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Abstract

Of concern is the existence and uniqueness of a predator-prey model with Beddington-DeAngelis
functional response and mutual interference. By constructing a suitable Lyapunov function and using
the comparison theorem of ordinary differential equation, we prove that the existence, permanence
and uniqueness of a positive globally attractive almost periodic solution of the model. A more general
and frequent example will be offered to describe our main theorem.
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1. Introduction

With the development of modern agriculture, ecological agriculture has become an inevitable
trend of agricultural development. The construction of ecological agriculture is to combine the de-
velopment of agriculture with the improvement of the environment and form a virtuous circle of
mutual promotion and coordinated development. Population ecology is a science that studies the
relationship between population and environment. It is also one of the basic theories of environ-
mental ecology. The emphasis of the study are the law of spatial distribution, quantity dynamics
of population and its regulatory mechanism. It is the link between different levels of modern ecol-
ogy. Population is the basic unit of species existence, the basic component of biocenosis and the
basis of ecosystem research. Since the 1950s, thanks to the investigation of population mathematical
systems, population ecology have been further developed and formed a new branch of population
mathematical ecology.

Population density is a significant factor to adjust the balance between species. Meanwhile,
interspecific adjustment, the restriction process of predation, parasitism and interspecific competition
for common resource factors on population density, is one of the contents of density adjustment. The
competitive relationships between different populations, or interspecific interactions, are extremely
complex. It can generally be divided into two categories: one is mutually beneficial, called positive
interaction; the other is antagonistic, called negative interaction. Mutualism and predator-prey
relationships are extreme cases of positive and negative interaction, respectively. There are also
various transitional types between these two extreme types. For example, Guan and Chen [31], in
2019, have studied a two species amensalism system with weak Allee effect and Beddington-DeAngelis

IThis research was supported by the National Natural Science Foundation of China (Nos. 11271379 and 11671406).
∗Corresponding author
Email address: sysuldm@163.com (Demou Luo)

Preprint submitted to Mathematical Methods in the Applied Sciences February 21, 2020



functional response 
ẋ(t) = x

(
a1 − b1x−

cy

1 +mx+ ny

)
,

ẏ(t) = y (a2 − b2y)
y

u+ y
.

(1.1)

In 1924-1926, Bohr [4, 5, 6] has established the theory about almost periodic function (APF)
systematically. During the immediate decade, following Bohr’s research, numerous significant works
were finished to APF. We refer researchers to van Kampen [7], Bochner [8, 9] and von Neumann [10].
Almost periodic differential equations (APDEs) can be founded in various fields to characterize some
phenomena such as celestial mechanics, mechanical vibration, electric or ecology system, engineering
technology and so on. In view of its extensive applications from science to engineering, APDEs
has been developed rapidly during the past three decades. Despite a lot of works devoted to the
qualitative properties of periodic solutions (see [21]), but the study of almost periodic solutions
can obtain a more general and extensive application in real world because of the different time-
dependent coefficients in time period. As we know, the traditional tools of solving the qualitative
problems of periodic model cannot be used to solve the same problems of almost periodic issues
due to the compactness of operator. Furthermore, some results are obtained in recent decades,
but there have still many unresolved problems, some of them were not even mentioned in literatures.
Therefore, we claim that it will be significative to begin the investigation of almost periodic differential
equations. In the field of biological dynamic, several useful researches on the APDEs have been
published such as hematopoiesis system [22, 23, 24, 25, 26, 27], cellular neural networks [28, 29]
and so on. During the past two decades, many researchers pay more attention to the basic theory
of almost periodic function. Specially, Bright [34] has developed tight estimates theory for general
averaging and applied to APDEs. Furthermore, Liu and Wang [32] extended Favard separation
method, a significant approach to investigate almost periodic solutions of linear differential equations,
to stochastic differential equations. In addition, Campos and Tarallo [33] have studied asymptotic
dichotomies of APDEs and extended to higher dimensions.

What we mainly concern in this article is the qualitative properties of a predator-prey system
with Beddington-DeAngelis functional response

ki(t)x(t)y(t)

a(t) + c(t)x(t) + d(t)y(t)
. (1.2)

The earliest introduction of this type of functional response was offered by two biologists, Beddington
[11] and DeAngelis [12], respectively at the same time. As we know, there exist several famous
predator-prey model such as Michaelis-Menten-type models (so called ratio-dependent models) [17,
18], Lotka-Volterra models [19, 20] and so on. Moreover, Holling-type II models

ẋ(t) = x(t)(r1(t)− b1(t)x(t))−
k1(t)x(t)y(t)

a(t) + c(t)x(t)
,

ẏ(t) = y(t)(−r2(t)− b2(t)y(t)) +
k2(t)x(t)y(t)

a(t) + c(t)x(t)
,

(1.3)

similar to Beddington-DeAngelis models, have attracted more and more discussion.
Since one of most significant subjects in ecosystem dynamics is the properties of almost periodic

solutions. The existence, uniqueness and stability of almost periodic solutions have been pay more
attention by mathematicians. The readers can refer to [13, 14, 15, 16] and the references cited therein.
To the best of our knowledge, almost no one is concerned about the qualitative properties of almost
periodic solution of a Beddington-DeAngelis predator-pry model. In this paper, stimulated by above
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statements, we will investigate an almost periodic predator-prey model with Beddington-DeAngelis
functional response and mutual interference as follows, which is the generalization of the system (1.3)

ẋ(t) = x(t)(r1(t)− b1(t)x(t))−
k1(t)x(t)y(t)

a(t) + c(t)x(t) + d(t)y(t)
,

ẏ(t) = y(t)(−r2(t)− b2(t)y(t)) +
k2(t)x(t)y(t)

a(t) + c(t)x(t) + d(t)y(t)
.

(1.4)

Here x(t) and y(t), respectively, denote the population density of the prey and predator at time
t. As far as we can survey, this is the pioneering work to investigate the qualitative properties of
almost-periodic solution for a Beddington-DeAngelis predator-prey system with mutual interference
and time delay.

Throughout the entire article, we suppose that the following conditions hold:

(H1) The biological coefficients a(t), c(t), d(t) bi(t), ki(t) and ri(t) (i = 1, 2) are almost periodic
continuous functions;

(H2) all the parameters of the almost periodic model (1.4) satisfy the following two conditions:

max
i=1,2

{au, cu, du, bui , kui , rui } < +∞, (1.5)

min
i=1,2

{al, cl, dl, bli, kli, rli} > 0. (1.6)

The organization of the rest part of this article is as follows: Section 2 contains some lemmas
and the existence theorem of almost periodic solutions of (1.4). We offer the proof of the uniqueness
of almost periodic solutions of (1.4) in Section 3. Section 4 discuss the situation of time delay. In
Section 5, we offer two examples to describe the applicability of our main results. The last section
will provide some remarks and the orientations of investigation.

2. Permanence

This section is mainly focused on some preliminary results and lemmas which will be applied in
what follows.

Lemma 2.1 (Lemma 2.1, [1]). Both the positive cone R2
+ = {(x, y)|x > 0, y > 0} and the nonnegative

cone R2
⋆ = {(x, y)|x ≥ 0, y ≥ 0} of R2 are invariant with respect to (1.4).

Lemma 2.2. If a > 0, b > 0, and ẋ ≥ (≤)x(a− bx), when t ≥ 0 and x(0) > 0, we deduce

lim inf
t→∞

x(t) ≥ a

b

(
lim sup
t→∞

x(t) ≤ a

b

)
. (2.1)

Proof. The proof of Lemma 2.2 is similar to that of the proof of Lemma 2.2 of [2], and we omit the
detail here.

Theorem 2.1. Assume that model (1.4) fulfills the following two conditions:

(H1) r
l
1 >

ku1M2

al
,

(H2) r
u
2 <

kl2m1

au+cuM1+duM2
.
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Then model (1.4) possesses permanence which implies that any positive solution (x(t), y(t)) to the
model (1.4) fulfills

0 < m1 ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M1,

0 < m2 ≤ lim inf
t→∞

y(t) ≤ lim sup
t→∞

y(t) ≤M2.
(2.2)

Proof. Based on the first equation of the model (1.4), we deduce that:

ẋ(t) ≤ x(t)(ru1 − bl1x(t)). (2.3)

Employing Lemma 2.2 into (2.3), we obtain

lim sup
t→∞

x(t) ≤ ru1
bl1

=M1. (2.4)

According to (2.4), there possesses a positive constant T1 large enough for enough small constant
ε > 0 such that

x(t) ≤M1 + ε (2.5)

for all t ≥ T1. We denote y(t) = 1
u(t)

> 0. Applying the second equation of the model (1.4) and (2.5)
leads to

u̇(t) =u(t)

(
r2(t) + b2(t)

1

u(t)

)
− k2(t)x(t)u

2(t)

a(t)u(t) + c(t)x(t)u(t) + d(t)

≥u(t)
(
b2(t)

1

u(t)
− k2(t)x(t)u(t)

a(t)u(t) + c(t)x(t)u(t) + d(t)

)
≥u(t)

(
bl2

1

u(t)
− ku2 (M1 + ε)

al + cl(M1 + ε)

) (2.6)

for any t ≥ T1. If we set ε→ 0 in (2.6), we have

u̇(t) ≥ u(t)

(
bl2

1

u(t)
− ku2M1

al + clM1

)
. (2.7)

Therefore, based on the transformation y(t) = 1
u(t)

, we get

ẏ(t) = − u̇(t)

u2(t)
≤ − 1

u(t)

(
bl2

1

u(t)
− ku2M1

al + clM1

)
= y(t)

(
ku2M1

al + clM1

− bl2y(t)

)
. (2.8)

Using Lemma 2.2 to (2.8) leads to

lim sup
t→∞

y(t) ≤ ku2M1

bl2(a
l + clM1)

=M2. (2.9)

Based on the last inequality, there possesses a T2 > T1 such that

y(t) ≤M2 + ε (2.10)

for above small enough constant ε > 0. From the first equation of system (1.4), we obtain

ẋ(t) ≥ x(t)(rl1 − bu1x(t))−
ku1x(t)(M2 + ε)

al
= x(t)

((
rl1 −

ku1 (M2 + ε)

al

)
− bu1x(t)

)
. (2.11)
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If we set ε→ 0 in (2.11), we have

ẋ(t) ≥ x(t)

((
rl1 −

ku1M2

al

)
− bu1x(t)

)
. (2.12)

Based on (H1) and Lemma 2.2 to (2.12), we derive that:

lim inf
t→∞

x(t) ≥
rl1 −

ku1M2

al

bu1
=
rl1
bu1

− ku1
albu1

· ku2M1

bl2(a
l + clM1)

= m1. (2.13)

Based on (2.13), for above enough small constant ε > 0, there possesses a T3 ≥ T2 such that

x(t) ≥ m1 − ε (2.14)

for all t ≥ T3. Hence, by setting the estimates (2.10) and (2.14) into the second equation of (1.4),
we have

ẏ(t) =y(t)

[
(−r2(t)− b2(t)y(t)) +

k2(t)x(t)

a(t) + c(t)x(t) + d(t)y(t)

]
≥y(t)

[(
kl2(m1 − ε)

au + cu(M1 + ε) + du(M2 + ε)
− ru2

)
− bu2y(t)

]
.

(2.15)

If we take the limit by setting ε→ 0, we deduce that:

ẏ(t) ≥ y(t)

[(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2y(t)

]
. (2.16)

Based on (H2) and Lemma 2.2 to (2.16), we derive that:

lim inf
t→∞

y(t) ≥
kl2m1

au+cuM1+duM2
− ru2

bu2
=

kl2m1

bu2 [a
u + cuM1 + duM2]

− ru2
bu2

= m2. (2.17)

According to (2.17), there possesses a T4 ≥ T3 which can guarantee that

y(t) ≥ m2 − ε (2.18)

for above ε > 0 and for all t ≥ T4.
Together with Eqs. (2.4), (2.9), (2.13) and (2.17), we can draw a conclusion that system (1.4)

possesses permanence under the hypothesis of the Theorem 2.1. This completes the proof of Theorem
2.1.

Theorem 2.2. Assume that S stand for the set of all solutions w(t) = (x(t), y(t))T of (1.4) on R
fulfilling m1 ≤ x(t) ≤M1, m2 < y(t) < M2 for t ∈ R. Then S ̸= ∅.

Proof. According to the theory of almost periodic function, there possesses a sequence {tn}, lim
n→∞

tn =

∞, such that

a(t+ tn) → a(t), c(t+ tn) → c(t), d(t+ tn) → d(t),

bi(t+ tn) → bi(t), ki(t+ tn) → ki(t), ri(t+ tn) → ri(t), i = 1, 2,
(2.19)

uniformly on R as n→ ∞. Assume that w(t) is a solution of system (1.4) fulfilling m1 ≤ x(t) ≤M1,
m2 < y(t) < M2 for t > T. It is obvious that the sequence w(t + tn) = (x(t + tn), y(t + tn))

T is
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equicontinuous and uniformly bounded on each bounded subset of R. Applying Ascoli’s theorem
leads to

lim
k→∞

w(t+ tk) = lim
k→∞

(x(t+ tk), y(t+ tk))
T = z(t) = (z1(t), z2(t)), (2.20)

where w(t+ tk) represents a subsequence of w(t+ tn) uniformly on each bounded subset, z(t) stands
for a continuous function. For any given T1 ∈ R. For all positive integer n, we can suppose that
tk + T1 ≥ T. Therefore, if t ≥ 0, we obtain

x(t+ tk + T1)− x(tk + T1) =

∫ t+T1

T1

x(s+ tk) (r1(s+ tk)− b1(s+ tk)x(s+ tk)

− k1(s+ tk)y(s+ tk)

a(s+ tk) + c(s+ tk)x(s+ tk) + d(s+ tk)y(s+ tk)

)
,

y(t+ tk + T1)− y(tk + T1) =

∫ t+T1

T1

y(s+ tk) (−r2(s+ tk)− b2(s+ tk)y(s+ tk)

+
k2(s+ tk)x(s+ tk)

a(s+ tk) + c(s+ tk)x(s+ tk) + d(s+ tk)y(s+ tk)

)
.

(2.21)

If we let n→ ∞ in (2.19), together with Lebesgue’s dominated convergence theorem, we derive that:

z1(t+ T1)− z1(T1) =

∫ t+T1

T1

z1(s)

(
r1(s)− b1(s)z1(s)−

k1(s)z2(s)

a(s) + c(s)z1(s) + d(s)z2(s)

)
,

z2(t+ T1)− z2(T1) =

∫ t+T1

T1

z2(s)

(
−r2(s)− b2(s)z2(s) +

k2(s)z1(s)

a(s) + c(s)z1(s) + d(s)z2(s)

) (2.22)

for all t ≥ 0. T1 ∈ R is selected randomly. For this reason, system (1.4) possesses a solution
z(t) = (z1(t), z2(t)) on R. It is obvious that m1 ≤ x(t) ≤ M1, m2 < y(t) < M2 for t ∈ R. Therefore,
z(t) ∈ S. This ends the proof of Theorem 2.1.

3. Existence and uniqueness of almost periodic solution of system (1.4)

In this section, we focus on the existence of a unique almost periodic solution of system (1.4). At
first, we introduce the accurate definition of almost periodic function.

Definition 3.1 (Definition 1.1, [3]). A function f(t) is termed to be almost periodic (Bohr) if for
any given ε > 0, the set

T (f, ε) = {τ ; |f(t+ τ)− f(t)| < ε, ∀t ∈ R} (3.1)

is relatively dense, i.e., it is possible to discover an ε-translation constant l = l(ε) > 0 such that there
possesses an ε-translation number τ = τ(ε) ∈ T (f, ε) in any interval with length l(ε) such that

|f(t+ τ)− f(t)| < ε (3.2)

is fulfilled for any t ∈ R.

Theorem 3.1. Assume that all conditions of Theorem 2.1 are hold and further that the parameters
of (1.4) fulfill the under-mentioned conditions:

(C1) b
l
1 >

ku1 c
uM2+auku2
(al)2

;
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(C2) b
l
2 >

ku1 d
uM2

(al)2
+

ku1
al
.

If w1(t) = (x1(t), y1(t))
T and w2(t) = (x2(t), y2(t))

T stand for, respectively, two positive solutions of
(1.4), we obtain

lim
t→∞

|w1(t)−w2(t)| = 0. (3.3)

Proof. We assume that system (1.4) possesses two positive solutions w1(t) = (x1(t), y1(t))
T and

w2(t) = (x2(t), y2(t))
T . In view of (C1), there possesses a small enough positive constant ε guarantee

that

m1 − ε < x1 < M1 + ε, m1 − ε < x2 < M1 + ε,

m2 − ε < y1 < M2 + ε, m2 − ε < y2 < M2 + ε.
(3.4)

We focus on the upper right derivatives of

V1(t) =

∣∣∣∣ln x1(t)x2(t)

∣∣∣∣ . (3.5)

It is obvious by a direct computation with (3.4) that

D+V1(t)

=− |x1(t)− x2(t)|b1(t)−
(

sgn(x1(t)− x2(t))y1(t)

a(t) + c(t)x1(t) + d(t)y1(t)
− sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x2(t) + d(t)y2(t)

)
k1(t)

=− |x1(t)− x2(t)|b1(t) +
(

sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x2(t) + d(t)y2(t)
− sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x1(t) + d(t)y1(t)

)
k1(t)

+

(
sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x1(t) + d(t)y1(t)
− sgn(x1(t)− x2(t))y1(t)

a(t) + c(t)x1(t) + d(t)y1(t)

)
k1(t)

≤− |x1(t)− x2(t)|b1(t) +
k1(t)c(t)y2(t)

a(t)(a(t) + c(t)x1(t) + d(t)y1(t))
|x1(t)− x2(t)|

+
k1(t)d(t)y2(t)

a(t)(a(t) + c(t)x1(t) + d(t)y1(t))
|y1(t)− y2(t)|+

k1(t)

a(t)
|y2(t)− y1(t)|

=−
(
b1(t)−

k1(t)c(t)y2(t)

a(t)(a(t) + c(t)x1(t) + d(t)y1(t))

)
|x1(t)− x2(t)|

+

(
k1(t)d(t)y2(t)

a(t)(a(t) + c(t)x1(t) + d(t)y1(t))
+
k1(t)

a(t)

)
|y1(t)− y2(t)|.

(3.6)

By the same method, we define

V2(t) =

∣∣∣∣ln y1(t)y2(t)

∣∣∣∣ . (3.7)

It is obvious by a direct computation with (3.4) that

D+V2(t)

=− |y1(t)− y2(t)|b2(t) +
(

sgn(y1(t)− y2(t))x1(t)

a(t) + c(t)x1(t) + d(t)y1(t)
− sgn(y1(t)− y2(t))x2(t)

a(t) + c(t)x2(t) + d(t)y2(t)

)
k2(t)

≤k2(t)sgn(y1(t)− y2(t))
(a(t) + d(t)y2(t))(x1(t)− x2(t)) + d(t)x2(t)(y2(t)− y1(t))

[a(t) + c(t)x1(t) + d(t)y1(t)][a(t) + c(t)x2(t) + d(t)y2(t)])

− |y1(t)− y2(t)|b2(t)

≤− b2(t)|y1(t)− y2(t)|+
k2|x1(t)− x2(t)|

a(t) + c(t)x1(t) + d(t)y1(t)
.

(3.8)
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Now we introduce the following function

V(t) = V1(t) + V2(t) =

∣∣∣∣ln x1(t)x2(t)

∣∣∣∣+ ∣∣∣∣ln y1(t)y2(t)

∣∣∣∣ . (3.9)

Thus, it is known via a simple calculation that

D+V(t) ≤−
(
b1(t)−

k1(t)c(t)y2(t)

a(t)(a(t) + c(t)x1(t) + d(t)y1(t))
− k2
a(t) + c(t)x1(t) + d(t)y1(t)

)
|x1(t)− x2(t)|

−
(
b2(t)−

k1(t)d(t)y2(t)

a(t)(a(t) + c(t)x1(t) + d(t)y1(t))
− k1(t)

a(t)

)
|y1(t)− y2(t)|

≤ −
(
bl1 −

ku1 c
u(M2 + ε) + ku2a

u

(al)2

)
|x1(t)− x2(t)| −

(
bl2 −

ku1d
u(M2 + ε)

(al)2
− ku1
al

)
|y1(t)− y2(t)|

(3.10)

In view of conditions (C1), we can effortlessly deduce that there possesses an small enough ε > 0
guarantee

ρ1(ε) = bl1 −
ku1 c

u(M2 + ε) + ku2a
u

(al)2
> ε,

ρ2(ε) = bl2 −
ku1d

u(M2 + ε)

(al)2
− ku1
al
> ε.

(3.11)

Therefore, we discover that there exists two constants ε > 0 and α(ε) > 0 such that

D+V(t) + ε|x1(t)− x2(t)|+ α(ε)|y1(t)− y2(t)| ≤ 0 (3.12)

Integrating the last inequality from T to t, one gets

V(t) + ε|x1(t)− x2(t)|+ α(ε)|y1(t)− y2(t)| < V(T) < +∞. (3.13)

Thus,

lim sup
t→∞

∫ t

T
|x1(s)− x2(s)|ds <

V(T)
ε

< +∞,

lim sup
t→∞

∫ t

T
|y1(s)− y2(s)|ds <

V(T)
α(ε)

< +∞.

(3.14)

That means

lim
t→∞

|x1(t)− x2(t)| = 0, lim
t→∞

|y1(t)− y2(t)| = 0. (3.15)

This ends the proof of Theorem 3.1.

Theorem 3.2. Assume that all conditions proposed by Theorem 3.1 hold. Then there possesses a
unique almost periodic solution (APS) of (1.4).

Proof. In view of Theorem 2.2, there possesses a positive bounded solution v(t) = (v1(t), v2(t))
T

for t ≥ 0. Let us denote that v(t) stand for a solution of system (1.4). Thus, we can construct a
sequence {tks}, lim

ks→∞
tks = ∞, to guarantee that v(t + tks) = (v1(t + tks), v2(t + tks))

T represents a

solution of the undermentioned model:
ẋ(t) = x(t)(r1(t+ tks)− b1(t+ tks)x(t))−

k1(t+ tks)x(t)y(t)

a(t+ tks) + c(t+ tks)x(t) + d(t+ tks)y(t)
,

ẏ(t) = y(t)(−r2(t+ tks)− b2(t+ tks)y(t)) +
k2(t+ tks)x(t)y(t)

a(t) + c(t+ tks)x(t) + d(t+ tks)y(t)
,

(3.16)
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Together with Theorem 2.1, we can discover that v̇1(t + tks) and v̇2(t + tks) are uniformly bounded
too. Hence, v1(t+tks) and v2(t+tks) are equicontinuous. Then there, together with Ascoli’s theorem,
possess two subsequence {v1(t + t′ks)} ⊆ {v1(t + tks)} and {v2(t + t′ks)} ⊆ {v2(t + tks)} which can
guarantee that there have two positive constant M , N and K(ϵ) for any enough small ε1 > 0 and
ε2 > 0 with the property that when ks, M , N > K(ϵ), one gets

|v1(t+ tM)− v1(t+ tks)| < ε1, |v2(t+ tN)− v2(t+ tks)| < ε2. (3.17)

By setting ϵ = max{ε1, ε2}, we obtain that v1(t) and v2(t) represent asymptotically APFs. Moreover,
v1(t) (or v2(t)), defined on R, are the sun function of A1(t + tk) (or A2(t + tk)) and B1(t + tk) (or
B2(t + tk)), where A1(t + tk) (or A2(t + tk)) is a continuous function and B1(t + tk) (or B2(t + tk))
is an APF, such that for all t ∈ R,

v1(t+ tk) = A1(t+ tk) + B1(t+ tk), v2(t+ tk) = A2(t+ tk) +B2(t+ tk), (3.18)

where

lim
k→∞

A1(t+ tk) = 0 = lim
k→∞

A2(t+ tk), lim
k→∞

B1(t+ tk) = B1(t), lim
k→∞

B2(t+ tk) = B2(t). (3.19)

Hence, Bi(t) (i = 1, 2) stand for two APFs. It shows that for i = 1, 2, lim
k→∞

v̇i(t + tk) = Bi(t).

Furthermore,

lim
k→∞

v̇i(t+ tk) = lim
k→∞

lim
σ→0

vi(t+ tk + σ)− vi(t+ tk)

σ
= lim

σ→0
lim
k→∞

vi(t+ tk + σ)− vi(t+ tk)

σ

= lim
σ→0

vi(t+ σ)− vi(t)

σ
= lim

σ→0

Bi(t+ σ)−Bi(t)

σ

(3.20)

What we can deduce is that for i = 1, 2 the limit Ḃi(t) exist. In the rest part of this proof, we will
deduce that (B1(t), B2(t))

T represents an APS of (1.4). Based on (2.19), together with the statement
proposed by Theorem 2.2, it is effortless to check that lim

n→∞
vi(t+ tn) = Bi(t) for i = 1, 2. Hence,

Ḃ1(t) = lim
n→∞

v̇1(t+ tn)

= lim
n→∞

v1(t+ tn) [(r1(t+ tn)− b1(t+ tn)v1(t+ tn))

− k1(t+ tn)v2(t+ tn)

a(t+ tn) + c(t+ tn)v1(t+ tn) + d(t+ tn)v2(t+ tn)

]
=B1(t)

[
(r1(t)− b1(t)B1(t))−

k1(t)B2(t)

a(t) + c(t)B1(t) + d(t)B2(t)

]
.

By the same method, we have

Ḃ2(t) = B2(t)(−r2(t)− b2(t)B2(t)) +
k2(t)B1(t)B2(t)

a(t) + c(t)B1(t) + d(t)B2(t)
.

It means that (B1(t), B2(t))
T fulfilled (1.4) and is a positive APS. Then there possesses a unique

APS of (1.4) together with Theorem 3.1. This ends the proof of Theorem 3.2.

Remark 3.1. Suppose that d(t) ≡ 0, then system (1.4), equivalent to (1.3), represents an almost
periodic Holling-type II predator-prey reaction-diffusion model. We can discover that all results es-
tablished by this article can be also applied to Holling-type II system.
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4. Time delay system

Recently, Zhang et al. [35] investigated an interesting system with impulsive effects and time
delays 

dxi(t)

dt
= xi(t)

[
ai − bi(t)xi(t− τi(t)) +

n∑
j=1,j ̸=i

cij(t)
xj(t)

1 + xj(t)

]
, t ̸= tk,

xi(t
+
k ) = (1 + hik)xi(tk), k ∈ Z+, i = 1, 2, · · · , n,

under initial conditions

xi(η) = ψi(η), η ∈ [−τ, 0], ψ(η) ∈ C([−τ, 0],R+), i = 1, 2, · · · , n. (4.1)

Thus, we claim that it will be interesting to consider the qualitative properties of an almost-periodic
Beddington-DeAngelis predator-prey system with mutual interference and time delay since it can
extend the predecessors results.

In this section, we propose and study the following time-delay model
ẋ(t) = x(t)

(
r1(t)− b1(t)x(t− τ1(t))−

k1(t)y(t)

a(t) + c(t)x(t) + d(t)y(t)

)
,

ẏ(t) = y(t)

(
−r2(t)− b2(t)y(t− τ2(t)) +

k2(t)x(t)

a(t) + c(t)x(t) + d(t)y(t)

)
,

(4.2)

As far as we can survey, this is the first article to study the existence and global stability of almost
periodic positive solution of Beddington-DeAngelis predator-prey model with time-delay and mutual
interference.

4.1. Permanence

Theorem 4.1. Assume that system (4.2) satisfies the following conditions:

(H1) r
l
1 >

ku1
dl
,

(H2)
kl2m1

au+cuM1+duM2
> ru2 ,

Then model (4.2) possesses permanence which means that any positive solution (x(t), y(t)) to the
model (4.2) fulfills

0 < m1 ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M1,

0 < m2 ≤ lim inf
t→∞

y(t) ≤ lim sup
t→∞

y(t) ≤M2,

where

M1 =
ru1
bl1

exp (ru1τ) ,

m1 =
rl1 −

ku1
dl

bu1
exp

{[(
rl1 −

ku1
dl

)
− bu1M1

]
τ

}
,

M2 =
ku2M1

bl2(a
l + clM1)

exp

(
ku2M1

al + clM1

τ

)
,

m2 =

(
kl2m1

bu2 (a
u + cuM1 + duM2)

− ru2
bu2

)
exp

{[(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2M2

]
τ

}
.
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Proof. Based on the first equation of the system (4.2), we deduce that:

ẋ(t) ≤ x(t)
[
ru1 − bl1x(t− τ1(t))

]
, t > τ. (4.3)

Here and subsequently, x(t) denotes any local maximal value of x(t). Thanks to (4.3), we obtain
that

0 = ẋ(t) ≤ x(t)
[
ru1 − bl1x(t− τ1(t))

]
. (4.4)

Based on (4.4), we obatin

x(t− τ1(t)) ≤
ru1
bl1
, t > τ. (4.5)

Integrating both sides of (4.3) on interval [t− τ1(t), t], we get that

ln
x(t)

x(t− τ1(t))
≤

∫ t

t−τ1(t)

[
ru1 − bl1x(t− τ1(t))

]
dt ≤ ru1τ. (4.6)

Together with (4.5) and (4.6), we deduce that

x(t) ≤ ru1
bl1

exp (ru1τ) ≡M1. (4.7)

We need to notice that x(t) stands for any local maximal value of x(t), hence there possesses a
T1 > τ , for t > T1, one has

x(t) ≤M1. (4.8)

From the first equation of system (4.2), we have

ẋ(t) ≥ x(t)

[(
rl1 −

ku1
dl

)
− bu1x(t− τ1(t))

]
, t > τ. (4.9)

Here and subsequently, x(t̃) denotes any local minimal value of x(t). Thanks to (4.9), we obtain that

0 = ẋ(t̃) ≥ x(t̃)

[(
rl1 −

ku1
dl

)
− bu1x(t̃− τ1(t̃))

]
. (4.10)

Based on (4.10), we obatin

x(t̃− τ1(t̃)) ≥
rl1 −

ku1
dl

bu1
. (4.11)

Integrating both sides of (4.9) on interval [t̃− τ1(t̃), t̃], noticing that
(
rl1 −

ku1
dl

)
− bu1x(t̃− τ1(t̃)) ≤ 0,

we obtain

ln
x(t̃)

x(t̃− τ1(t̃))
≥

∫ t̃

t̃−τ1(t̃)

[(
rl1 −

ku1
dl

)
− bu1x(t− τ1(t))

]
dt ≥

[(
rl1 −

ku1
dl

)
− bu1M1

]
τ. (4.12)

Together with (4.11) and (4.12), we deduce that

x(t̃) ≥
rl1 −

ku1
dl

bu1
exp

{[(
rl1 −

ku1
dl

)
− bu1M1

]
τ

}
≡ m1 (4.13)
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Hence there possesses a T2 > τ , for t > T2, one has

x(t) ≥ m1.

We denote y(t) = 1
u(t)

> 0 and y(t − τ2(t)) = 1
u(t−τ2(t))

> 0. Applying the second equation of the

system (4.2) leads to

u̇(t) =u(t)

(
r2(t) +

b2(t)

u(t− τ2(t))
− k2(t)x(t)u(t)

a(t)u(t) + c(t)x(t)u(t) + d(t)

)
≥u(t)

(
b2(t)

u(t− τ2(t))
− k2(t)x(t)u(t)

a(t)u(t) + c(t)x(t)u(t) + d(t)

)
≥u(t)

(
bl2

u(t− τ2(t))
− ku2M1

al + clM1

)
.

(4.14)

Therefore, based on the transformation y(t) = 1
u(t)

, we get

ẏ(t) = − u̇(t)

u2(t)
≤ − 1

u(t)

(
bl2

u(t− τ2(t))
− ku2M1

al + clM1

)
= y(t)

[
ku2M1

al + clM1

− bl2y(t− τ2(t))

]
. (4.15)

Here and subsequently, y(t) denotes any local maximal value of y(t). Thanks to (4.15), we obtain
that

0 = ẏ(t) ≤ y(t)

[
ku2M1

al + clM1

− bl2y(t− τ2(t))

]
. (4.16)

Based on (4.16), we obatin

y(t− τ2(t)) ≤
ku2M1

bl2(a
l + clM1)

. (4.17)

Integrating the last inequality (4.17) on interval [t− τ2(t), t], we have

ln
y(t)

y(t− τ(t))
≤

∫ t

t−τ(t)

[
ku2M1

al + clM1

− bl2y(t− τ2(t))

]
dt ≤ ku2M1

al + clM1

τ. (4.18)

Together with (4.17) and (4.18), we deduce that

y(t) ≤ ku2M1

bl2(a
l + clM1)

exp

(
ku2M1

al + clM1

τ

)
≡M2. (4.19)

We need to notice that y(t) stands for any local maximal value of y(t), hence there possesses a T3 > τ ,
for t > T3, one has

y(t) ≤M2. (4.20)

From the second equation of system (4.2), we have

ẏ(t) ≥ y(t)

[(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2y(t− τ2(t))

]
, t > τ. (4.21)

Here and subsequently, y(t̃) denotes any local minimal value of y(t). Thanks to (4.21), we obtain
that

0 = ẏ(t̃) ≥ ẏ(t̃)

[(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2y(t̃− τ2(t̃))

]
. (4.22)
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Based on (4.22), we obatin

y(t̃− τ2(t̃)) ≥
kl2m1

bu2 (a
u + cuM1 + duM2)

− ru2
bu2
. (4.23)

Integrating both sides of (4.21) on interval [t̃− τ2(t̃), t̃], noticing that(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2y(t̃− τ2(t̃)) ≤ 0,

we obtain

ln
y(t̃)

y(t̃− τ2(t̃))
≥
∫ t̃

t̃−τ2(t̃)

[(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2y(t− τ2(t))

]
dt

≥
[(

kl2m1

au + cuM1 + duM2

− ru2

)
− bu2M2

]
τ.

(4.24)

Together with (4.23) and (4.24), we deduce that

y(t̃) ≥
(

kl2m1

bu2 (a
u + cuM1 + duM2)

− ru2
bu2

)
exp

{[(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2M2

]
τ

}
≡ m2.

(4.25)

Hence there possesses a T4 > τ , for t > T4, one has

y(t) ≥ m2.

This ends the proof of Theorem 4.1.

Theorem 4.2. Assume that S stand for the set of all solutions w(t) = (x(t), y(t))T of (4.2) on R
fulfilling m1 ≤ x(t) ≤M1, m2 < y(t) < M2 for t ∈ R. Then S ̸= ∅.

The proof of Theorem 4.2 is similar to the proof of Theorem 2.2. Hence, it is omitted.

4.2. Global asymptotical stability

Theorem 4.3. Assume that all conditions of Theorem 4.1 are hold and further that the parameters
of (4.2) fulfill the under-mentioned conditions:

(H3) lim inf
t→+∞

Li(t) > 0, i = 1, 2,

where

L1(t) =

(
bl1 −

ku1 c
uM2 + ku2a

l

al [al + clm1 + dlm2]

)
−

(
r1(t) +M1b1(t) +

k1(t)M2

al + clm1 + dlm2

)∫ ϕ−1
1 (t)

t

b1(u)du

− k1(t)c
uM1M2

(al + clm1 + dlm2)
2

∫ ϕ−1
1 (t)

t

b1(u)du−
M1b1(ϕ

−1
1 (t))

ϕ̇1(ϕ
−1
1 (t))

∫ ϕ−1
1 (ϕ−1

1 (t))

ϕ−1
1 (t)

b1(u)du

− k2(t)[a
u + duM2]M2

(al + clm1 + dlm2)
2

∫ ϕ−1
2 (t)

t

b2(u)du
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and

L2(t) =b
l
2 −

ku1
al

(
1 +

duM2

al + clm1 + dlm2

)
−
(
r2(t) + b2(t)M2 +

k2(t)M1

al + clm1 + dlm2

)∫ ϕ−1
2 (t)

t

b2(u)du

− k2(t)d
uM1M2

(al + clm1 + dlm2)
2

∫ ϕ−1
2 (t)

t

b2(u)du−
M2b2(ϕ

−1
2 (t))

ϕ̇2(ϕ
−1
2 (t))

∫ ϕ−1
2 (ϕ−1

2 (t))

ϕ−1
2 (t)

b2(u)du

− k1(t)(a
u + cu)M2

1

(al + clm1 + dlm2)
2

∫ ϕ−1
1 (t)

t

b1(u)du,

in which ϕ−1
i stands for the inverse function of ϕi(t) = t− τi(t)(i = 1, 2), respectively.

If w1(t) = (x1(t), y1(t))
T and w2(t) = (x2(t), y2(t))

T stand for, respectively, two positive solutions
of (4.2), we obtain

lim
t→∞

|w1(t)−w2(t)| = 0. (4.26)

Proof. We assume that system (4.2) possesses two positive solutions w1(t) = (x1(t), y1(t))
T and

w2(t) = (x2(t), y2(t))
T . Thanks to Theorem 4.1, there has a positive constant T , such that

m1 ≤ xi ≤M1, m2 ≤ yi ≤M2, i = 1, 2. (4.27)

Throughout the proof,

V11(t) = |lnx1(t)− lnx2(t)| .

Thus, we obtain the upper right derivative of V11 along system (4.2)

D+V11(t) =− sgn(x1(t)− x2(t)) [x1(t− τ1(t))− x2(t− τ1(t))] b1(t)

−
(

sgn(x1(t)− x2(t))y1(t)

a(t) + c(t)x1(t) + d(t)y1(t)
− sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x2(t) + d(t)y2(t)

)
k1(t)

=− sgn(x1(t)− x2(t)) [x1(t− τ1(t))− x2(t− τ1(t))] b1(t)

+

(
sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x2(t) + d(t)y2(t)
− sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x1(t) + d(t)y1(t)

)
k1(t)

+

(
sgn(x1(t)− x2(t))y2(t)

a(t) + c(t)x1(t) + d(t)y1(t)
− sgn(x1(t)− x2(t))y1(t)

a(t) + c(t)x1(t) + d(t)y1(t)

)
k1(t).

By applying the following inequality −sgn(a) · b ≤ −|a|+ |a− b|(a, b ∈ R) we get that

D+V11(t) ≤− b1(t) |x1(t)− x2(t)|+ b1(t)

∣∣∣∣∫ t

t−τ1(t)

(ẋ1(s)− ẋ2(s))ds

∣∣∣∣+ k1(t)

a(t)
|y2(t)− y1(t)|

+
k1(t)c(t)y2(t)|x1(t)− x2(t)|

a(t)[a(t) + c(t)x1(t) + d(t)y1(t)]
+

k1(t)d(t)y2(t)|y1(t)− y2(t)|
a(t)[a(t) + c(t)x1(t) + d(t)y1(t)]

≤− bl1 |x1(t)− x2(t)|+ b1(t)

∣∣∣∣∫ t

t−τ1(t)

(ẋ1(s)− ẋ2(s))ds

∣∣∣∣+ ku1
al
|y2(t)− y1(t)|

+
ku1 c

uM2

al[al + clm1 + dlm2]
|x1(t)− x2(t)|+

ku1d
uM2

al[al + clm1 + dlm2]
|y1(t)− y2(t)|.

(4.28)
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By substituting the first equation of (4.2) into (4.28), we deduce that

D+V11(t)

≤− bl1 |x1(t)− x2(t)|+
ku1 c

uM2|x1(t)− x2(t)|
al[al + clm1 + dlm2]

+
ku1d

uM2|y1(t)− y2(t)|
al[al + clm1 + dlm2]

+
ku1
al
|y2(t)− y1(t)|

+ b1(t)

∣∣∣∣∫ t

t−τ1(t)

{
x1(s)

[
r1(s)− b1(s)x1(s− τ1(s))−

k1(s)y1(s)

a(s) + c(s)x1(s) + d(s)y1(s)

]
−x2(s)

[
r1(s)− b1(s)x2(s− τ1(s))−

k1(s)y2(s)

a(s) + c(s)x2(s) + d(s)y2(s)

]}
ds

∣∣∣∣
=− bl1 |x1(t)− x2(t)|+

ku1 c
uM2|x1(t)− x2(t)|

al[al + clm1 + dlm2]
+
ku1d

uM2|y1(t)− y2(t)|
al[al + clm1 + dlm2]

+
ku1
al
|y2(t)− y1(t)|

+ b1(t)

∣∣∣∣∫ t

t−τ1(t)

{[
r1(s)− b1(s)x1(s− τ1(s))−

k1(s)y1(s)

a(s) + c(s)x1(s) + d(s)y1(s)

]
(x1(s)− x2(s))

−b1(s)x2(s) [x1(s− τ1(s))− x2(s− τ1(s))]

−x2(s)
[

k1(s)y1(s)

a(s) + c(s)x1(s) + d(s)y1(s)
− k1(s)y2(s)

a(s) + c(s)x2(s) + d(s)y2(s)

]}
ds

∣∣∣∣ .
(4.29)

It follows from (4.29) that for t ≥ T + τ

D+V11(t)

≤− bl1 |x1(t)− x2(t)|+
ku1 c

uM2|x1(t)− x2(t)|
al[al + clm1 + dlm2]

+
ku1d

uM2|y1(t)− y2(t)|
al[al + clm1 + dlm2]

+
ku1
al
|y2(t)− y1(t)|

+ b1(t)

∫ t

t−τ1(t)

{[
r1(s) + b1(s)x1(s− τ1(s)) +

k1(s)y1(s)

a(s) + c(s)x1(s) + d(s)y1(s)

]
|x1(s)− x2(s)|

+b1(s)x2(s) |x1(s− τ1(s))− x2(s− τ1(s))|+
k1(s)a(s)M

2
1

(al + clm1 + dlm2)
2 |y2(s)− y1(s)|

+
k1(s)c(s)M

2
1 |y2(s)− y1(s)|

(al + clm1 + dlm2)
2 +

k1(s)c(s)M1M2 |x2(s)− x1(s)|
(al + clm1 + dlm2)

2

}
ds

≤− bl1 |x1(t)− x2(t)|+
ku1 c

uM2

al[al + clm1 + dlm2]
|x1(t)− x2(t)|+

ku1d
uM2

al[al + clm1 + dlm2]
|y1(t)− y2(t)|

+
ku1
al
|y2(t)− y1(t)|+ b1(t)

∫ t

t−τ1(t)

F1(s)ds

=− bl1 |x1(t)− x2(t)|+
ku1 c

uM2

al[al + clm1 + dlm2]
|x1(t)− x2(t)|+

ku1d
uM2

al[al + clm1 + dlm2]
|y1(t)− y2(t)|

+
ku1
al
|y2(t)− y1(t)|+ b1(t) [P1(t)− P1(ϕ1(t))] ,

(4.30)

where

F1(s) =

[
r1(s) +M1b1(s) +

k1(s)M2

al + clm1 + dlm2

]
|x1(s)− x2(s)|+M1b1(s) |x1(s− τ1(s))− x2(s− τ1(s))|

+
k1(s)a

uM2
1 |y2(s)− y1(s)|

(al + clm1 + dlm2)
2 +

k1(s)c
uM2

1 |y2(s)− y1(s)|
(al + clm1 + dlm2)

2 +
k1(s)c

uM1M2 |x2(s)− x1(s)|
(al + clm1 + dlm2)

2

and P1(s) denotes a primitive function of F1(s).
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In what follows, we denote

V12(t) =

∫ ϕ−1
1 (t)

t

∫ t

ϕ1(u)

b1(u)F1(s)dsdu. (4.31)

It is obvious by a direct calculation that

V12(t) =

∫ ϕ−1
1 (t)

t

b1(u) [P1(t)− P1(ϕ1(u))] du = P1(t)

∫ ϕ−1
1 (t)

t

b1(u)du−
∫ ϕ−1

1 (t)

t

b1(u)P1(ϕ1(u))du.

Therefore, we get that for t ≥ T + τ

D+V12(t) =F1(t)

∫ ϕ−1
1 (t)

t

b1(u)du+ P1(t)

[
b1(ϕ

−1
1 (t))

ϕ̇1(t)
− b1(t)

]
−
[
b1(ϕ

−1
1 (t))

ϕ̇1(t)
P1(t)− b1(t)P1(ϕ1(t))

]
=F1(t)

∫ ϕ−1
1 (t)

t

b1(u)du− b1(t) [P1(t)− P1(ϕ1(t))] .

(4.32)

From now on, we define

V13(t) =M1

∫ t

t−τ1(t)

∫ ϕ−1
1 (ϕ−1

1 (u))

ϕ−1
1 (u)

b1(s)b1(ϕ
−1
1 (u))

ϕ̇1(ϕ
−1
1 (u))

|x1(u)− x2(u)| dsdu. (4.33)

It is obvious by a direct computation that

D+V13(t) =
M1b1(ϕ

−1
1 (t))

ϕ̇1(ϕ
−1
1 (t))

∫ ϕ−1
1 (ϕ−1

1 (t))

ϕ−1
1 (t)

b1(u)du |x1(t)− x2(t)|

−M1b1(t) |x1(t− τ1(t))− x2(t− τ1(t))|
∫ ϕ−1

1 (t)

t

b1(u)du

(4.34)

for t ≥ T + τ . By abuse of notation, we continue to write V1 for the sum of V11, V12 and V13. Thus,
it follows from (4.30), (4.32) and (4.34) that

D+V1(t)

≤− bl1 |x1(t)− x2(t)|+
ku1 c

uM2

al[al + clm1 + dlm2]
|x1(t)− x2(t)|+

ku1d
uM2

al[al + clm1 + dlm2]
|y1(t)− y2(t)|

+
ku1
al
|y2(t)− y1(t)|+ F1(t)

∫ ϕ−1
1 (t)

t

b1(u)du+
M1b1(ϕ

−1
1 (t))

ϕ̇1(ϕ
−1
1 (t))

∫ ϕ−1
1 (ϕ−1

1 (t))

ϕ−1
1 (t)

b1(u)du |x1(t)− x2(t)|

−M1b1(t) |x1(t− τ1(t))− x2(t− τ1(t))|
∫ ϕ−1

1 (t)

t

b1(u)du

=− bl1 |x1(t)− x2(t)|+
ku1 c

uM2

al[al + clm1 + dlm2]
|x1(t)− x2(t)|+

ku1d
uM2

al[al + clm1 + dlm2]
|y1(t)− y2(t)|

+
ku1
al
|y2(t)− y1(t)|+

{[
r1(t) +M1b1(t) +

k1(t)M2

al + clm1 + dlm2

]
|x1(t)− x2(t)|

+
k1(t)a

uM2
1 |y2(t)− y1(t)|

(al + clm1 + dlm2)
2 +

k1(t)c
uM2

1 |y2(t)− y1(t)|
(al + clm1 + dlm2)

2 +
k1(t)c

uM1M2 |x2(t)− x1(t)|
(al + clm1 + dlm2)

2

}∫ ϕ−1
1 (t)

t

b1(u)du

+
M1b1(ϕ

−1
1 (t))

ϕ̇1(ϕ
−1
1 (t))

∫ ϕ−1
1 (ϕ−1

1 (t))

ϕ−1
1 (t)

b1(u)du |x1(t)− x2(t)|

(4.35)
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for t ≥ T + τ .
By the same method, we define

V21(t) = |ln y1(t)− ln y2(t)| .

It is obvious by a direct computation that

D+V21(t)

=− sgn(y1(t)− y2(t)) [y1(t− τ1(t))− y2(t− τ1(t))] b2(t)

+

(
sgn(y1(t)− y2(t))x1(t)

a(t) + c(t)x1(t) + d(t)y1(t)
− sgn(y1(t)− y2(t))x2(t)

a(t) + c(t)x2(t) + d(t)y2(t)

)
k2(t)

≤k2(t)sgn(y1(t)− y2(t))
(a(t) + d(t)y2(t))(x1(t)− x2(t)) + d(t)x2(t)(y2(t)− y1(t))

[a(t) + c(t)x1(t) + d(t)y1(t)][a(t) + c(t)x2(t) + d(t)y2(t)])

− b2(t) |y1(t)− y2(t)|+ b2(t)

∣∣∣∣∫ t

t−τ2(t)

(ẏ1(s)− ẏ2(s))ds

∣∣∣∣
≤ k2(t)|x1(t)− x2(t)|
a(t) + c(t)x1(t) + d(t)y1(t)

− b2(t) |y1(t)− y2(t)|+ b2(t)

∣∣∣∣∫ t

t−τ2(t)

(ẏ1(s)− ẏ2(s))ds

∣∣∣∣
=

k2(t)|x1(t)− x2(t)|
a(t) + c(t)x1(t) + d(t)y1(t)

− b2(t) |y1(t)− y2(t)|

+ b2(t)

∣∣∣∣∫ t

t−τ2(t)

{
y1(s)

[
−r2(s)− b2(s)y1(s− τ2(s)) +

k2(s)x1(s)

a(s) + c(s)x1(s) + d(s)y1(s)

]
−y2(s)

[
−r2(s)− b2(s)y2(s− τ1(s)) +

k2(s)x2(s)

a(s) + c(s)x2(s) + d(s)y2(s)

]}
ds

∣∣∣∣
=

k2(t)|x1(t)− x2(t)|
a(t) + c(t)x1(t) + d(t)y1(t)

− b2(t) |y1(t)− y2(t)|

+ b2(t)

∣∣∣∣∫ t

t−τ2(t)

{[
−r2(s)− b2(s)y1(s− τ2(s)) +

k2(s)x1(s)

a(s) + c(s)x1(s) + d(s)y1(s)

]
(y1(s)− y2(s))

−b2(s)y2(s) [y1(s− τ2(s))− y2(s− τ2(s))]

−y2(s)
[

k2(s)x2(s)

a(s) + c(s)x2(s) + d(s)y2(s)
− k2(s)x1(s)

a(s) + c(s)x1(s) + d(s)y1(s)

]}
ds

∣∣∣∣
≤ k2(t)|x1(t)− x2(t)|
a(t) + c(t)x1(t) + d(t)y1(t)

− b2(t) |y1(t)− y2(t)|

+ b2(t)

∣∣∣∣∫ t

t−τ2(t)

{[
r2(s) + b2(s)y1(s− τ2(s)) +

k2(s)x1(s)

a(s) + c(s)x1(s) + d(s)y1(s)

]
|y1(s)− y2(s)|

+b2(s)y2(s) |y1(s− τ2(s))− y2(s− τ2(s))|+ y2(s)

[
k2(s)a(s) (x2(s)− x1(s))

(al + clm1 + dlm2)
2

+
k2(s)d(s)x2(s) (y1(s)− y2(s))

(al + clm1 + dlm2)
2 +

k2(s)d(s)y2(s) (x2(s)− x1(s))

(al + clm1 + dlm2)
2

]}
ds

≤ k2(t)|x1(t)− x2(t)|
a(t) + c(t)x1(t) + d(t)y1(t)

− b2(t) |y1(t)− y2(t)|+ b2(t)

∫ t

t−τ2(t)

F2(s)ds

=
k2(t)|x1(t)− x2(t)|

a(t) + c(t)x1(t) + d(t)y1(t)
− b2(t) |y1(t)− y2(t)|+ b2(t) [P2(t)− P2(ϕ2(t))] ,

(4.36)
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where

F2(s) =

[
r2(s) + b2(s)M2 +

k2(s)M1

al + clm1 + dlm2

]
|y1(s)− y2(s)|+ b2(s)M2 |y1(s− τ2(s))− y2(s− τ2(s))|

+

[
k2(s)a

uM2 |x2(s)− x1(s)|
(al + clm1 + dlm2)

2 +
k2(s)d

uM1M2 |y1(s)− y2(s)|
(al + clm1 + dlm2)

2 +
k2(s)d

uM2
2 |x2(s)− x1(s)|

(al + clm1 + dlm2)
2

]
and P2(s) denotes a primitive function of F2(s).

In what follows, we denote

V22(t) =

∫ ϕ−1
2 (t)

t

∫ t

ϕ2(u)

b2(u)F2(s)dsdu. (4.37)

It is obvious by a direct calculation that

V22(t) =

∫ ϕ−1
2 (t)

t

b2(u) [P2(t)− P2(ϕ2(u))] du

=P2(t)

∫ ϕ−1
2 (t)

t

b2(u)du−
∫ ϕ−1

2 (t)

t

b2(u)P2(ϕ2(u))du.

Therefore, we get that for t ≥ T + τ

D+V22(t) =F2(t)

∫ ϕ−1
2 (t)

t

b2(u)du+ P2(t)

[
b2(ϕ

−1
2 (t))

ϕ̇2(t)
− b2(t)

]
−
[
b2(ϕ

−1
2 (t))

ϕ̇2(t)
P2(t)− b2(t)P2(ϕ2(t))

]
=F2(t)

∫ ϕ−1
2 (t)

t

b2(u)du− b2(t) [P2(t)− P2(ϕ2(t))] .

(4.38)

From now on, we define

V23(t) =M2

∫ t

t−τ2(t)

∫ ϕ−1
2 (ϕ−1

2 (u))

ϕ−1
2 (u)

b2(s)b2(ϕ
−1
2 (u))

ϕ̇2(ϕ
−1
2 (u))

|y1(u)− y2(u)| dsdu. (4.39)

It is obvious by a direct computation that

D+V23(t) =
M2b2(ϕ

−1
2 (t))

ϕ̇2(ϕ
−1
2 (t))

∫ ϕ−1
2 (ϕ−1

2 (t))

ϕ−1
2 (t)

b2(u)du |y1(t)− y2(t)|

−M2b2(t) |y1(t− τ2(t))− y2(t− τ2(t))|
∫ ϕ−1

2 (t)

t

b2(u)du

(4.40)

for t ≥ T + τ . By abuse of notation, we continue to write V2 for the sum of V21, V22 and V23. Thus,
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it follows from (4.36), (4.38) and (4.40) that

D+V2(t)

≤ k2(t)|x1(t)− x2(t)|
a(t) + c(t)x1(t) + d(t)y1(t)

− b2(t) |y1(t)− y2(t)|+ F2(t)

∫ ϕ−1
2 (t)

t

b2(u)du

+
M2b2(ϕ

−1
2 (t))

ϕ̇2(ϕ
−1
2 (t))

∫ ϕ−1
2 (ϕ−1

2 (t))

ϕ−1
2 (t)

b2(u)du |y1(t)− y2(t)|

−M2b2(t) |y1(t− τ2(t))− y2(t− τ2(t))|
∫ ϕ−1

2 (t)

t

b2(u)du

=
k2(t)|x1(t)− x2(t)|

a(t) + c(t)x1(t) + d(t)y1(t)
− b2(t) |y1(t)− y2(t)|+

M2b2(ϕ
−1
2 (t))

ϕ̇2(ϕ
−1
2 (t))

∫ ϕ−1
2 (ϕ−1

2 (t))

ϕ−1
2 (t)

b2(u)du |y1(t)− y2(t)|

+

{[
r2(t) + b2(t)M2 +

k2(t)M1

al + clm1 + dlm2

]
|y1(t)− y2(t)|+

[
k2(t)a

uM2 |x2(t)− x1(t)|
(al + clm1 + dlm2)

2

+
k2(t)d

uM1M2 |y1(t)− y2(t)|
(al + clm1 + dlm2)

2 +
k2(t)d

uM2
2 |x2(t)− x1(t)|

(al + clm1 + dlm2)
2

]}∫ ϕ−1
2 (t)

t

b2(u)du

(4.41)

for t ≥ T + τ . We construct the following Lyapunov function

V (t) = V1(t) + V2(t).

It follows from (4.35) and (4.41) that

D+V (t) = D+V1(t) +D+V2(t)

≤−

[(
bl1 −

ku1 c
uM2 + ku2a

l

al [al + clm1 + dlm2]

)
−

(
r1(t) +M1b1(t) +

k1(t)M2

al + clm1 + dlm2

)∫ ϕ−1
1 (t)

t

b1(u)du

− k1(t)c
uM1M2

(al + clm1 + dlm2)
2

∫ ϕ−1
1 (t)

t

b1(u)du−
M1b1(ϕ

−1
1 (t))

ϕ̇1(ϕ
−1
1 (t))

∫ ϕ−1
1 (ϕ−1

1 (t))

ϕ−1
1 (t)

b1(u)du

−k2(t)[a
u + duM2]M2

(al + clm1 + dlm2)
2

∫ ϕ−1
2 (t)

t

b2(u)du

]
|x1(t)− x2(t)|

−

[
bl2 −

ku1
al

(
1 +

duM2

al + clm1 + dlm2

)
−
(
r2(t) + b2(t)M2 +

k2(t)M1

al + clm1 + dlm2

)∫ ϕ−1
2 (t)

t

b2(u)du

− k2(t)d
uM1M2

(al + clm1 + dlm2)
2

∫ ϕ−1
2 (t)

t

b2(u)du−
M2b2(ϕ

−1
2 (t))

ϕ̇2(ϕ
−1
2 (t))

∫ ϕ−1
2 (ϕ−1

2 (t))

ϕ−1
2 (t)

b2(u)du

− k1(t)(a
u + cu)M2

1

(al + clm1 + dlm2)
2

∫ ϕ−1
1 (t)

t

b1(u)du

]
|y1(t)− y2(t)|

=− (L1(t) |x1(t)− x2(t)|+ L2(t) |y1(t)− y2(t)|) .
(4.42)

Based on condition (H3), there have positive constants α1, α2 and T0 ≥ T + τ such that

L1 ≥ α1 > 0, L2 ≥ α2 > 0. (4.43)
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If α∗ = min {α1, α2}, we get from (4.42) and (4.43)

D+V (t) ≤ −α∗ (|x1(t)− x2(t)|+ |y1(t)− y2(t)|) . (4.44)

Integrating the last inequality from T0 to t, we have

V (t) + α∗
∫ t

T0

(|x1(u)− x2(u)|+ |y1(u)− y2(u)|) du ≤ V (T0)

for t ≥ T0. Hence, V (t) represents a bounded function on interval [T0,+∞). In addition,∫ +∞

T0

(|x1(u)− x2(u)|+ |y1(u)− y2(u)|) du ≤ +∞.

Together with system (4.2) and Theorem 4.1, we can deduce that x1(t) − x2(t), y1(t) − y2(t) and
their derivatives are bounded on interval [T0,+∞). In other word, (|x1(t)− x2(t)|+ |y1(t)− y2(t)|)
is uniformly continuous. Thanks to Barbalar Lemma [30], we deduce that

lim
t→+∞

(|x1(u)− x2(u)|+ |y1(u)− y2(u)|) = 0.

That is,

lim
t→+∞

|x1(u)− x2(u)| = lim
t→+∞

|y1(u)− y2(u)| = 0.

Thus, the positive almost periodic solution of (4.2) remains globally asymptotically stable. This
finishes the proof of Theorem 4.3.

4.3. Existence and uniqueness of almost periodic solution

Theorem 4.4. Assume that all conditions proposed by Theorem 4.1 and Theorem 4.3 hold. Then
there possesses a unique almost periodic solution (APS) of (4.2).

The proof of Theorem 4.4 is similar to the proof of Theorem 3.2. Hence, it is omitted.

5. Examples

In this section, we illustrate two examples to verify the feasibility of our theorem.

Example 5.1. In this example we consider the following system

ẋ(t) =x(t)
[
(10 + cos

√
3t)− (1.9 + 0.1 cos t)x(t)

]
− (1 + 0.5 cos t)x(t)y(t)

(3.99 + 0.01 cos
√
6t) + (0.8 + 0.2 cos t)x(t) + (0.03 + 0.01 cos

√
7t)y(t)

,

ẏ(t) =y(t)
[
−(0.02 + 0.01 cos

√
5t)− (2.5 + 0.5 cos t)y(t)

]
+

(3 + cos
√
2t)x(t)y(t)

(3.99 + 0.01 cos
√
6t) + (0.8 + 0.2 cos t)x(t) + (0.03 + 0.01 cos

√
7t)y(t)

,

(5.1)

In this example, we obtain au = 4, al = 3.98, bu1 = 2, bl1 = 1.8, bu2 = 3, bl2 = 2, cu = 1, cl = 0.6,
du = 0.04, dl = 0.02, ku1 = 1.5, kl1 = 0.5, ku2 = 4, kl2 = 2, ru1 = 11, rl1 = 9, ru2 = 0.03, rl2 = 0.01.
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Moreover,

rl1 = 9 >
ku1M2

al
≈ 0.6024,

ru2 = 0.03 <
kl2m1

au + cuM1 + duM2

≈ 0.8253,

M1 =
ru1
bl1

≈ 6.1111,

M2 =
ku2M1

bl2(a
l + clM1)

=
4 · 6.1111

2 · (3.98 + 0.6 · 6.1111)
≈ 1.5984,

m1 =
rl1
bu1

− ku1k
u
2M1

albu1b
l
2(a

l + clM1)
=

9

2
− 1.5 · 4 · 6.1111

3.98 · 2 · 2 · (3.98 + 0.6 · 6.1111)
≈ 4.1988,

m2 =
kl2m1

bu2(a
u + cuM1 + duM2)

− ru2
bu2

≈ 2 · 4.1988
3 · (4 + 1 · 6.1111 + 0.04 · 1.5984)

− 0.01 ≈ 0.2651.

(5.2)

Due to (5.2), one gets

1.8 = bl1 >
ku1 c

uM2 + auku2
(al)2

≈ 1.1614,

2 = bl2 >
ku1d

uM2

(al)2
+
ku1
al

≈ 0.3830.
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Figure 5.1: Numeric simulation of the prey x(t) and the predator y(t) of (4.2) with the initial conditions (x(0), y(0))T =
(5.1, 1.0)T , (x(0), y(0))T = (6.1, 1.5)T and (x(0), y(0))T = (4.2, 0.3)T .

It follows that all conditions, together with the last two inequalities and system (5.1) proposed by
Theorem 3.1. Therefore, system (5.1) has a positive, unique, globally attractive, APS. Under the ini-
tial conditions (x(0), y(0))T = (5.1, 1.0)T , (x(0), y(0))T = (6.1, 1.5)T and (x(0), y(0))T = (4.2, 0.3)T ,
the population dynamic of (x(t), y(t))T is offered by Figure 5.1. By the graph, we can effortlessly
discover that (x(t), y(t))T is asymptotic to the unique, APS of the model (5.1).
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Example 5.2. In this example we consider the following time-delay system
ẋ(t) =x(t)

[
(0.3− 0.05 sin

√
2t)− (0.25− 0.04 cos t)x(t− 0.01)− 0.13y(t)

1 + x(t) + y(t)

]
,

ẏ(t) =y(t)

[
−(0.05 + 0.01 cos

√
0.2t)− (2.5− 1.3 sin

√
0.2t)y(t− 0.02) +

(9 + cos
√
2t)x(t)

1 + x(t) + y(t)

]
,

(5.3)
In this example, we obtain au = al = 1, bu1 = 0.29, bl1 = 0.21, bu2 = 3.8, bl2 = 1.2, cu = cl = 1,
du = dl = 1, ku1 = kl1 = 0.13, ku2 = 10, kl2 = 8, ru1 = 0.35, rl1 = 0.25, ru2 = 0.06, rl2 = 0.04, τ = 0.02.
Moreover,

rl1 = 0.25 >
ku1
dl

= 0.13,

kl2m1

au + cuM1 + duM2

≈ 0.0940 > ru2 = 0.06,

M1 =
ru1
bl1

exp (ru1τ) ≈ 1.6784,

m1 =
rl1 −

ku1
dl

bu1
exp

{[(
rl1 −

ku1
dl

)
− bu1M1

]
τ

}
≈ 0.4108,

M2 =
ku2M1

bl2(a
l + clM1)

exp

(
ku2M1

al + clM1

τ

)
≈ 5.9191,

m2 =

(
kl2m1

bu2 (a
u + cuM1 + duM2)

− ru2
bu2

)
exp

{[(
kl2m1

au + cuM1 + duM2

− ru2

)
− bu2M2

]
τ

}
≈ 0.0057.

(5.4)

Due to (5.4), one gets

lim inf
t→+∞

L1(t) > 0.2 > 0, lim inf
t→+∞

L2(t) > 0.5 > 0.

It follows that all conditions, together with the last two inequalities and system (5.3) proposed
by Theorem 4.3. Therefore, system (5.3) has a positive, unique, globally attractive, APS. Under the
initial conditions (x(0), y(0))T = (0.1, 0.2)T , (x(0), y(0))T = (1, 2)T and (x(0), y(0))T = (3, 4)T , the
population dynamic of (x(t), y(t))T is offered by Figure 5.2. By the graph, we can effortlessly discover
that (x(t), y(t))T is asymptotic to the unique, APS of the model (5.3).

6. Conclusion

In this research, we investigate the existence and uniqueness of almost periodic solution of a fa-
mous predator-prey reaction-diffusion system, the denominated predator-prey model with Beddington-
DeAngelis functional response, assuming continuous and almost periodic parameters. In the future,
effective methods to study the other properties of almost periodic solution will be the goal of us.
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Figure 5.2: Numeric simulation of the prey x(t) and the predator y(t) of (4.2) with the initial conditions (x(0), y(0))T =
(0.1, 0.2)T , (x(0), y(0))T = (1, 2)T and (x(0), y(0))T = (3, 4)T .
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