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Abstract 

Protein-protein interactions (PPIs) are ubiquitous and functionally of great importance in 

biological systems. Hence, the accurate prediction of PPIs by protein-protein docking and scoring tools 

is highly desirable in order to characterize their structure and biological function. Ab initio docking 

protocols are divided into the sampling of docking poses to produce at least one near-native structure, 

then to evaluate the vast candidate structures by scoring. Concurrent development in both sampling and 

scoring is crucial for the deployment of protein-protein docking software. In the present work, we apply 

a machine learning model on pairwise potentials to refine the task of protein quaternary structure native 

structure detection among decoys. A decoy set was featurized using the Knowledge and Empirical 

Combined Scoring Algorithm 2 (KECSA2) pairwise potential. The highly unbalanced decoy set was then 

balanced using a comparison concept between native and decoy structures. The resultant comparison 

descriptors were used to train a logistic regression (LR) classifier. The LR model yielded the optimal 

performance for native detection among decoys compared to conventional scoring functions, while 

exhibiting lesser performance for the detection of low root mean square deviation (RMSD) decoy 

structures. Its deployment on an independent benchmark set confirms that the scoring function performs 

competitively relative to other scoring functions. Scripts used are available at: 

https://github.com/TanemuraKiyoto/PPI-native-detection-via-LR . 
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INTRODUCTION 

Protein-protein interactions (PPI) are present in the underlying mechanisms of virtually all 

biochemical processes. In terms of drug discovery, they present an alternative and important drug target 

to the traditional small binding pockets of enzyme active sites.1,2 Experimental techniques for protein 

structural characterization such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and 

cryo-electron microscopy have made available high-resolution data for proteins, including those of 

protein-protein complexes.3 Protein-protein docking prediction as a computational method complements 

experimental techniques where experimental approaches do not suffice. Development of protein-protein 

docking methods advances the understanding of the mechanisms of biologically important functions, as 

well as enabling the exploitation of the underlying PPI as a target for therapeutic agents. 

Ab initio protein-protein docking is generally separated into two phases due to the complexity of 

the problem. These phases are the sampling of docking poses followed by their evaluation by means of a 

scoring function.4 For the sampling phase, the protein subunits may be treated as rigid bodies, as is the 

case for the docking algorithms ZDOCK, FTDOCK, and GRAMM.5–7 Backbone flexibility can be 

modeled during the docking phase through normal mode analysis with modest computational cost, as 

exemplified by the flexible docking algorithms ATTRACT and SwarmDock.8,9 Soft surface or 

pseudoatomic representations are typically employed in both rigid-body or flexible docking protocols to 

smooth the potential energy surface and allow faster convergence to energy minima. Sidechain flexibility 

is commonly modelled in the refinement stage after sampling, as is the case in iATTRACT.10 

Due to the copiousness of the predictions generated during the sampling phase, the scoring 

function must achieve high computational efficiency and must accurately assign low energy structures to 

low ranks in the scoring process. Scoring functions belong to broad categories of physics-based, 

knowledge-based, and machine learning (ML)-based. Physics-based scoring functions are widely used 

and include ZRANK, ATTRACT, FASTCONTACT, FireDock, GalaxyTongDock, HawkRank, 

HADDOCK and ClusPro11–18 Energy terms commonly include van der Waals, electrostatic, and 

desolvation potentials. Knowledge-based methods instead tend to apply Boltzmann inversion to the 



frequency of observed interatomic/interresidue distances to approximate relative energies of PPI docking 

predictions. This class of scoring function include InterEvScore, SPIDER, and dDFIRE.19–22 

Compared to classical scoring functions, ML-based methods have the advantage that they do not 

require prior assumptions between the structural data and protein-protein complex stability. This enables 

integrated processing of input data, as was exemplified by the PPI scoring function ProQDock and 

iScore.23,24  Meanwhile, ML-based models are frequently criticized for being a black-box alternative to 

well defined scoring functions. This highlights the need to evaluate not only the performance of ML 

models but also the trends and insights it deduces from the data. 

The random forest (RF) refinement methodology for native detection among decoys has been 

applied by us to protein-folding and protein-ligand decoy detections.25,26 In short, a dataset consisting of 

a native conformer and many decoy structures are featurized using conventional pairwise potentials such 

as the Assisted Model Building with Energy Refinement (AMBER) force field and Knowledge-Based and 

Empirical Combined Scoring Algorithm (KECSA2) pairwise potentials.27,28 The extreme skew in 

representation of decoy and native structures of the dataset is mitigated by comparing the descriptors 

between the native and decoy structures. The balanced dataset is then suitable to train a RF model for 

binary classification. This methodology outperformed conventional programs for decoy detection in 

protein folding and protein-ligand systems. This novel methodology is further explored for scoring PPI 

prediction, using the logistic regression (LR) classifier which is considered a simpler ML model. 

MATERIALS AND METHODS 

Decoy Set 

The Critical Assessment of Scoring Function (CASF) - PPI decoy set was employed in this study, 

which consists of 273 systems with 2000 decoys each.29 The decoys were generated previously by rigid-

body docking using the FTDock software.6 The CASF-PPI decoy set was more suitable than other decoy 

sets to train the ML-based scoring function because it removed artifacts and complications due to the 

docking protocol by using subunits of the bound PPI crystal structure as inputs to rigid-body docking. 



Therefore, each PPI system consisted of one high quality native structure and decoy sets consistent in all 

respect but for the binding mode.  

Featurization of the PPI Complexes 

Let any PPI complex be described as an 𝑛-body system and let all independent pairwise probabilities be 

known. The overall probability of the PPI complex is described as,  
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in which 𝑝,- is the independent probability of particle pair 𝑖 and 𝑗, and 𝑐,- is its empirical scaling 

constant. As a PPI complex, the overall probability can be further be decomposed to bond, angle, 

torsion, and nonbonding interactions as follows, 
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in which 𝑐JK corresponds to the scaling constant and 𝑝JK corresponds to the pairwise probability 

of bond (𝑖𝑗), angle (𝑘𝑙), torsion (𝑚𝑛), and nonbonding interaction (𝑝𝑞). The present work deals with 

decoy structures generated using rigid-body docking, thus bond, angle, and torsional probabilities are 

constant between a native structure and its decoys. The equation can then be rewritten as, 
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for some constant 𝐶. Taking the natural logarithm yields, 

ln 𝑝6789:;< = ln 𝐶 +	 U ln 𝑐9I𝑝9I
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Pairwise nonbonding interaction probabilities were obtained using KECSA2 pairwise potentials.28 

The potential of nonbonding interactions between atoms 𝐴 and 𝐵 with distance 𝑟, were described using 

the following Lennard-Jones type equation: 
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in which parameters 𝜀^ , 𝜀c , 𝜎, 𝛼, and 𝛽 were obtained from the KECSA2 database. Then the 

potentials were translated to relative probabilities by Boltzmann distribution. Constant 𝐶  and scaling 

factors 𝑐9I are cancelled upon generation of the comparison descriptors. 

Generation of Comparison Descriptors 

The skewed representation of native and decoy PPI complexes are balanced using a comparison 

method, previously applied to protein tertiary structure and protein-ligand decoy sets.25,26 The native 

structure was assumed to be more stable than the decoy, thus subtracting the logarithmic probability of 

the decoy from the native structure would result in a more positive vector and vice versa. By performing 

this subtraction, a balanced comparison dataset is generated, consisting of 4000 descriptors per system. 

A target label of ‘0’ was appended for descriptors generated by decoy minus native, and ‘1’ was appended 

for comparison descriptors for the other direction. The comparison descriptors were used as a balanced 

dataset to train the LR model. 

Training and Evaluation of the LR Classifier 

The LR classifier model (sklearn.linear_model.LogisticRegression) was trained on various 

fractions of the shuffled dataset.30 Default values were used for hyperparameters. Training and 

validation sets were standardized by zero mean and unit variance. Each model was subjected to five-fold 

cross validation to obtain training and validation accuracies. Several replicates of the operation were 

performed to ensure sufficient coverage of the decoy set that was partitioned into the training set. Test 

accuracies were computed from the models refit on the training/validation sets. Accuracy is defined as, 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(6) 



for the count of true positive (𝑇𝑃), false positive (𝐹𝑃), true negative (𝑇𝑁), and false negative 

(𝐹𝑁) predictions. Accuracy was amenable for evaluating the performance of the LR classifier because 

the representation of the target label was balanced. 

Scoring and Ranking of Decoy Sets via the LR Classifier 

The PPI complexes for each system were ranked as follows. Let 𝒙, be a descriptor of structure 𝑖. 

Then comparison descriptors were generated by 𝒙, −	𝒙- for all 𝑗	 ≠ 	𝑖, thereby generating 2000 

comparison descriptors. These comparison descriptors were classified by the LR classifier as either '0' or 

'1'. Finally, these labels were summed to provide a score for 𝒙,, in which the greater value was predicted 

to be the more native-like structure. Once all structures were scored, structures were ranked by their 

score in descending order. 

 

Evaluation of Ranks Assigned by the Scoring Function 

Metrics used to evaluate the scoring functions include success rate (SR), modified success rate 

(Y), native ranking, first root mean square deviation (RMSD), first decoy RMSD, and Spearman 

correlation coefficient of ligand RMSD and rank. CAPRI criteria were used to define near-native 

structures.31  

Performances of the LR scoring function were compared to the scoring functions: ATTRACT, 

dDFIRE, FASTCONTACT, and ZRANK.11–13,21 The scores for each scoring function were previously 

calculated and included with the CASF-PPI decoy set.29 

Success Rate 

SR is the probability of finding a near native structure in the top 𝑁 predictions. Let 𝑋	 =

	{𝑋^, 𝑋c,⋯ , 𝑋'} be the set of all PPI systems in the dataset. Let ℎ(𝑋,, 𝑁) be the number of near native 

structures in the top 𝑁 predictions of system 𝑋,. Then we write the success rate as, 

𝑆𝑅(𝑁) =
∑ (ℎ(𝑋,, 𝑁) > 0)'
,z^

𝑛
(7) 

Modified Success Rate 



Y takes into account the fraction of near-native structures identified in the top 𝑁 predictions.32 

Additionally, it assigns a higher score to the lower ranking of near-native structure. It is defined as, 
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Spearman Correlation Coefficient of ligand RMSD and rank 

The ideal funnel shape between ligand RMSD and rank of the scoring function are quantified 

using the Spearman correlation coefficient (𝜌). A more positive 𝜌 is ideal, as it suggests the lower rank 

is associated with lower ligand RMSD and vice versa. 

Fold Enrichment of Near-Native Predictions in First Ranked Structures 

We measure the representation of various qualities of predictions in the first ranked structures 

using the mean of the quotient of observed near-native prediction divided by its expectation 𝐸, and refer 

to it as fold enrichment 𝐹𝐸. The expectation is the probability of arbitrarily choosing a near-native 

structure by sampling exactly one structure from all predictions of a given PPI system.  We define the 

fold enrichment as, 

𝐹𝐸(𝑋) = 	
∑ ℎ(𝑋,, 1)

𝐸(𝑋,)
'
,z^

𝑛 ; 𝐸(𝑋,) = 	
ℎ(𝑋,, |𝑋,|)

|𝑋,|
(9) 

Analysis and Selection of Feature Coefficients 

Median values of coefficients assigned to each feature were obtained from LR classifiers trained 

on 0.99 of the data. The features consist of pairwise nonbonding interactions of heavy atoms of 

residues. The residues were assigned to the following subjective categories: anionic, cationic, polar, 

nonpolar, aromatic, flexible, and small (Table S1). The interactions of the residues were assigned by 

their categories (e.g. cationic-anionic). Distributions of the types of interactions were assessed. 

Features with median coefficients of the greater magnitude were considered more salient. 

Subsets of features were taken as fractions of top salient features, which were used to train LR 



classifiers. The performance of the LR classifiers with reduced dimensions were assessed via the 

aforementioned metrics. 

Flexible Docking of Weng Benchmark 5.0 by ATTRACT  

An independent decoy set was generated as a benchmark to assess the performance of various 

scoring functions. Unbound subunits of the Weng Benchmark 5.0 (BM5) were subjected to ATTRACT 

flexible docking with the iATTRACT interface refinement.8,10,33 Bash script for performing docking was 

obtained from the ATTRACT web interface.34  1000 structures were generated using five normal modes. 

The complexes with the following PDB IDs were not further considered because they required repair of 

missing atoms in the input files to perform docking: 1F51, 1F6M, 1FC2, 1FCC, 1NSN, 1QFW, 1RLB, 

1SYX, 2CFH, 3R9A, 4FZA, 4GAM. The complex, 1N2C, was omitted due to complications with the size 

of the input files. Because the weights of terms in the ZRANK scoring function were fitted on structures 

in the Weng Benchmark 1.0, structures from Benchmark 1.0 were removed for fair comparisons between 

scoring functions.11,35 Out of 186 systems subjected to protein-protein docking, 135 structures contained 

at least one acceptable structure.  

RESULTS AND DISCUSSION 

LR Classifier Achieved High Accuracy on CASF-PPI Test Set 

A learning curve was plotted for the LR classifier trained on various fractions of the decoy set 

(Figure 1). As the fraction of data used as the training set was increased to 0.99, the validation and test 

score approached an accuracy of 0.99. The small differences between training accuracy and validation or 

test accuracy illustrate the proficient model performance generalized to the remainder of the CASF-PPI 

decoy set. The narrow range in each accuracy indicated the model performance was stable. Near optimal 

performance of the LR classifier on the decoy set was observed with a training set fraction of 0.7 or greater. 

Analysis and Selection of Salient Features 



The input data was standardized to zero mean and unit variance. Thus, the magnitude and sign of 

the coefficients provide a measure for salient features in detecting native structures. The coefficients 

plotted in decreasing order displayed a logit shape, with the magnitudes rapidly decreasing toward the 

center of the distribution (Figure 2). This suggests there was a relatively small subset of highly salient 

features, while the majority of features contributed moderately to the classification task. The range of 

coefficients for each feature was narrow, suggesting the similarity in coefficients between models. 

To generalize the types of interactions contributing to the classification, the interacting residues 

were categorized to broad classes and the type of interacting residues were recorded. The density plot 

displayed the representation of a given type of interaction over the features ordered by their coefficient 

values (Figure 2). Qualitatively, interactions between charged residues displayed the highest 

representations at the ends of the distribution, representing coefficients with greater magnitude and 

corresponding with features with greater effect on the classification. This is consistent with ionic 

interactions as the strong, specific, and dynamic nonbonding interaction characteristic to PPIs.36 As 

expected, opposing charges were favored by having a greater density on the side of positive coefficients, 

while like charges had high representation for negative coefficients. 

Aromatic-small residue interactions were also notable on the positive end of coefficients. The 

shape complementarity achieved by hydrophobic residues of opposing sizes has been attributed as a key 

factor affecting PPIs.37 The relatively high representation may signify the importance of shape 

complementarity of hydrophobic residues between interacting proteins. The distribution is contrasted 

from the fairly even distribution of nonpolar-nonpolar interaction, further emphasizing the importance 

of shape complementarity. 

Furthermore, the present LR classifiers represented polar-polar residue interaction with negative 

coefficients. A greater change in potential energy upon the exclusion of water molecules from PPI 

interface upon binding would be expected if favorable interaction between solvent and polar residue 

were absent. The higher density of polar-polar residue with negative coefficients suggests polar residues 



are underrepresented in native PPI interfaces. Thus, the coefficients may implicitly suggest that the 

desolvation energy to be a contributor to the detection of native PPI complexes. 

In summary, the LR classifier appeared to prioritize charge and geometric complementarity 

while disfavoring polar-polar interaction. A more complete plot is available in the SI (Figure S1) 

Dimensionality reduction was pursued by training logistic regression classifiers with features associated 

with coefficients of greater magnitude. Specifically, the features were ordered by the magnitude of the 

median coefficient, then various fractions of the salient features were used as input data. Performance of 

models trained on 0.9 of the data set are reported (Table I). Test accuracy and native ranks appeared to 

peak when around 0.1 of features were selected. Meanwhile, first decoy RMSD was constant between the 

fractions. The improvement in performance may be due to reducing noise arising from superfluous 

features. Refer to SI (Figures S2 - S4) for the full performance metrics.  

The performance of the LR scoring function trained on the 0.1 top features was selected for further 

investigation. By use of a simple ML model coupled with the use of only 0.1 of the most salient features, 

we arrive to a scoring function which ranks thousands of structures in the order of minutes. The 

performance of the new scoring function was benchmarked. 

The LR Scoring Function Was Sensitive towards Native Structures while less responsive to 

Near-Native Structures 

The performance of the LR scoring function trained on the 0.1 top features was compared to those 

of conventional scoring functions (Figure 3). The SR of the LR scoring function was higher than other 

scoring functions. There were little improvements in SR as the threshold quality was relaxed down to 

acceptable predictions. Unlike other scoring functions, the LR scoring function displayed an early 

saturation of SR at about 𝑁	 = 	10. A plateau in Y accompanies this trend, in which the LR scoring 

function displayed little improvement above 𝑁	 = 	10 for thresholds native and high. 

The sensitivity of the LR classifier to native structures was further exemplified in the distribution 

of native ranks between the various scoring functions (Table II). The LR scoring function yielded the 



lowest mean native ranks compared to the other scoring functions. The RMSD of low-ranking structures 

illustrated a different trend. The mean of the first RMSD for the LR scoring function was low due to the 

superior native ranking compared to other scoring functions. Yet the insensitivity of the LR scoring 

function to near native decoy structures was apparent in the distribution of the first decoy RMSD, in 

which the LR scoring function displayed the greatest mean compared to other scoring functions. 

ZRANK notably exhibited the greatest performance for assigning near native structures to low ranks. 

Plots of the distributions are available in the SI (Figure S5). 

A similar comparison was present in the Spearman correlation coefficient between ligand RMSD 

and rank (Figure 4). If only structures with ligand RMSD up to 5	Å  were considered, all scoring 

functions displayed a 𝜌 near 0.5. While other scoring functions preserved a distribution centered at a 

positive value when structures up to 10	Å were considered, 𝜌 for ATTRACT and the LR scoring 

functions returned to a distribution centered at 0.0. All distributions were centered at 0.0 if structures up 

to 20	Å were considered. The relatively early erosion of correlation for ATTRACT and LR scoring 

functions emphasize they are less responsive to near-native decoy structures than other scoring 

functions. In the context of docking protocols which may generate near native predictions but not 

necessarily close matches to the native structure, the sensitivity to near native structures exhibited 

particularly by ZRANK may be more desirable as the accompanying scoring function for rigid-body 

docking. The superior performance of the LR scoring function on detecting native structure suggested 

its utility will lie in flexible docking predictions, in which the structures are predisposed to be of higher 

quality than its early stage rigid body counterparts. This led to the independent assessment of the LR 

scoring function on decoys generated by the ATTRACT flexible docking protocol with the iATTRACT 

interface optimization.8,10 

The LR Scoring Function Performed Competitively on ATTRACT PPI Docking 

Predictions 

We confirmed the performance of the LR scoring function generalizes on the CASF-PPI dataset 

due to its performance on the validation and test sets partitioned from the CASF-PPI dataset. The 



performance was further assessed on ATTRACT flexible docking predictions of PPI complexes in the 

Weng Benchmark 5.0.33 The independent dataset served as assessment for whether the performance of 

the LR model was inflated by correlation in docking protocol between the training and test sets, or 

biases arising by possible artifacts in docking which were not present in the native structure. 

The success rate and modified success rate were determined for predictions ranked by the LR 

scoring function, ATTRACT, and ZRANK (Figure 5). ATTRACT and ZRANK were selected for 

comparison because they performed competitively on the CASF-PPI dataset. While the performance for 

acceptable and medium quality predictions are consistent between the scoring functions assessed, the 

LR scoring function displayed a greater success rate and modified success rate for high quality 

predictions. Due to the scarcity of high-quality predictions, the evidence is anecdotal and qualitative. 

Nevertheless, the LR scoring function appears competitive to other scoring functions on realistic 

docking predictions. 

The LR scoring function is largely rewarded by ranking a greater fraction of high-quality structures 

in 𝑁 = 1. We sought to compare the quality of predictions ranked first by each scoring functions. We use 

the observed quality divided by the probability of arbitrarily choosing a prediction with the quality. The 

mean of these quotients provides a measure of the representation of each quality of prediction in 𝑁 = 1 

compared to expectation of a random ordering, and refer to it as fold enrichment.  

The fold enrichment is summarized (Table III). Generally, there is an increase in representation as 

the quality is improved, suggesting the sensitivity of the ZRANK and LR scoring functions to higher 

quality predictions. The LR scoring function showed a high representation of high & medium-quality 

predictions in 𝑁 = 1, while ZRANK was advantageous for representing acceptable quality predictions as 

top structures. The greater fold enrichment of high & medium-quality predictions by the LR scoring 

function illustrates its greater sensitivity towards high quality predictions when compared to other scoring 

functions. 

CONCLUSIONS 



The LR scoring function or PPI prediction illustrates the RF refinement of pairwise potentials 

extends to protein quaternary structure prediction and performs competitively to conventional scoring 

functions for the task of native detection among PPI decoys. The salient features were consistent with 

terms present in various physics-based scoring functions. The utility of the scoring function was 

highlighted on ATTRACT flexible docking predictions, in which the representation of high-quality 

structures was greater at the top ranked predictions compared to other scoring functions. 
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Figure/Table Legends 

Table I. Performance metrics of the LR classifier trained on various fractions of top salient features. For 

each quantity, the mean, 25th percentile (lower) and 75th percentile (upper) are reported. Four digits are 

reported all values except for lower/upper quantiles of native rank, which are natural numbers. 

 

Table II. Performance metrics of the LR classifier trained on 0.1 top salient features in comparison to 

other scoring functions (SF). For each quantity, the mean, 25th percentile (lower) and 75th percentile 

(upper) are reported. Four digits are reported all values except for lower/upper quantiles of native rank, 

which are natural numbers. 

 

Table III. Fold enrichment in top scoring structures are reported for various scoring functions (SF) and 

quality of prediction. All values were rounded to three significant figures. Sample sizes by quality: 

𝑛�,D� = 6, 𝑛8;?,�8 = 63, 𝑛C66;9FC>:; = 134, 𝑛,'67GG;6F = 186. 

 

Figure 1. The distributions of training (green), validation (blue), and test (red) accuracies of LR classifiers 

trained on various fractions of the decoy set. The baseline is the accuracy achieved by the linear, 

unweighted sum of KECSA2 potentials with no LR refinement. Training and validation accuracies were 

obtained as the mean of the five-fold cross validation results. Test accuracy was calculated from LR 

classifiers refit on the training and validation set. 

 

Figure 2. (top) Median coefficients for each feature in descending order. The curve displayed a logit shape, 

with the magnitude of the coefficients rapidly decreasing toward the center of the distribution. Maximum 

and minimum for each coefficient were plotted as a gray ribbon. (bottom) Density of various types of 

interactions applied to the coefficients ordered in decreasing order. The coordinates for coefficient values 

0.1, 0.0, and −0.1 were indicated. 



 

Figure 3. Comparison of scoring functions by success rate (top) and modified success rate (bottom) for 

various threshold of near-native structures. 

 

Figure 4. Comparison of scoring functions via Spearman correlation coefficient between ligand RMSD 

and rank assigned by scoring function under various maximum RMSD values. 

 

Figure 5. Comparison of scoring functions via success rate (top) and modified success rate (bottom) using 

various thresholds for near-native structures. 

 



Tables 

Table I 

fraction 
test accuracy native rank First decoy ligand RMSD (Å) 

mean lower upper mean lower upper mean lower upper 
1.00 0.9969 0.9968 0.9984 7.216 1 3 22.33 12.63 30.88 
0.50 0.9993 0.9990 0.9997 2.344 1 1 23.68 13.03 31.92 
0.40 0.9990 0.9992 0.9999 3.020 1 1 23.96 13.11 32.46 
0.30 0.9994 0.9995 0.9999 2.285 1 1 23.96 13.80 31.92 
0.20 0.9995 0.9997 0.9999 2.044 1 1 22.63 13.10 31.08 
0.10 0.9997 0.9996 0.9998 1.665 1 1 22.34 12.91 31.10 
0.05 0.9992 0.9990 0.9997 2.585 1 2 23.03 13.23 32.99 

 

Table II 

SF 
native rank First ligand RMSD (Å) First decoy ligand RMSD (Å) 

mean lower upper mean lower upper mean lower upper 
LR 1.665 1 1 5.343 0.000 0.000 22.34 12.91 31.10 

ATTRACT 16.70 1 3 7.256 0.000 12.98 19.90 9.952 28.89 
dDFIRE 68.06 1 109 12.11 0.000 24.07 15.58 1.496 27.85 

FASTCONTACT 129.2 5 116 15.34 2.064 26.43 15.90 2.744 26.58 
ZRANK 13.52 1 3 6.047 0.000 3.336 9.667 0.982 15.75 

 

Table III 

SF 
quality of prediction 

high medium acceptable incorrect 
LR 292 73.0 14.2 0.929 

ATTRACT 20.8 21.3 9.39 0.951 
ZRANK 125 41.3 22.3 0.902 
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