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Abstract. We consider a non-linear two-phase unidimensional Stefan
problem, which consists on a solidification process, for a semi-infinite
material x > 0, with phase change temperature T1, an initial tempera-
ture T2 > T1 and a convective boundary condition imposed at the fixed
face x = 0 characterized by a heat transfer coefficient h > 0. We as-
sume that the volumetric heat capacity and the thermal conductivity
are particular nonlinear functions of the temperature in both solid and
liquid phases and they verify a Storm-type relation. A certain inequal-
ity on the coefficient h is established in order to get an instantaneous
phase change process. We determine sufficient conditions on the param-
eters of the problem in order to prove the existence and uniqueness of
a parametric explicit solution for the Stefan problem.

Keywords. Stefan problem,free boundary problem, phase-change pro-
cess, similarity solution, Kirchoff transformation.

1. Introduction

The study of phase change processes has occupied scientists of the early eigh-
teenth century. In 1831, Lame and Clapeyron studied problems related to the
solidification of planet Earth [15]. In addition, the mathematical formulation
of phase change processes as problems of free borders dates from 18th century,
because it owes a lot to the works developed by Stefan in 1889 [24, 25, 26].
Currently, his study remains an active area of research. Stefan’s problems are
present in a wide variety of situations, both natural and industrial. A review
of a long bibliography on moving and free boundary value problems for the
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heat equation can be consulted in [29]. In [11, 12, 30] recent applications and
future challenges can be found.

We consider the following two-phase Stefan problem (solidification pro-
cess) with nonlinear thermal coefficients for a semi-infinite region x > 0 with
phase change temperature T1, an initial temperature T2 > T1 and an imposed
a convective condition at the fixed face x = 0 [32]

C1(u1)
∂u1

∂t
=

∂

∂x

[
K1(u1)

∂u1

∂x

]
, 0 < x < y(t) , t > 0 ,(1.1)

C2(u2)
∂u2

∂t
=

∂

∂x

[
K2(u2)

∂u2

∂x

]
, x > y(t), t > 0, (1.2)

y(0) = 0 , (1.3)

u2(x, 0) = T2 x > 0, (1.4)

u1(y(t), t) = u2(y(t), t) = T1, t > 0, (1.5)

K1(u1)
∂u1

∂x
−K2(u2)

∂u2

∂x
= L

•
y (t), x = y(t), t > 0, (1.6)

K1(u1(0, t))
∂u1

∂x
(0, t) =

h√
t
[u1(0, t)− T∞], t > 0, h > 0, (1.7)

where

x : spatial coordinate t : time,
ui(x, t) : temperature distribution for phase i ,
T1 : phase-change or freezing temperature ,
T2 : initial temperature ,
T∞ : temperature of the medium,
L > 0 : volumetric latent heat ,
Ci(ui) > 0 : volumetric heat capacity for phase i ,
Ki(ui) > 0 : thermal conductivity for phase i ,
h : heat transfer coefficient,
y(t) : free boundary (solid-liquid interface) at time t ,
i = 1 : solid phase, i = 2 : liquid phase

with

T∞ < u1(0, t) < T1 < T2. (1.8)

One common assumption when modeling phase-change processes is to
consider constant thermophysical properties. Nevertheless, it is known that
certain materials present properties which seem to obey other laws. Some
models including variable latent heat, density, melting temperature or ther-
mal conductivity have been proposed in [2, 8, 13, 17, 21].

We assume that the volumetric heat capacity and the thermal conduc-
tivity for each phase i (i = 1, 2) are related as follows: [31]

Ci(ui) = Ki(ui)c0

k0

1− 1
k0

ui−T1
T2−T1∫

0

Ki(T1+(T2−T1)z)dz


2 , i = 1, 2

(1.9)
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with the assumption given by

1

k0 (T2 − T1)

T2∫
T1

K2 (z) dz < 1 (1.10)

where k0, c0 are scales for the thermal conductivity and volumetric heat ca-
pacity respectively. The goal of this paper is to determine which conditions
on the parameters of the problem must be satisfied in order to obtain an
explicit solution

u(x, t) =

 u1(x, t) < T1, 0 < x < y(t)
T1, x = y(t)
u2(x, t) > T1, x > y(t)

. (1.11)

and the free boundary x = y(t), t > 0 .
We remark that if equation (1.9) is true then, Ki(ui) and Ci(ui), i = 1, 2,

verify the Storm relation given by [5, 6, 19, 27]

1√
Ki(ui)Ci(ui)

d

dui

(
log

√
Ci(ui)

Ki(ui)

)
=

1√
c0k0(T2 − T1)

= const. (1.12)

Condition (1.12) was originally obtained by [27] in an investigation of heat
conduction in simple monoatomic metals. There, the validity of the equa-
tion (1.12) was examined for aluminium, silver, sodium, cadium, zinc, copper
and lead. A nonlinear heat conduction problem for semi-infinite material
x > 0, with phase change temperature T1 an initial temperature T2 > T1

and a heat flux of the type q(t) = q0√
t

imposed on the fixed face x = 0 was

considered by [7], where volumetric heat capacity and thermal conductivity
were taken to satisfy the relation (1.9). Sufficient conditions on the param-
eters of the problem were established in order to obtain an instantaneous
nonlinear two-phase Stefan problem (solidification process) and the explicit
solution was given. Previously, the explicit solution to the corresponding non-
linear heat conduction problem for the initial (liquid) phase was obtained.
Several authors have suggested considering Robin-type conditions (convec-
tive conditions) since they represent the fact that the heat transfer in the
boundary is proportional to the difference between the temperature imposed
and the material is presented at its boundary (see for example books [1, 9]).
For this reason, in this article we consider a similar phase-change process to
that studied in [16]. We are mainly motivated by improving the modelling of
the imposed temperature at the fixed boundary by considering a convective
boundary condition.

Other free boundary problems with nonlinear thermal coefficients are
given in [3, 4, 5, 16, 19, 20, 23].

In Section 2 we consider the nonlinear two phase Stefan problem (1.1)−
(1.7) with assumptions (1.9) − (1.10) and we prove that it admits a unique
similarity type solution if certain conditions upon data are satisfied. We will
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study a solidification process, but a completely similar analysis can be done
for the case of melting.

2. Explicit solution for the instantaneous two-phase Stefan
process with nonlinear thermal coefficients

Let us consider the problem (1.1)− (1.7) with the hypothesis (1.8)− (1.10).
In order to obtain an explicit solution of it, we consider the transformations
given in [7] and we define new variables and parameters as follows

ξ = x
√

c0
k0ts

, τ = t
ts
, S(τ) = y(t)

√
c0
k0ts

,

vi(ξ, τ) = ui(x,t)−T1

T2−T1
, Ki(vi) = Ki(ui)

k0
> 0 , T = T∞−T1

T2−T1
< 0 ,

Ci(vi) = Ci(ui)
c0

> 0 , L = 1
Ste > 0 , H = h√

c0k0
> 0 ,

(2.1)
where ts is a scale for the time and

Ste =
c0(T2 − T1)

L
(2.2)

is the Stefan number which, in the remainder of this section, is taken up to
1 due to the fact that it covers most of phase change materials [22].

We obtain the following problem

C1(v1)
∂v1

∂τ
=

∂

∂ξ

[
K1(v1)

∂v1

∂ξ

]
, 0 < ξ < S(τ), τ > 0,(2.3)

C2(v2)
∂v2

∂τ
=

∂

∂ξ

[
K2(v2)

∂v2

∂ξ

]
, ξ > S(τ), τ > 0, (2.4)

S(0) = 0, (2.5)

v2(ξ, 0) = 1, ξ > 0, (2.6)

v1(S(τ), τ) = v2(S(τ), τ) = 0, τ > 0, (2.7)

K1(v1)
∂v1

∂ξ
−K2(v2)

∂v2

∂ξ
= L

•
S (τ), on ξ = S(τ) τ > 0,(2.8)

K1 (v1(0, τ))
∂v1

∂ξ
(0, τ) =

H√
τ

[
v1(0, τ)− T

]
, τ > 0. (2.9)

(2.10)

By considering the Kirchhoff transformation for i = 1, 2 given by

ηi(ξ, τ) = µi (vi(ξ, τ)) =

vi(ξ,τ)∫
0

Ki(z)dz , µi (Ψ) =

Ψ∫
0

Ki(z)dz , (2.11)
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then we have the following equivalent problem

∂η1

∂τ
= (1− η1)2 ∂

2η1

∂ξ2
, 0 < ξ < S(τ), τ > 0, (2.12)

∂η2

∂τ
= (1− η2)2 ∂

2η2

∂ξ2
, ξ > S(τ), τ > 0, (2.13)

S(0) = 0, (2.14)

η2(ξ, 0) =

1∫
0

K2(z)dz = θ < 1, ξ > 0, (2.15)

η1(S(τ), τ) = η2(S(τ), τ) = 0, τ > 0, (2.16)

∂η1

∂ξ
− ∂η2

∂ξ
= L

•
S (τ), on ξ = S(τ), τ > 0, (2.17)

∂η1

∂ξ
(0, τ) =

H√
τ

[
µ−1

1 (η1(0, τ))− T
]
, τ > 0, (2.18)

where µ−1
1 is the inverse function of µ1 defined by (2.11) .

Remark 1. According to the conditions at the free boundary we have that
[28, 31]

S(τ) = δ
√
τ , τ > 0 (2.19)

and the flux of η2 on the free boundary becomes

∂η2

∂ξ
(S(τ), τ) =

γ√
τ
, τ > 0 (2.20)

where the positive constants δ and γ must be established.

Now, we linearize the nonlinear differential equations (2.12) and (2.13).

Following [14, 27] we define:
χ1(ξ, τ) =

ξ∫
0

1
(1−η1(z,τ))dz , 0 < ξ < S(τ) ,

χ2(ξ, τ) =
ξ∫

S(τ)

1
(1−η2(z,τ))dz , ξ > S(τ) ,

τ = τ , wi(χi, τ) = ηi(ξ, τ) , i = 1, 2 .

(2.21)

Therefore the free boundary is turning into

β(τ) = χ1(S(τ), τ) =

S(τ)∫
0

1

(1− η1(z, τ))
dz. (2.22)
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We have that problem (2.12)− (2.19) is equivalent to

∂w1

∂τ
=
∂2w1

∂χ2
1

+ H√
τ

[
µ−1

1 (w1(0, τ))− T
] ∂w1

∂χ1
, 0 < χ1 < β(τ), τ > 0,

(2.23)

∂w2

∂τ
=
∂2w2

∂χ2
2

+

[
δ

2
+ γ

]
1√
τ

∂w2

∂χ2
, χ2 > 0, τ > 0,

(2.24)

β(0) = 0, (2.25)

w2(χ2, 0) = θ, χ2 > 0 , (2.26)

w1(β(τ), τ) = w2(0, τ) = 0, τ > 0, (2.27)

∂w1

∂χ1
(β(τ), τ)− ∂w2

∂χ2
(0, τ) = L

δ

2
√
τ
, τ > 0, (2.28)

∂w1

∂χ1
(0, τ) =

H√
τ

(1− w1(0, τ))
[
µ−1

1 (w1(0, τ))− T
]
, τ > 0. (2.29)

and from (2.20) the flux at the fixed face χ1 = 0 is given by

∂w2

∂χ2
(0, τ) =

γ√
τ
, τ > 0. (2.30)

We propose a solution of similarity type given by

f1(φ1) = w1(χ1, τ), φ1 =
χ1

2
√
τ
, 0 < χ1 < β(τ), τ > 0, (2.31)

f2(φ2) = w2(χ2, τ), φ2 =
χ2

2
√
τ
, χ2 > 0, τ > 0. (2.32)

Problem (2.23)− (2.29) turns into to the following

2(φ1 + Λ)f ′1(φ1) + f ′′1 (φ1) = 0, 0 < φ1 < Λ− λ1 , (2.33)

2(φ2 + λ2)f ′2(φ2) + f ′′2 (φ2) = 0, 0 < φ2 , (2.34)

f2(+∞) = θ, (2.35)

f ′1(0) = λ1 (1− f1(0)) , (2.36)

f1(Λ− λ1) = f2(0) = 0, (2.37)

f
′

1(Λ− λ1)− f
′

2(0) = Lδ, (2.38)

for the unknown functions f1 and f2 , and the unknown coefficients δ, γ, λ1

where

Λ =
δ

2

[
1 + L

]
+ γ , (2.39)

λ1 = H
[
µ−1

1 (f1(0)− T
]
> 0, (2.40)

λ2 =
δ

2
+ γ, (2.41)

and (2.30) is equivalent to

f ′2(0) = 2γ. (2.42)
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Remark 2. Taking into account (2.19), (2.22) and

β(τ) = 2(Λ− λ1)
√
τ , τ > 0 . (2.43)

Then we have Λ > λ1. Moreover, by (2.39) and (2.41) we have Λ > λ2.

The solution to problem (2.33)− (2.42) is given by


f1(φ1) =

erf(φ1 + λ1)− erf(Λ)

G(λ1)− erf(Λ)
, 0 < φ1 < Λ− λ1

f2(φ2) = θ
erf(φ2 + λ2)− erf(λ2)

erfc(λ2)
, 0 < φ2

(2.44)

where

erfc(x) = 1− erf(x) = 1− 2√
π

x∫
0

exp(−w2)dw , (2.45)

G (x) = erf(x) +
1√
π
R(x), x > 0, p > 0, (2.46)

with

R(x) =
exp(−x2)

x
, x > 0 (2.47)

and the positive unknown coefficients Λ, λ1 and λ2 must satisfy the
following system of equations

(i)
θ√
π

exp(−λ2
2)

erfc(λ2)
=
λ2

(
1 + L

)
− Λ

L

(ii)
exp(−Λ2)√

π [G(λ1)− erf(Λ)]
=
λ2 + (L− 1)Λ

L

(iii)
erf(λ1)− erf(Λ)

G(λ1)− erf(Λ)
= µ1

(
λ1

H
+ T

)
(2.48)

Now, we give preliminaries results to prove the existence and uniqueness
of the solution to (2.48).

Lemma 1. Let G = G(x) be the function defined in (2.46). It satisfies the
following properties:

G(0) = +∞, G(+∞) = 1, G′(x) < 0 ∀x > 0. (2.49)

Proof. It was proved in [6]. �
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Lemma 2. Let P = P (x) defined by

P (x) = (1 + L)x− Lθ√
π
F (x) = x

(
1 + L− Lθ

Q(x)

)
, (2.50)

where

F (x) =
exp(−x2)

erfc(x)
(2.51)

and

Q(x) =
√
π x exp(x2) erfc(x) (2.52)

It satisfies the following properties:

P (x∗) = 0, where x∗ = Q−1
(
Lθ
L+1

)
, P (+∞) = +∞ (2.53)

P ′(x) = 1 + L− Lθ
Q(x) + x Lθ

Q2(x)Q
′(x), P ′(x) > 0 if x > x∗ (2.54)

P (x) > x if and only if x > x = Q−1(θ), P (x) = x. (2.55)

Proof. The proof is immediate.

Lemma 3. Let M = M(x) be the function given by

M(x) = erf(P (x)) +
LR(P (x))

√
π[ x
P (x) + L− 1]

, x > x (2.56)

It satisfies:

M(x) = G(x), M(+∞) = 1, M ′(x) < 0, M(x) > 1, x > x. (2.57)

Proof. We first prove that M ′(x) < 0.
By using

R′(x) = −2x2 + 1

x
R(x)

we can write

M ′(x) =
R (P (x))√

π

2P (x)P ′(x)

[
1− L

x
P (x) + L− 1

]
−
L
[
P ′(x)(L− 1) + 1

][
x

P (x) + L− 1
]2
P (x)


Taking into account Lemma 2 we have P ′(x) > 0 and L

x
P (x)

+L−1
> 1. Fur-

thermore, since L > 1 we obtain M ′(x) < 0. Finally, it is easy to check the
others properties.

Lemma 4. Let V = V (x) be the function given by

V (x) = G−1 (M(x)) , x > x (2.58)

It satisfies the following properties:

V (x) = x, V (+∞) = +∞, V ′(x) > 0 ∀x > x. (2.59)

Proof. It follows from Lemmas 1 and Lemma 3.
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Lemma 5. If

H >
Q−1(θ)

−T
(2.60)

then the function U = U(x) defined by

U(x) = µ1

(
V (x)

H
+ T

)
, x > x (2.61)

satisfies the following properties:

U (x) = µ1

(
x

H
+ T

)
, U ′(x) > 0, (2.62)

U(x̂) = 0, with x̂ = V −1(−HT ), (2.63)

U(x) ≤ 0 if x ∈ [x, x̂]. (2.64)

Proof. It is easy to see that U is an increasing function because

U ′(x) = µ′1

(
V (x)

H
+ T

)
V ′(x)

H
> 0

From definition (2.11) we have (2.63). Taking into account (2.60) we get
U(x) < 0 and then from (2.62) and (2.63) follows (2.64).

Lemma 6. If data verifies (2.60) then, functions Y = Y (x) and W = W (x)
defined by

Y (x) = erf (V (x)) , x ∈ [x, x̂] (2.65)

and

W (x) = U(x) [M(x)− erf (P (x))] + erf (P (x)) , x ∈ [x, x̂] (2.66)

satisfy the following properties:

Y (x) = erf(x), (2.67)

Y (x̂) = erf(−HT ), (2.68)

Y ′(x) > 0, ∀x ∈ [x, x̂] (2.69)

W (x) = erf(x) + U(x)
R(x)√
π
, (2.70)

W (x̂) = erf(P (x̂)), (2.71)

W ′(x) > 0, ∀x ∈ [x, x̂]. (2.72)

Taking into account the previous Lemmas we can enunciate the following
result:

Theorem 1. If (2.60) holds, then for λ2 ∈ [x, x̂] the system of equations (2.48)
is equivalent to 

(i) Λ = P (λ2) ,

(ii) λ1 = V (λ2),

(iii) W (λ2) = Y (λ2).

(2.73)
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Proof. The solution to the problem (2.48) must satisfy Λ > λ2 and
Λ > λ1. Then from (2.48)(i) we write Λ as function of λ2 and we have
(2.73)(i) for λ2 > x.

In order to obtain (2.73)(ii) we note that (2.48)(ii) is equivalent to

G(λ1) = M(λ2). (2.74)

Moreover since λ2

P (λ2) < 1 we have that L
λ2

P (λ2)
+L−1

> 1 then

M(λ2) > G (P (λ2)) > 1 (2.75)

and from (2.74) and Lemma 1 we can define λ1 = G−1(M(λ2)) = V (λ2).
Moreover this inequality implies that Λ > λ1.

Now, we rewrite (2.48)(iii) as

erf(V (λ2))− erf(P (λ2))

M(λ2)− erf(P (λ2))
= U(λ2)

or equivalently

erf(V (λ2))− erf(P (λ2)) = U(λ2) [M(λ2)− erf(P (λ2))] .

Since Λ > λ1 the left hand of the above equation is negative, it follows that
U(λ2) must be negative and in consequence (2.48)(iii) can be written as
(2.73)(iii) for x < λ2 < x̂. Then the thesis holds.

Lemma 7. If data verifies (2.60) then, there exists a unique solution λ0
2 to

(2.73)(iii).

Proof. We see at once that W (x) < Y (x). It is clear that from (2.75)
follows

V (λ2) < P (λ2), x < λ2 < x̂,

that is to say, erf (V (λ2)) < erf (P (λ2)). In particular, if we take λ2 = x̂, we
get Y (x̂) < W (x̂).

Therefore there exist λ0
2 solution of (2.73)(iii). The uniqueness follows

inmediatly from (2.69) and (2.72).

Theorem 2. If (2.60) holds, then the system of equations (2.73) has a unique
solution λ0

2, Λ0 = P (λ0
2) and λ0

1 = V (λ0
2). Moreover

f1(φ1) =
erf(φ1 + λ0

1)− erf(Λ0)

G(λ0
1)− erf(Λ0)

, 0 < φ1 < Λ0 − λ0
1

f2(φ2) = θ
erf(φ2 + λ0

2)− erf(λ0
2)

erfc(λ0
2)

, 0 < φ2

(2.76)

is the solution to the problem (2.33)− (2.42).

We are thus led to the following strengthening of Theorem 3
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Theorem 3. If Ste < 1 and the heat transfer coefficient h verifies

h >

(
T2 − T1

T1 − T∞

)√
c0k0 Q−1

 1

k0 (T2 − T1)

T2∫
T1

K2 (z) dz

 (2.77)

problem (1.1)−(1.7) with condition (1.8)−(1.10) has the following parametric
explicit solution:

u1(x, t) = T1 + (T2 − T1)µ−1
1

(
erf(

χ1
2
√
τ

+λ0
1)−erf(Λ0)

G(λ0
1)−erf(Λ0)

)
,

0 < χ1 < β(τ) = 2
(
Λ0 − λ0

1

)√
τ , τ > 0

u2(x, t) = T1 + (T2 − T1)µ−1
2

(
θ

erf(
χ2
2
√
τ

+λ0
2)−erf(λ0

2)

erfc(λ0
2)

)
,

χ2 > 0 , τ > 0

(2.78)

x =
√

k0ts
c0

{(
1 + erf(Λ0)

G(λ0
1)−erf(Λ0)

)
χ1

− 2
√
τ

G(λ0
1)−erf(Λ0)

[
( χ1

2
√
τ

+ λ0
1)G

(
χ1

2
√
τ

+ λ0
1

)
− λ0

1G(λ0
1)
]}

,

0 < χ1 < 2
(
Λ0 − λ0

1

)√
τ , τ > 0

x =
√

k0ts
c0

{(
1 + θ2

erf(λ0
2)

erfc(λ0
2)

)
χ2−

− 2
√
τθ2

erfc(λ0
2)

[(
χ2

2
√
τ

+ λ0
2

)
G
(
χ2

2
√
τ

+ λ0
2

)
− λ0

2G(λ0
2)
]
, χ2 > 0 , τ > 0

t = tsτ , τ > 0
(2.79)

where the free boundary is given by

y(t) = 2Ste

√
k0

c0

(
Λ0 − λ0

1

)√
t , t > 0 (2.80)

Proof. Condition (2.77) is equivalent to (2.60) . Then, if (2.77) holds,
from Theorem 2 , problem (2.33)-(2.42) has a unique solution given by (2.76).
If we invert transformations (2.31), (2.32), (2.21), (2.11) and (2.1) we obtain
the expressions for the solution (2.78)-(2.79). From (2.1), (2.19), (2.22) and
(2.43) we have that the free boundary y(t) is given by (2.80) which concludes
the proof.

Remark 3. If we get u1(0, t) = T ∗ constant, we obtain that the convective
boundary condition (1.7) becomes as a heat flux condition of the type:

K1(u1(0, t))
∂u1

∂x
(0, t) =

h[T ∗ − T∞]√
t

, t > 0 h > 0 .
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Then we obtain the same solution as in [7] for this particular case.

3. Conclusions

A nonlinear two-phase unidimensional Stefan problem for a semi-infinite ma-
terial x > 0, with phase change temperature T1, an initial temperature
T2 (> T1) and a convective boundary condition imposed on the fixed face
x = 0 is considered. The volumetric heat capacity and the thermal conduc-
tivity are nonlinear functions of the temperature and they verify a particular
relation in each phase, these relations imply that the material is of Storm’s
type.
For Ste < 1, sufficient conditions on the parameters of the problem are estab-
lished in order to obtain a unique explicit solution. If heat transfer coefficient
h verifies a certain inequality then there exists an instantaneous phase-change
and the corresponding parametric solution is given.
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Depto. de Matemática, F.C.E., Univ. Austral, Paraguay 1950, S2000FZF Rosario,
Argentina
e-mail: fnatale@austral.edu.ar


