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Abstract

In the present study, the coupled Burgers’ equation is going to be solved nu-
merically by presenting a new technique based on collocation finite element
method in which trigonometric cubic and quintic B-splines are used as approx-
imate functions. In order to support the present study, three test problems
given with appropriate initial and boundary conditions are studied. The newly
obtained results are compared with some of the other published numerical so-
lutions available in the literature. The accuracy of the proposed method is
discussed by computing the error norms L2 and L∞. A linear stability anal-
ysis of the approximation obtained by the scheme shows that the method is
unconditionally stable.
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1 Introduction

The investigation of the movement of particles inside a fluid dates back to Ein-
stein and even before that to Brown. In his study, Esipov [1] considered the
effect of gravity on the particles. He concluded that if the particles are heav-
ier than the surrounding fluid the resulting movement is called sedimentation
otherwise it is called creaming. In this phenomena, coupled Burgers Equation
(cBE) plays an important role in describing the sedimentation and also the
evaluation of the scaled volume concentration of two different kinds particles
in fluid suspensions or colloids under the affect of gravity[2]. cBE is derived
by Esipov [1] as one of the important flow equations and having rich dynamics.
He stated that the velocity of sedimentation depends on the volume fraction of
the constituting particles and leads to Burgers-like equations for concentration
profiles. In fact, cBE is widely known as the simple form of the Navier-Stokes
equation because of the fact that it involves both the nonlinear convection and
viscosity terms. The cBE is given in the following form
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Ut − Uxx + k1UUx + k2(UV )x = 0 x ∈ [a, b], t ∈ [0, T ] (1a)

Vt − Vxx + k1V Vx + k3(UV )x = 0 x ∈ [a, b], t ∈ [0, T ] (1b)

where k1, k2 and k3 are real constants and x and t are differentiations with
respect to space and time, respectively. Here U(x, t) and V (x, t) are the un-
known functions to be determined, while Ut and Vt are unsteady terms, UUx

and V Vx are nonlinear terms and finally Uxx and Vxx are diffusive terms. The
equation is going to be considered with the following initial

U(x, 0) = f(x), a ≤ x ≤ b

V (x, 0) = g(x), a ≤ x ≤ b

and boundary conditions

U(a, t) = f1(a, t), U(b, t) = f2(b, t), .......t ∈ [0, T ]

V (a, t) = g1(a, t), V (b, t) = g2(b, t), .......t ∈ [0, T ]

where f(x), g(x), f1(a, t),f2(b, t), g1(a, t) and g2(b, t) are predefined functions [2].

The exact solutions of cBE for a wide range of initial and boundary
conditions are not available. Thus, there is a need for finding numerical and
approximate solutions of the equation. In the literature there are several studies
about cBE in order to find out its more characteristics. Among others, Kaya [3]
has considered a coupled system of viscous Burgers’ equations with appropriate
initial values using the decomposition method. Abdou and Soliman [4] used
variational iteration method for the solutions of Burger’s and coupled Burger’s
equations. Dehghan et al. [5] have applied a technique which is a combination
of Adomian decomposition method and Pade approximation for solving cou-
pled Burgers’ equations. Khater et al [6] have obtained numerical solutions of
the coupled Burgers’ equation by the Chebyshev collocation methods. Rashid
and Ismail [7] have used the Fourier pseudo-spectral method for finding the
approximate solutions of the coupled Burgers’ equation. Mittal and Arora [8]
proposed a numerical method for the numerical solution of a coupled system of
viscous Burgers’ equation with appropriate initial and boundary conditions, by
using the cubic B-spline collocation scheme on the uniform mesh points. Sadek
and Kucuk [9] have described a methodology for solving optimal pointwise con-
trol of a couped system of Burgers’ equations. Jia et al. [10] have discussed a
H1−Galerkin finite element method for the coupled Burgers equations and de-
rived the optimal error estimates of the semi-discrete and fully discrete schemes
of the cBE. Desai and Pradhan [11] have obtained the exact solution of Burgers’
equation and coupled Burger’s equation using Homotopy Perturbation Method.
Kutluay and Uçar [12] have solved coupled Burgers’ equation by a Galerkin
quadratic B-spline FEM. Srivastava et al. [13] have proposed a fully implicit
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finite-difference method for the numerical solutions of one dimensional coupled
Burgers’ equations on the uniform mesh points. Kumar and Pandit [14] have
proposed a composite numerical scheme based on finite difference and Haar
wavelets to solve time dependent coupled Burgers’ equation with appropriate
initial and boundary conditions. Mittal and Tripathi [15] have proposed a
collocation-based numerical scheme to obtain approximate solutions of coupled
Burgers’ equations. Siraj-ul-Islam et.al [16] have formulated a simple classi-
cal radial basis functions (RBFs) collocation (Kansa) method for the numerical
solution of the Korteweg-de Vries equations, coupled Burgers’ equations, and
quasi non-linear hyperbolic equations. Abdullah er al [17] have developed a nu-
merical procedure dependent on the cubic B-spline and the Hermite formula for
the coupled viscous Burgers’ equation. Mittal and Jiwari [18] have solved the
coupled viscous Burgers’ equations by using the differential quadrature method.
Bhatt and Khaliq [19] have introduced two new modified fourth-order exponen-
tial time differencing Runge-Kutta (ETDRK) schemes in combination witha
global fourth-order compact finite difference scheme(in space) for direct inte-
gration of nonlinear coupled viscous Burgers’ equations in their original form
without using any transformations or linearization techniques. Raslan et al. [20]
have used cubic trigonometric B-spline (CTB) functions are used to set up the
collocation method for finding solutions of a coupled system of Burgers’ equa-
tion with appropriate initial and boundary conditions. Onarcan and Hepson [21]
stated that trigonometric B-spline functions of higher degrees have advantages
over lower ones since they can be used as approximate functions in the numerical
methods if the differential equation include higher order derivatives. They have
used quintic trigonometric B-splines to get numerical solutions of the coupled
Burgers’ equation. Zhang et al [22] have made the first attempt to extend the
improved backward substitution method for solving unsteady nonlinear coupled
Burgers’ equations. Kapoor [23] has offered a review of the Homotopy pertur-
bation method to fetch the analytical solution of coupled 1D non-linear Burgers’
equation. Nazir et al [24] presented a new cubic B-spline (CBS) approximation
technique for the numerical treatment of coupled viscous Burgers’ equations
arising in the study of fluid dynamics, continuous stochastic processes, acoustic
transmissions and aerofoil flow theory. Başhan [25] has dealth with a numerical
treatment of the coupled viscous Burgers’ equation in the presence of very large
Reynolds number using two effective methods. The last but not the least, Uçar
et al. [26] have sought numerical solutions and stability anlaysis of modified
Burgers equation via modified cubic B-spline Differential Quadtarure Methods.

In the present article, the cBE is going to be handled using finite element
trigonometric B-spline cubic collocation method. During the solution process, a
new type linearization technique is going to be utilized to overcome the nonlinear
term appearing in the equation. Then the newly obtained results are going to
be compared with some of those available in the literature.
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2 Implementation of the method

cBE is generally given in the following form

Ut − Uxx + k1UUx + k2(UV )x = 0

Vt − Vxx + k1V Vx + k3(UV )x = 0

in which t is time, x is the space coordinate and µ is a positive parameter. For
the considered problems, the appropriate boundary conditions will be chosen as

U(x, 0) = f(x)

V (x, 0) = g(x), a ≤ x ≤ b

and

U(a, t) = f1(a, t), U(b, t) = f2(b, t)

V (a, t) = g1(a, t), V (b, t) = g2(b, t), t > 0

For the solution process, it is considered that the solution interval [a, b] is divided
into N finite elements having equal lengths using the nodal points xm, m =
0(1)N in such a way that a = x0 < x1 · · · < xN = b and h = (xm+1 − xm).

2.1 Cubic Trigonometric B-spline Basis

Cubic trigonometric B-spline functions T 3
m(x) form a basis over the region a ≤

x ≤ b and vanish outside the interval [xm−2, xm+2]. These cubic trigonometric
B-spline functions T 3

m(x) , (m = −1(1)N +1), at the knots xm are defined over
the interval [a, b] by [27]

T 3
m(x) =

1

θ





ρ3(xm−2)
−ρ2(xm−2)ρ(xm)

−ρ(xm−2)ρ(xm+1)ρ(xm−1)
−ρ(xm+2)ρ

2(xm−1)
ρ(xm−2)ρ

2(xm+1)
+ρ(xm+2)ρ(xm−1)ρ(xm+1)

+ρ2(xm+2)ρ(xm)
−ρ3(xm+2)

0

,

,

,

,
,

xm−2 ≤ x ≤ xm−1

xm−1 ≤ x ≤ xm

xm ≤ x ≤ xm+1

xm+1 ≤ x ≤ xm+2

otherwise

in which

ρ(xm) = sin

(
x− xm

2

)
, θ = sin

(
h

2

)
sin(h) sin

(
3h

2

)
, m = 0(1)N.

The set of trigonometric cubic B-splines
{
T 3
−1(x), T

3
0 (x), . . . , T

3
N+1(x)

}
forms a

basis for the smooth functions defined over [a,b]. Therefore, an approximation
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solution UN (x, t) and VN (x, t) can be written in terms of the trigonometric cubic
B- splines as trial functions:

U(x, t) ≈ UN (x, t) =

N+1∑

m=−1

T 3
m(x)δm(t) (2)

V (x, t) ≈ VN (x, t) =

N+1∑

m=−1

T 3
m(x)σm(t) (3)

where δm(t)’s are unknown, time dependent quantities to be determined from
the boundary and trigonometric cubic B-spline collocation conditions. Each
trigonometric cubic B-spline covers four elements so that each element [xm, xm+1]
is covered by four trigonometric cubic B-splines. For this problem, the finite
elements are identified with the interval [xm, xm+1]. Using the nodal values
Um, U

′

m and U
′′

m and Vm, V
′

m and V
′′

mare given in terms of the parameter δm by:

Um = U(xm) = α1δm−1 + α2δm + α1δm+1

U
′

m = U ′(xm) = β1δm−1 + β1δm+1

U
′′

m = U ′′(xm) = γ1δm−1 + γ2δm + γ1δm+1

and

Vm = V (xm) = α1σm−1 + α2σm + α1σm+1

V
′

m = V ′(xm) = β1σm−1 + β1σm+1

V
′′

m = V ′′(xm) = γ1σm−1 + γ2σm + γ1σm+1

where

α1 = sin2
(
h

2

)
csc(h) csc

(
3h

2

)
, α2 =

2

(1 + 2 cos(h))
,

β1 = −3 csc
(
3h
2

)

4
, β2 =

3 csc
(
3h
2

)

4

γ1 =
3((1 + 3 cos (h)) csc2(h2 ))

16
(
2 cos(h2 ) + cos

(
3h
2

)) , γ2 = − 3 cot2
(
h
2

)

(2 + 4 cos(h))
.

2.2 Quintic Trigonometric B-spline Basis

Now, quintic trigonometric B-spline functions T 5
m(x) form a basis over the re-

gion a ≤ x ≤ b and vanish outside the interval [xm−3, xm+3]. These quintic
trigonometric B-spline base functions T 5

m(x),m = −2(1)N + 2 are defined at
the nodes xm by [27]
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T 5
m(x) =

1

θ





ρ5(xm−3) , xm−3 ≤ x ≤ xm−2

−ρ4(xm−3)ρ(xm−1)− ρ3(xm−3)ρ(xm)ρ(xm−2)
−ρ2(xm−3)ρ(xm+1)ρ

2(xm−2)− ρ(xm−3)ρ(xm+2)ρ
3(xm−2) , xm−2 ≤ x ≤ xm−1

−ρ(xm−3)ρ
4(xm−2)

ρ3(xm−3)ρ
2(xm) + ρ2(xm−3)ρ(xm+1)ρ(xm−2)ρ(xm)

+ρ2(xm−3)ρ
2(xm+1)ρ(xm−1) + ρ(xm−3)ρ(xm+2)ρ

2(xm−2)ρ
2(xm)+

ρ(xm−3)ρ(xm+2)ρ(xm−2)ρ(xm+1)ρ(xm−1) + ρ(xm−3)ρ
2(xm+2)ρ

2(xm−1) , xm−1 ≤ x ≤ xm

+ρ(xm+3)ρ
3(xm−2)ρ(xm) + ρ(xm+3)ρ

2(xm−2)ρ(xm+1)ρ(xm−1)
+ρ(xm+3)ρ(xm−2)ρ(xm+2)ρ

2(xm−1) + ρ2(xm+3)ρ
3(xm−1)

−ρ2(xm−3)ρ
3(xm+1)− ρ(xm−3)ρ(xm+2)ρ(xm−2)ρ

2(xm+1)
−ρ(xm−3)ρ

2(xm+2)ρ(xm−1)ρ(xm+1)− ρ(xm−3)ρ
3(xm+2)ρ(xm)

−ρ(xm+3)ρ
2(xm−2)ρ

2(xm−+1)− ρ(xm+3)ρ(xm−2)ρ(xm+2)ρ(xm−1)ρ(xm+1) , xm ≤ x ≤ xm+1

−ρ(xm+3)ρ(xm−2)ρ
2(xm+2)ρ(xm)− ρ2(xm+3)ρ

2(xm−1)ρ(xm+1)−
ρ2(xm+3)ρ(xm−1)ρ(xm+2)ρ(xm)− ρ3(xm+3)ρ

2(xm)

ρ(xm−3)ρ
4(xm+2) + ρ(xm+3)ρ(xm−2)ρ

3(xm+2) + ρ2(xm+3)ρ(xm−1)ρ
2(xm+2) , xm+1 ≤ x ≤ xm+2

+ρ3(xm+3)ρ(xm)ρ(xm+2) + ρ4(xm+3)ρ(xm+1)

−ρ5(xm+3) , xm+2 ≤ x ≤ xm+3

0 , otherwise
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in which

ρ(xm) = sin(
x − xm

2
), for m = 0(1)N, θ = sin(

h

2
) sin(h) sin(

3h

2
) sin(2h) sin(

5h

2
),

Let UN(x, t) and VN (x, t) be approximate solution to U(x, t) and V (x, t) defined
as

U(x, t) ≈ UN (x, t)=

N+2∑

m=−2

T 5
m(x)δm(t), (4)

V (x, t) ≈ VN (x, t)

N+2∑

m=−2

T 5
m(x)σm(t) (5)

and

Um = U(xm) = a1δm−2 + a2δm−1 + a3δm + a2δm+1 + a1δm+2

U ′
m = U ′(xm) = b1δm−2 + b2δm−1 − b2δm+1 − b1δm+2

U ′′
m = U ′′(xm) = c1δm−2 + c2δm−1 + c3δm + c2δm+1 + c1δm+2

U ′′′
m = U ′′′(xm) = d1δm−2 + d2δm−1 − d2δm+1 − d1δm+2

U (4)
m = U (4)(xm) = e1δm−2 + e2δm−1 + e3δm + e2δm+1 + e1δm+2

where

a1 = sin5(
h

2
)/θ

a2 = 2 sin5(
h

2
) cos(

h

2
)(16 cos2(

h

2
)− 3)/θ

a3 = 2(1 + 48 cos4(
h

2
)− 16 cos2(

h

2
)) sin5(

h

2
)/θ

b1 = (−5/2) sin4(
h

2
) cos(

h

2
)/θ

b2 = −5 sin4(
h

2
) cos2(

h

2
)(8 cos2(

h

2
)− 3)/θ

c1 = (5/4) sin3(
h

2
)(5 cos2(

h

2
)− 1)/θ

c2 = (5/2) sin3(
h

2
) cos(

h

2
)(−15 cos2(

h

2
) + 3 + 16 cos4(

h

2
))/θ

c3 = (−5/2) sin3(
h

2
)(16 cos6(

h

2
)− 5 cos2(

h

2
) + 1)/θ

d1 = (−5/8) sin2(
h

2
) cos(

h

2
)(25 cos2(

h

2
)− 13)/θ

d2 = (−5/4) sin2(
h

2
) cos2(

h

2
)(8 cos4(

h

2
)− 35 cos2(

h

2
) + 15)/θ

e1 = (5/16)(125 cos4(
h

2
)− 114 cos2(

h

2
) + 13) sin(

h

2
)/θ

e2 = (−5/8) sin(
h

2
) cos(

h

2
)(176 cos6(

h

2
)− 137 cos4(

h

2
)− 6 cos2(

h

2
) + 15)/θ
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e3 = (5/8)(92 cos6(
h

2
)−117 cos4(

h

2
)+62 cos2(

h

2
)−13)(−1+4 cos2(

h

2
)) sin(

h

2
)/θ

The same approximations can be obtained for V and its derivatives by re-
placing δm’s by σm’s.

Now, we are going to discretize the cBE given as

Ut − Uxx + k1UUx + k2(UV )x = 0

Vt − Vxx + k1V Vx + k3(UV )x = 0

For this purpose, we have implemented the Crank-Nicolson type scheme for
space discretization and forward finite difference scheme for the time discretiza-
tion. Firstly the equation is discretized as,

Un+1 − Un

∆t
− (Uxx)

n+1 + (Uxx)
n

2
+ k1

(UUx)
n+1 + (UUx)

n

2

+ k2
((UV )x)

n+1 + ((UV )x)
n

2
= 0, (6)

V n+1 − V n

∆t
− (Vxx)

n+1 + (Vxx)
n

2
+ k1

(V Vx)
n+1 + (V Vx)

n

2

+ k2
((UV )x)

n+1 + ((UV )x)
n

2
= 0

where a linearization technique is used at the left hand side of the Eq. (8) to
linearize the nonlinear terms as U = Zi and V = Gi they would be like that.
After these linearizations, Eq. (8) becomes

Un+1 − Un

∆t
− (Uxx)

n+1 + (Uxx)
n

2
+ k1Zi

(Un+1
x + Un

x )

2

+ k2Gi
(Un+1

x + Un
x )

2
+ k2Zi

(V n+1
x + V n

x )

2
= 0

V n+1 − V n

∆t
− (Vxx)

n+1 + (Vxx)
n

2
+ k1Gi

(V n+1
x + V n

x )

2

+ k3Gi
(Un+1

x + Un
x )

2
+ k3Zi

(V n+1
x + V n

x )

2
= 0.

When they are rearranged, they become as follows

2Un+1

∆t
− Un+1

xx + k1ZiU
n+1
x + k2GiU

n+1
x + k2ZiV

n+1
x

=
2Un

∆t
+ Un

xx − k1ZiU
n
x − k2GiU

n
x − k2ZiV

n
x (7)

2
V n+1

∆t
− V n+1

xx + k1GiV
n+1
x + k3GiU

n+1
x + k3ZiV

n+1
x

= 2
V n

∆t
+ V n

xx − k1GiV
n
x − k3GiU

n
x − k3ZiV

n
x .
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2.3 Cubic Trigonometric B-spline Collocation Method (CT-
BCM) and Quintic Trigonometric B-spline Colloca-
tion Method (QTBCM)

By using cubic approximations given by (2)−(3) and their derivatives in (10),
we obtain the following iterative scheme:

(g1) δn+1
i−1 +(g2) σn+1

i−1 +(g3) δn+1
i +(g4) σn+1

i +(g5) δn+1
i+1 +(g6) σn+1

i+1

= (h1) δni−1+(h2) σn
i−1+(h3) δni +(h4) σn

i +(h5) δni+1+(h6) σn
i+1

(g7) δn+1
i−1 +(g8) σn+1

i−1 +(g9) δn+1
i +(g10) σn+1

i +(g11) δn+1
i+1 +(g12) σn+1

i+1

= (h7) δni−1+(h8) σn
i−1+(h9) δni +(h10) σn

i +(h11) δni+1+(h12) σn
i+1

where
g1 = 2α1/∆t − γ1 + k1Ziβ1 + k2Giβ1 h1 = 2α1/∆t + γ1 − k1Ziβ1 − k2Giβ1

g2 = Zik2β1 h2 = −Zik2β1

g3 = 2α2/∆t − γ2 h3 = 2α2/∆t + γ2

g4 = 0 h4 = 0
g5 = 2α1/∆t − γ1 + k1Ziβ2 + k2Giβ2 h5 = 2α1/∆t + γ1 − k1Ziβ2 − k2Giβ2

g6 = k2Ziβ2 h6 = −k2Ziβ2

g7 = k3Giβ1 h7 = −k3Giβ1

g8 = 2α1/∆t − γ1 + k1Giβ1 + k3Ziβ1 h8 = 2α1/∆t + γ1 − k1Giβ1 − k3Ziβ1

g9 = 0 h9 = 0
g10 = 2α2/∆t − γ2 h10 = 2α2/∆t + γ2

g11 = k3Giβ2 h11 = −k3Giβ2

g12 = 2α1/∆t − γ1 + k1Giβ2 + k3Ziβ2 h12 = 2α1/∆t + γ1 − k1Giβ2 − k3Ziβ2

This iterative scheme results in a system of equations involving (2N+6) un-
knowns and (2N+2) equations. Using the boundary conditions of the problem,
the unknowns δ−1, σ−1 from the left boundary and the unknowns δN+1, σN+1

from the right boundary are eliminated and a solvable system of equations is
obtained.

In a similar way, but now using quintic approximations given by (4)−(5) and
their derivatives in (10), we obtain the following iterative scheme:

(m1)δ
n+1
i−2 +(m2)σ

n+1
i−2 +(m3)δ

n+1
i−1 +(m4)σ

n+1
i−1 +(m5)δ

n+1
i +(m6)σ

n+1
i

+(m7)δ
n+1
i+1 +(m8)σ

n+1
i+1 +(m9)δ

n+1
i+2 +(m10)σ

n+1
i+2

= (f1)δ
n
i−2+(f2)σ

n
i−2+(f3)δ

n
i−1+(f4)σ

n
i−1+(f5)δ

n
i +(f6)σ

n
i +(f7)δ

n
i+1

+(f8)σ
n
i+1+(f9)δ

n
i+2+(f10)σ

n
i+2

(m11)δ
n+1
i−2 +(m12)σ

n+1
i−2 +(m13)δ

n+1
i−1 +(m14)σ

n+1
i−1 +(m15)δ

n+1
i

+(m16)σ
n+1
i +(m17)δ

n+1
i+1 +(m18)σ

n+1
i+1 +(m19)δ

n+1
i+2 +(m20)σ

n+1
i+2

= (f11)δ
n
i−2+(f12)σ

n
i−2+(f13)δ

n
i−1+(f14)σ

n
i−1+(f15)δ

n
i +(f16)σ

n
i

+(f17)δ
n
i+1+(f18)σ

n
i+1+(f19)δ

n
i+2+(f20)σ

n
i+2

where
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m1 = 2a1/∆t− c1 + k1Zib1 + k2Gib1 m11 = k3Gib1
m2 = k2Zib1 m12 = 2a1/∆t− c1 + k1Gib1 + k3Zib1
m3 = 2a2/∆t− c2 + k1Zib2 + k2Gib2 m13 = k3Gib2
m4 = k2Zib2 m14 = 2a2/∆t− c2 + k1Gib2 + k3Zi ∗ b2
m5 = 2a3/∆t− c3 m15 = 0
m6 = 0 m16 = 2a3/∆t− c3
m7 = 2a2/∆t− c2 − k1Zib2 − k2Gib2 m17 = −k3Gib2
m8 = −k2Zib2 m18 = 2a2/∆t− c2 − k1Gib2 − k3Zib2
m9 = 2a1/∆t− c1 − k1Zib1 − k2Gib1 m19 = −k3Gib1
m10 = −k2Zib1 m20 = 2a1/∆t− c1 − k1Gib1 − k3Zib1

f1 = 2a1/∆t+ c1 − k1Zi ∗ b1 − k2Gib1 f11 = −k3Gib1
f2 = −k2Zib1 f12 = 2a1/∆t+ c1 − k3Zib1 − k1Gib1
f3 = 2a2/∆t+ c2 − k1Zib2 − k2Gib2 f13 = −k3Gib2
f4 = −k2Zib2 f14 = 2a2/∆t+ c2 − k3Zib2 − k1Gib2
f5 = 2a3/∆t+ c3 f15 = 0
f6 = 0 f16 = 2a3/∆t+ c3
f7 = 2a2/∆t+ c2 + k1Zib2 + k2Gib2 f17 = k3Gib2
f8 = k2Zib2 f18 = 2a2/∆t+ c2 + k3Zib2 + k1Gib2
f9 = 2a1/∆t+ c1 + k1Zib1 + k2Gib1 f19 = k3Gib1
f10 = k2Zib1 f20 = 2a1/∆t+ c1 + k3Zib1 + k1Gi ∗ b1

1
0



This iterative scheme results in a system of equations involving (2N + 10)
unknowns and (2N +2) equations. Using the boundary conditions of the prob-
lem, the unknowns δ−2, σ−2, δ−1, σ−1 from the left boundary and the unknowns
δN+2, σN+2, δN+1, σN+1 from the right boundary are eliminated and solvable
system is obatined.

Now utilizing this scheme, we are going to carry out our calculations until
the desired time level. But for this, first of all we need the initial values of the
unknowns at time t = 0. The following section will deal with this step of the
solution process.

2.4 Initial state

The initial vector d0 is determined from the initial and boundary conditions.
For CTBCM, the approximation (2) must be rewritten as

UN (x, 0)=

N+1∑

m=−1

δ0m(t)T 3
m(x), V N (x, 0)=

N+1∑

m=−1

σ0
m(t)T 3

m(x)

and for QTBCM, the approximation (4) must be as

UN (x, 0)=

N+2∑

m=−2

δ0m(t)T 5
m(x), V N (x, 0)=

N+2∑

m=−2

σ0
m(t)T 5

m(x)

where the δ0m’s and σ0
m’s are unknown initial parameters.

We require the initial numerical approximation UN (x, 0) and VN (x, 0) satisfy
the following initial conditions:

UN(xi, 0) = f(xi), i = 0, 1, ..., N

VN (xi, 0) = g(xi), i = 0, 1, ..., N

respectively. While this requirement results in (2N +2) equations and (2N +6)
unknowns for CTBCM, it results in (2N + 2) equations and (2N + 10) un-
knowns for QTBCM. Using U ′(xi, 0) = f ′(xi) and V ′(xi, 0) = g′(xi) for CT-

BCM; and using U ′(xi, 0) = f ′(xi), V ′(xi, 0) = g′(xi), U
′′

(xi, 0) = f
′′

(xi),

V
′′

(xi, 0) = g′′(xi) for QTBCM, because the first and the second derivatives
of the approximate initial conditions shall agree with those of the exact initial
conditions, the initial vector d0 is obtained by means of the matrix equation in
the following form

Wd
0 = b.

Here the coefficent matrix W and the right hand side column vector b are
obtained for CTBCM and QTBCM accordingly. The solution of system of
equations results in the initial values of δ0m and σ0

m. Thus one can start the
iterative procedure to find out the next time values of δm and σm.

11



3 Stability Analysis

In this section, CTBCM has been applied to the first equation (1a) in Eq.(1)

then Zi = Û and Gi = V̂ are taken, and von Neumann method has been applied
to the the following scheme

(g1)δn+1
i−1 + (g2)σn+1

i−1 + (g3)δn+1
i + (g4)σn+1

i + (g5)δn+1
i+1 + (g6)σn+1

i+1

= (h1)δni−1 + σn
i−1(h2) + (h3)δni + (h4)σn

i + (h5)δni+1 + (h6)σn
i+1

where

g1 =
2α1

∆t
− γ1 + k1Ûβ1 + k2V̂ β1

g2 = k2Zİβ1

g3 =
2

∆t
α2 − γ2

g4 = 0

g5 =
2

∆t
α1 − γ1 + k1Ûβ2 + k2V̂ β2

g6 = k2Ûβ2

and

h1 =
2α1

∆t
+ γ1 − k1Ûβ1 − k2V̂ β1

h2 = −k2Ûβ1

h3 =
2

∆t
α2 + γ2

h4 = 0

h5 =
2

∆t
α1 + γ1 − k1Ûβ2 − k2V̂ β2

h6 = −k2Ûβ2

In this scheme, A and B are harmonic amplitudes, φ = kh, k is mode number,
i =

√
−1 and g is the amplification factor, when in place of δni and σn

i the
following notations are used

δni = Aζ exp(ijφ)

σn
i = Bζ exp(ijφ)

g =
ζn+1

ζn

and the required changes are made, the following equality

g =
X2 + iY

X1 − iY
(8)

12



is obtained. Here

X1 = A

[
2

(
α1 −

γ1∆t

2

)
cosφ+

(
α2 −

γ2∆t

2

)]
,

X2 = A

[
2

(
α1 +

γ1∆t

2

)
cosφ+

(
α2 +

γ2∆t

2

)]

and

Y =

[
sinϕ

(
A

(
β2k2∆t

2
V̂ +

β2k1∆t

2
Û − β1k2∆t

2
V̂ +

β1k1∆t

2
Û

)
+B

(
−β1k2∆t

2
Û +

β2k2∆t

2
Û

))]

Since the numerical scheme obtained as a result of the linearization tech-
nique applied in the study given with Ref.[20] for the coupled Burgers equation
is similar to the numerical scheme given in this study (16), similarly, |g| ≤ 1
is found as shown in Ref. [20]. From here the scheme is unconditionally sta-
ble. Since U and V are symmetrical, similar results are obtained in the second
equation (1b) in the coupled Burgers system given by (1).

4 Numerical examples and results

In this section, three common test problems about the cBE are going to be solved
and the results will be compared with some of those available in the literature.
If the exact solution of the test problem is available, then the accuracy of the
numerical method is going to be controlled by using the error norms L2 and L∞

given as follows, respectively:

L2 =

√√√√
∑N

i=0 |Ui − (UN )i|∑N
i=0 |Ui|2

2

, L∞ = max
1≤i≤N

|Ui − (UN )i|

4.1 Test Problem 1

First of all, the cBE is considered for k1 = −2 and k2 = k3 = 1 with the
following initial and boundary conditions

U(x, 0) = sin(x), V (x, 0) = sin(x)

and

U(−π, t) = U(π, t) = V (−π, t) = V (π, t) = 0

For this problem the analytical solution is

U(x, t) = V (x, t) = e−t sin(x)

13



Table 1: Comparison of the calculated error norms L2 and L∞of Problem 1 with

∆t = 0.01 for N = 50, 100, and 200 at different times on [−π, π].

CTBCM
N = 50 N = 100 N = 200

t L2 L∞ L2 L∞ L2 L∞

0.1 1.22694e − 04 1.10799e − 04 3.00195e − 05 2.71628e − 05 6.87807e− 06 6.22353e − 06
0.5 6.13619e − 04 3.71445e − 04 1.50107e− 04 9.10443e − 05 3.43908e − 05 2.08591e − 05
1.0 1.22762e − 03 4.50723e − 04 3.00236e − 04 1.10451e − 04 6.87828e − 05 2.53038e − 05
1.5 1.84199e − 03 4.10192e − 04 4.50388e− 04 1.00495e − 04 1.03176e − 04 2.30217e − 05
2.0 2.45674e − 03 3.31827e − 04 6.00562e− 04 8.12772e − 05 1.37570e − 04 1.86181e − 05
2.5 3.07186e − 03 2.51656e − 04 7.50759e− 04 6.16260e − 05 1.71966e − 04 1.41158e − 05
3.0 3.68737e − 03 1.83221e − 04 9.00978e − 04 4.48570e − 05 2.06363e− 04 1.02742e − 05

QTBCM
0.1 1.00394e − 06 9.07529e − 07 8.43609e− 07 7.63698e − 07 8.33815e − 07 7.54645e − 07
0.5 5.00073e − 06 3.03764e − 06 4.21016e− 06 2.55768e − 06 4.16519e− 06 2.52833e − 06
1.0 9.95481e − 06 3.67096e − 06 8.40074e− 06 3.09647e − 06 8.32072e− 06 3.06399e − 06
1.5 1.48628e − 05 3.32544e − 06 1.25719e− 05 2.81095e − 06 1.24666e − 05 2.78454e − 06
2.0 1.97251e − 05 2.67730e − 06 1.67237e − 05 2.26810e − 06 1.66029e − 05 2.24934e − 06
2.5 2.45423e − 05 2.02065e − 06 2.08562e− 05 1.71566e − 06 2.07296e− 05 1.70342e − 06
3.0 2.93146e − 05 1.46401e − 06 2.49695e − 05 1.24586e − 06 2.48467e − 05 1.23839e − 06

To start the initialization process, the needed initial and boundary conditions
are obtained from the analytical solution. Table 1 shows a comparison of the
calculated error norms L2 and L∞ of Problem 1 with ∆t = 0.01 for N =
50, 100, and 200 at different times on [−π, π]. From the table it is seen that
using quintic B-spline base functions instead of cubic ones produces much better
results. Table 2 shows a comparison of the calculated error norms L2 and L∞

of Problem 1 with N = 100 at different times. In Table 3, a comparison of the
calculated error norms L∞ of Problem 1 for U(x, t) = V (x, t) with ∆t = 0.01 for
N = 50 at different times is presented. From the table, it is clear that the present
results obtained by CTBCM are in good agreement with those of compared ones,
and the present results obtained by QTCBCM are much better than all of the
compared ones. Table 4 presents a comparison of the calculated error norms
L2 and L∞ of Problem 1 with results from [8] and [12] with ∆t = 0.001 for
N = 200 and 400 at different times. Again from the table it is obvious that
while the results obtained by CTBCM are in good agreement with those of
compared ones, the results obtained by QTBCM are much more better than all
of the compared ones. Figure 1 shows numerical simulations of Problem 1 for
values of N = 100, ∆t = 0.001, k1 = −2, k2 = k3 = 1 at times t = 1, 2 and 3. In
fact, both the exact and numerical solutions of the problem are drawn on this
diagram, but the curves are indistinguishable since they are very close to each
other.

4.2 Test Problem 2

In the second test problem, the numerical solutions of cBE are obtained for
k1 = 2 with different values of k2 and k3 at various time levels. For the second
test problem the exact solutions are

U(x, t) = a0 − 2A

(
2k2 − 1

4k2k3 − 1

)
tanh (A (x− 2At))
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Figure 1: Numerical simulations of Problem I for values ofN = 100,∆t = 0.001,
k1 = −2, k2 = k3 = 1 at times t = 1, 2 and 3.
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Table 2: Comparison of the calculated error norms L2 and L∞ of Problem 1
with N = 100 at different times.

CTBCM
∆t = 0.01 ∆t = 0.005 ∆t = 0.001

t L2 L∞ L2 L∞ L2 L∞

0.1 3.00195e − 05 2.71628e − 05 3.06440e − 05 2.77278e − 05 3.08438e − 05 2.79086e − 05
0.5 1.50107e − 04 9.10443e − 05 1.53229e − 04 9.29383e − 05 1.54229e − 04 9.35443e − 05
1.0 3.00236e − 04 1.10451e − 04 3.06482e− 04 1.12748e − 04 3.08481e − 04 1.13484e − 04
1.5 4.50388e − 04 1.00495e − 04 4.59758e − 04 1.02586e − 04 4.62757e − 04 1.03255e − 04
2.0 6.00562e − 04 8.12772e − 05 6.13058e− 04 8.29684e − 05 6.17057e − 04 8.35096e − 05
2.5 7.50759e − 04 6.16260e − 05 7.66381e− 04 6.29084e − 05 7.71380e− 04 6.33188e − 05
3.0 9.00978e − 04 4.48570e − 05 9.19728e− 04 4.57906e − 05 9.25728e − 04 4.60893e − 05

QTBCM
0.1 8.43609e − 07 7.63698e − 07 2.18900e − 07 1.98165e − 07 1.89960e − 08 1.71967e − 08
0.5 4.21016e − 06 2.55768e − 06 1.09245e− 06 6.63669e − 07 9.48025e− 08 5.75928e − 08
1.0 8.40074e − 06 3.09647e − 06 2.17983e − 06 8.03476e − 07 1.89165e − 07 6.97252e − 08
1.5 1.25719e − 05 2.81095e − 06 3.26217e − 06 7.29389e − 07 2.83089e− 07 6.32960e − 08
2.0 1.67237e − 05 2.26810e − 06 4.33949e − 06 5.88530e − 07 3.76579e− 07 5.10724e − 08
2.5 2.08562e − 05 1.71566e − 06 5.41181e− 06 4.45185e − 07 4.69634e − 07 3.86329e − 08
3.0 2.49695e − 05 1.24586e − 06 6.47916e− 06 3.23280e − 07 5.62259e− 07 2.80541e − 08

Table 3: Comparison of the calculated error norms L∞ of Problem 1 for U(x, t) =
V (x, t) with ∆t = 0.01 for N = 50 at different times.

Present [12] [15] [18] [21]
t CTBCM QTBCM
0.5 3.71445 × 10−4 3.03764 × 10−6 2.2662 × 10−5 1.1030 × 10−4 1.51688 × 10−4 7.9881 × 10−4

1.0 4.50723 × 10−4 3.67096 × 10−6 1.4617 × 10−5 1.3368 × 10−4 1.83970 × 10−4 9.6837 × 10−4

2.0 3.31827 × 10−4 2.67730 × 10−6 7.3805 × 10−6 9.8182 × 10−5 1.35250 × 10−4 7.1154 × 10−4

3.0 1.83221 × 10−4 1.46401 × 10−6 4.0272 × 10−6 1.0298 × 10−5 7.46014 × 10−5 3.9213 × 10−4

V (x, t) = a0

(
2k3 − 1

2k2 − 1

)
− 2A

(
2k2 − 1

4k2k3 − 1

)
tanh (A (x− 2At))

For this problem the initial and boundary conditions are taken from the exact
solutions as follows

U(x, 0) = a0 − 2A

(
2k2 − 1

4k2k3 − 1

)
tanh (Ax)

V (x, 0) = a0

(
2k3 − 1

2k2 − 1

)
− 2A

(
2k2 − 1

4k2k3 − 1

)
tanh (Ax)

here a0 = 0.05 and A = 1
2

(
a0(4k2k3−1)

2k2−1

)
. The numerical simulations are run on

the domain [−10, 10] at time intervals ∆t = 0.01.
While Table 5 shows a comparison of the computed error norms L2 and L∞of

Problem 2 using cubic trigonometric B-splines with ∆t = 0.01 for k2 = 0.1 and
k3 = 0.3 at various times, Table 6 a comparison of the computed error norms
L2 and L∞ of Problem 2 using quintic trigonometric B-splines with ∆t = 0.01
for k2 = 0.1 and k3 = 0.3 at various times. From the tables, it is clearly seen
that there is a noticeable decrease in both of the error norms L2 and L∞.when
mesh sizes decrease. Table 7 a comparison of the calculated error norms L2 and
L∞ with those from other authors for UN (x, t) and VN (x, t) of Problem 2 for
∆t = 0.01 and N = 100. From the table, it is clearly seen that the present
results are in good agreement with those of compared ones.
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Table 4: Comparison of the calculated error norms L2 and L∞ of Problem 1 with results from [8] and [12] with ∆t = 0.001 for
N = 200 and 400 at different times.

Present [8] [12]
CTBCM QTBCM

N t L2 L∞ L2 L∞ L2 L∞ L2 L∞

200 0.1 7.70290× 10−6 6.96987× 10−6 8.99738× 10−9 8.14309× 10−9 8.21× 10−6 7.45× 10−6 0.17× 10−6 0.52× 10−6

0.5 3.85151× 10−5 2.33606× 10−5 4.49451× 10−8 2.72823× 10−8 2.49× 10−5 4.10× 10−5 0.27× 10−6 0.36× 10−6

1.0 7.70316× 10−5 2.83384× 10−5 8.97861× 10−8 3.30625× 10−8 3.00× 10−5 8.21× 10−5 0.36× 10−6 0.22× 10−6

400 0.1 1.91936× 10−6 1.73671× 10−6 8.37395× 10−9 7.57795× 10−9 2.05× 10−6 1.86× 10−6 0.07× 10−6 0.14× 10−6

0.5 9.59685× 10−6 5.82078× 10−6 4.18504× 10−8 2.53936× 10−8 1.02× 10−5 6.22× 10−6 0.16× 10−6 0.14× 10−6

1.0 1.91938× 10−5 7.06100× 10−6 8.36523× 10−8 3.07889× 10−8 2.04× 10−5 7.56× 10−6 0.15× 10−6 0.10× 10−6

1
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Table 5: Comparison of the computed error norms L2 and L∞ of Problem 2 using
cubic trigonometric B-splines with ∆t = 0.01 for k2 = 0.1 and k3 = 0.3 at
various times.

CTBCM
UN VN

N t L2 L∞ L2 L∞

50 0.1 5.97533e− 04 3.86270e− 05 6.33197e− 04 2.35912e− 05
0.5 2.91102e− 03 1.85436e− 04 3.07924e− 03 1.11898e− 04
1.0 5.70536e− 03 3.62583e− 04 6.02668e− 03 2.17005e− 04
1.5 8.42042e− 03 5.34584e− 04 8.88491e− 03 3.18514e− 04
2.0 1.10693e− 02 7.03179e− 04 1.16689e− 02 4.16985e− 04
2.5 1.36595e− 02 8.68399e− 04 1.43872e− 02 5.12937e− 04
3.0 1.61963e− 02 1.03062e− 03 1.70459e− 02 6.06530e− 04

100 0.1 4.56627e− 05 3.12521e− 06 8.75203e− 05 2.51865e− 06
0.5 2.21646e− 04 1.47074e− 05 4.26445e− 04 1.24776e− 05
1.0 4.33522e− 04 2.83167e− 05 8.35758e− 04 2.47485e− 05
1.5 6.39151e− 04 4.13487e− 05 1.23347e− 03 3.68667e− 05
2.0 8.39763e− 04 5.39726e− 05 1.62153e− 03 4.88525e− 05
2.5 1.03606e− 03 6.62820e− 05 2.00108e− 03 6.07323e− 05
3.0 1.22850e− 03 7.83245e− 05 2.37286e− 03 7.25176e− 05

200 0.1 9.23657e− 05 5.60410e− 06 6.14491e− 05 2.86617e− 06
0.5 4.52154e− 04 2.78132e− 05 2.95049e− 04 1.35627e− 05
1.0 8.89323e− 04 5.51797e− 05 5.71858e− 04 2.60320e− 05
1.5 1.31629e− 03 8.21730e− 05 8.36882e− 04 3.78299e− 05
2.0 1.73475e− 03 1.08833e− 04 1.09248e− 03 4.91045e− 05
2.5 2.14567e− 03 1.35194e− 04 1.34005e− 03 5.99411e− 05
3.0 2.54973e− 03 1.61277e− 04 1.58055e− 03 7.04021e− 05
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Table 6: Comparison of the computed error norms L2 and L∞ of Problem 2 using
quintic trigonometric B-splines with ∆t = 0.01 for k2 = 0.1 and k3 = 0.3 at
various times.

QTBCM
UN VN

N t L2 L∞ L2 L∞

50 0.1 1.48899e− 04 9.34184e− 06 1.14452e− 04 5.14174e− 06
0.5 7.28664e− 04 4.57126e− 05 5.54679e− 04 2.40139e− 05
1.0 1.43245e− 03 9.03097e− 05 1.08243e− 03 4.62982e− 05
1.5 2.11939e− 03 1.34155e− 04 1.59262e− 03 6.75867e− 05
2.0 2.79237e− 03 1.77405e− 04 2.08869e− 03 8.80182e− 05
2.5 3.45307e− 03 2.20099e− 04 2.57265e− 03 1.07862e− 04
3.0 4.10259e− 03 2.62290e− 04 3.04587e− 03 1.27149e− 04

100 0.1 1.38311e− 04 8.53910e− 06 1.04253e− 04 4.60873e− 06
0.5 6.76629e− 04 4.20943e− 05 5.04449e− 04 2.19331e− 05
1.0 1.33020e− 03 8.32189e− 05 9.83626e− 04 4.22821e− 05
1.5 1.96822e− 03 1.23675e− 04 1.44643e− 03 6.16680e− 05
2.0 2.59334e− 03 1.63564e− 04 1.89609e− 03 8.03133e− 05
2.5 3.20710e− 03 2.02964e− 04 2.33449e− 03 9.83320e− 05
3.0 3.81053e− 03 2.41934e− 04 2.76291e− 03 1.15801e− 04

200 0.1 1.38134e− 04 8.49587e− 06 1.04076e− 04 4.58839e− 06
0.5 6.75728e− 04 4.18888e− 05 5.03499e− 04 2.18263e− 05
1.0 1.32847e− 03 8.28176e− 05 9.81729e− 04 4.20787e− 05
1.5 1.96571e− 03 1.23076e− 04 1.44361e− 03 6.13752e− 05
2.0 2.59011e− 03 1.62783e− 04 1.89236e− 03 7.99252e− 05
2.5 3.20319e− 03 2.02003e− 04 2.32986e− 03 9.78687e− 05
3.0 3.80599e− 03 2.40782e− 04 2.75740e− 03 1.15278e− 04
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Table 7: Comparison of the calculated error norms L2 and L∞ with those from other authors for UN (x, t) and VN (x, t) of
Problem 2 for ∆t = 0.01 and N = 100.

Present [6] [7] [8] [12]
CTBCM QTBCM

t k2 k3 L2

UN(x, t) 0.5 0.1 0.30 2.21646e− 04 6.76629e− 04 1.44e− 03 3.245e− 05 6.736e− 04 6.783e− 04
0.3 0.03 2.27815e− 04 7.45551e− 04 6.68e− 04 2.733e− 05 7.326e− 04 7.609e− 04

1 0.1 0.30 4.33522e− 04 1.33020e− 03 1.27e− 03 2.405e− 05 1.325e− 03 1.334e− 03
0.3 0.03 4.33368e− 04 1.46927e− 03 1.30e− 03 2.832e− 05 1.452e− 03 1.500e− 03

VN (x, t) 0.5 0.1 0.30 4.26445e− 04 5.04449e− 04 5.42e− 04 2.746e− 05 9.057e− 04 5.101e− 04
0.3 0.03 4.70374e− 04 1.32205e− 03 1.20e− 03 2.454e− 04 1.591e− 03 1.327e− 03

1 0.1 0.30 8.35758e− 04 9.83626e− 04 1.29e− 03 3.745e− 05 1.251e− 03 0.995e− 03
0.3 0.03 9.26878e− 04 2.60682e− 03 2.35e− 03 4.525e− 04 2.250e− 03 2.617e− 03

L∞

UN(x, t) 0.5 0.1 0.30 1.47074e− 05 4.20943e− 05 4.38e− 05 9.619e− 04 4.167e− 05 4.208e− 05
0.3 0.03 2.70943e− 05 4.61427e− 05 4.58e− 05 4.310e− 04 4.590e− 05 4.703e− 05

1 0.1 0.30 2.83167e− 05 8.32189e− 05 8.66e− 05 1.153e− 03 8.258e− 05 8.320e− 05
0.3 0.03 4.98805e− 05 9.22995e− 05 9.16e− 05 1.268e− 03 9.182e− 05 9.409e− 05

VN (x, t) 0.5 0.1 0.30 1.24776e− 05 2.19331e− 05 4.99e− 05 3.332e− 04 1.480e− 04 0.221e− 04
0.3 0.03 7.64233e− 05 1.81391e− 04 1.81e− 04 1.148e− 03 5.729e− 04 1.818e− 04

1 0.1 0.30 2.47485e− 05 4.22821e− 04 9.92e− 05 1.162e− 03 4.770e− 05 4.255e− 05
0.3 0.03 1.52359e− 04 3.62676e− 04 3.62e− 04 1.638e− 03 3.617e− 04 3.636e− 04
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Figure 2: The behaviour of numerical solutions of Problem 3 for values of
N = 50, ∆t = 0.001, k1 = 2, k2 = k3 = 10 at times t = 0.1, 0.2, 0.3 and 0.4.

4.3 Test Problem 3

Lastly, the cBE is considered with the following initial

U(x, 0) =

{
sin(2πx), x ∈ [0, 0.5]

0, x ∈ (0.5, 1

and

V (x, 0) =

{
0, x ∈ [0, 0.5]

- sin(2πx), x ∈ (0.5, 1

and zero boundary conditions.
Table 8 shows a comparison of the calculated UN and VN of Problem 3

with N = 50 for k2 = k3 = 10 and k2 = k3 = 100 at different times. From
Table 9 a comparison of the maximum values of UN and VN found out by the
present approach with those of [12] is presented. From the table it is obviously
seen that the maximum values of UN and VN and the x positions at which those
maximum values are attained are in good agreement with those of [12]. Those
results are also presented graphically in Figures 2-3.

4.4 Conclusion

In this paper, numerical solutions of the cBE based on the trigonometric cubic
B-spline finite element have been presented. Three test problems are worked out
to examine the performance of the algorithms. The performance and accuracy
of the method is shown by calculating the error norms L2 and L∞. For each
linearization technique, the error norms are sufficiently small and the invariants
are satisfactorily constant in all computer runs. The computed results show
that the present method is a remarkably successful numerical technique for
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Table 8: Comparison of the calculated UN and VN of Problem 3 with N = 50 for k2 = k3 = 10 and k2 = k3 = 100 at different
times.

k2 = k3 = 10 k2 = k3 = 100
CTBCM QTBCM CTBCM QTBCM

x t UN VN UN VN UN VN UN VN
0.2 0.1 0.074267 0.048375 0.071964 0.047489 0.030210 0.004724 0.028837 0.004768

0.2 0.027245 0.023688 0.026117 0.022749 0.007151 0.003946 0.006865 0.003832
0.3 0.010838 0.009617 0.010195 0.009051 0.002879 0.001804 0.002722 0.001713
0.4 0.004158 0.003703 0.003836 0.003418 0.001128 0.000729 0.001045 0.000678

0.4 0.1 0.126764 0.101431 0.124532 0.100069 0.041425 0.017768 0.040453 0.017614
0.2 0.047173 0.041684 0.045649 0.040369 0.012684 0.007829 0.012312 0.007638
0.3 0.018050 0.016070 0.017147 0.015271 0.004897 0.003162 0.004672 0.003025
0.4 0.006803 0.006065 0.006343 0.005656 0.001862 0.001216 0.001743 0.001142

0.6 0.1 0.144605 0.140976 0.142334 0.138363 0.041598 0.040123 0.041159 0.039276
0.2 0.051780 0.046621 0.049985 0.044991 0.014810 0.010363 0.014347 0.010031
0.3 0.018732 0.016746 0.017764 0.015882 0.005240 0.003510 0.004986 0.003343
0.4 0.006898 0.006159 0.006426 0.005738 0.001910 0.001265 0.001786 0.001184

0.8 0.1 0.107673 0.117144 0.104658 0.113107 0.039665 0.050149 0.038916 0.048358
0.2 0.034822 0.031800 0.033143 0.030232 0.010889 0.008343 0.010378 0.007916
0.3 0.011943 0.010713 0.011181 0.010028 0.003441 0.002374 0.003227 0.002226
0.4 0.004312 0.003854 0.003969 0.003548 0.001206 0.000807 0.001114 0.000746
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Table 9: Comparison of the maximum values of UN and VN of Problem 3 with
those found by [12] at different times.

Present ∆t = 0.001 [12] ∆t = 0.001
CTBCM QTBCM

t UN
max x UN

max x UN
max x

k2 = k3 = 10 0.1 0.144798 0.58 0.142561 0.58 0.14348 0.58
0.2 0.052477 0.54 0.050739 0.54 0.05252 0.54
0.3 0.019365 0.52 0.018394 0.52 0.01945 0.52
0.4 0.007203 0.50 0.006719 0.50 0.00724 0.50

k2 = k3 = 100 0.1 0.041859 0.48 0.041217 0.48 0.04108 0.44
0.2 0.014820 0.58 0.014366 0.58 0.01475 0.58
0.3 0.005353 0.54 0.005102 0.54 0.00536 0.54
0.4 0.001984 0.52 0.001858 0.52 0.00199 0.52

V N
max V N

max V N
max

k2 = k3 = 10 0.1 0.143228 0.66 0.140294 0.66 0.14238 0.66
0.2 0.047065 0.56 0.045481 0.56 0.04723 0.56
0.3 0.017284 0.52 0.016420 0.52 0.01741 0.52
0.4 0.006426 0.50 0.005996 0.50 0.00648 0.50

k2 = k3 = 100 0.1 0.051073 0.76 0.049495 0.76 0.04994 0.76
0.2 0.010448 0.64 0.010087 0.64 0.01049 0.64
0.3 0.003549 0.56 0.003386 0.56 0.00360 0.56
0.4 0.001306 0.52 0.001226 0.52 0.00133 0.52
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Figure 3: The behaviour of numerical solutions of Problem 3 for values of
N = 50, ∆t = 0.001, k1 = 2, k2 = k3 = 100 at times t = 0.1, 0.2, 0.3 and 0.4.
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solving the cBE and advisable for getting numerical solutions of other types of
non-linear equations.
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