X., Song, B., Zhang, H., Li, X.Q., Xie, C., & Liu, J. (2010). Cloning and molecular characterization of putative invertase inhibitor genes and their possible contributions to cold-induced sweetening of potato tubers. Molecular Genetics and Genomics , 284 , 147-159. https://doi.org/10.1007/s00438-010-0554-3
Liu, X., Zhang, C., Ou, Y., Lin, Y., Song, B., Xie, C., Liu, J., & Li, X.Q. (2011). Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Molecular Genetics and Genomics ,286 , 109-118. https://doi.org/10.1007/s00438-011-0632-1
Lurie, S., & Crisosto C.H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology , 37 , 195-208. https://doi.org/10.1016/j.postharvbio.2005.04.012
Ohyama, A., Ito, H., Sato, T., Nishimura, S., Imai, T., & Hirai, M. (1995). Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant and Cell Physiology ,36 , 369-376. https://doi.org/10.1093/oxfordjournals.pcp.a078769
Ou, Y., Song, B., Liu, X., Lin, Y., Zhang, H., Li, M., Fang, H., & Liu, J. (2013). Profiling of StvacINV1 expression in relation to acid invertase activity and sugar accumulation in potato cold-stored tubers.Potato Research , 56 , 157-165. https://doi.org/10.1007/s11540-013-9237-x
Paul, M.J., Primavesi, L.F., Jhurreea, D., &Zhang, Y. (2008). Trehalose Metabolism and Signaling. Annual Review of Plant Biology ,59(1) , 417-441. https://doi.org/10.1146/annurev.arplant.59.032607.092945
Pitzschke, A. (2013). Agrobacterium infection and plant defense-transformation success hangs by a thread. Frontiers in Plant Science , 4 , 1-12. https://doi.org/10.3389/fpls.2013.00519
Puig, C.P., Dagar, A., Ibanez, C.M., Singh, V., Crisosto, C.H., Friedman, H., Lurie, S., & Granell, A. (2015). Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms.BMC Genomics , 16(245) , 1-35. https://doi.org/10.1186/s12864-015-1395-6
Qin, G., Zhu, Z., Wang, W., Cai, J., Chen, Y., Li, L., & Tian, S. (2016). A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiology ,172(3) , 1596-1611. https://doi.org/10.1104/pp.16.01269
Rausch, T., & Greiner, S. (2004). Plant protein inhibitors of invertases. Biochimica et Biophysica Acta , 1696 , 253-261. https://doi.org/10.1016/j.bbapap.2003.09.017
Reca, I.B., Brutus, A., D’Avino, R., Villard, C., Bellincampi, D., & Giardina, T. (2008). Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum ) and its use to purify a vacuolar invertase.Biochimie , 90 , 1611-1623. https://doi.org/10.1016/j.biochi.2008.04.019
Schaffer, A.A., Rylski, I., & Fogelman, M. (1989). Carbohydrate content and sucrose metabolism in developing Solanum muricatum fruits.Phytochemistry , 28(3) , 737-739. https://doi.org/10.1016/0031-9422(89)80105-0
Scholes, J., Bundock, N., Wilde, R., & Rolfe, S. (1996). The impact of reduced vacuolar invertase activity on the photosynthetic and carbohydrate metabolism of tomato. Planta , 200 , 265-272. https://doi.org/10.1007/BF00208317
Schwimmer, S., Makower, R.U., & Rorem, E.S. (1961). Invertase & invertase inhibitor in potato. Plant Physiology , 36 , 313. http://doi.org/10.1104/pp.36.3.313
Shao, X., Zhu, Y., Cao, S., Wang, H., & Song, Y. (2012). Soluble sugar content and metabolism as related to the heat-induced chilling tolerance of loquat fruit during cold storage. Food and Bioprocess Technology , 6(12) , 3490-3498. https://doi.org/10.1007/s11947-012-1011-6
Shivalingamurthy, S.G., Anangi, R., Kalaipandian, S., Glassop, D., King, G.F., & Rae, A.L. (2018). Identification and functional characterization of sugarcane invertase inhibitor (ShINH1 ): A potential candidate for reducing pre- and post-harvest loss of sucrose in sugarcane. Frontiers in Plant Science , 9 , 1-14. https://doi.org/10.3389/fpls.2018.00598
Tang, X., Tao, S., Han, M., Wei, L., Wang, W., Yu, Z., … Liu, L. (2017). Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max ). Journal of Experimental Botany , 68(3) , 469-482. https://doi.org/10.1093/jxb/erw425
Tauzin, A.S., Sulzenbacher, G., Lafond, M., Desseaux, V., Reca, I.B., Perrier, J., … Giardina, T. (2014). Functional characterization of a vacuolar invertase from Solanum lycopersicum : post-translational regulation by N-glycosylation and a proteinaceous inhibitor. Biochimie , 101 , 39-49. https://doi.org/10.1016/j.biochi.2013.12.013
Vogel, J. T., Zarka, D. G., Van Buskirk, H. A., Fowler, S. G., & Thomashow, M. F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome ofArabidopsis . The Plant Journal, 41(2), 195-211 . 10.1111/j.1365-313X.2004.02288.x
Wan, H., Wu, L., Yang, Y., Zhou, G., & Ruan, Y. L. (2018). Evolution of Sucrose Metabolism: The Dichotomy of Invertases and Beyond. Trends in Plant Science , 23(2) ,163-177. https://doi.org/10.1016/j.tplants.2017.11.001
Wang, K., Shao, X., Gong, Y., Zhu, Y., Wang, H., Zhang, X., … Lu, H. (2013). The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biology and Technology , 86 , 53-61. https://doi.org/10.1016/j.postharvbio.2013.06.020
Wang, L., Li, X.R., Lian, H., Ni, D.A., He, Y.K., Chen, X.Y., & Ruan, Y.L. (2010). Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiology, 154, 744-756. https://doi.org/10.1104/pp.110.162487
Weil, M., Krausgrill, S., Schuster, A., & Rausch, T. (1994). A 17-kDaNicotiana tabacum cell-wall peptide acts as an in-vitro inhibitor of the cell-wall isoform of acid invertase. Planta , 193 , 438-445. https://doi.org/10.1007/BF00201824
Yu, L., Liu, H., Shao, X., Yu, F., Wei, Y., Ni, Z., Xu, F., & Wang, H. (2016). Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage.Postharvest Biology and Technology , 113 , 8-16. http:// doi.org/10.1016/j.postharvbio.2015.10.013
Zhang, N., Jiang, J., Yang, Y., & Wang, Z. (2015). Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit. Journal of Zhejiang University Science B , 16(10) , 845-856. https://doi.org/10.1631/jzus.B1400319
Zhang, Y.L., Zhang, A.H., & Jiang, J. (2013). Gene expression patterns of invertase gene families and modulation of the inhibitor gene in tomato sucrose metabolism. Genetics and Molecular Research ,12(3) , 3412-3420. http://doi.org/10.4238/2013.January.24.1