Author contributions
AB and CAP performed surgery, microdialysis experiments and HPLC analysis; MM and AB conceived the study and wrote the manuscript.
Conflict of interests : AB is postdoc at the University of Ferrara, CAP is PhD student at the University of Ferrara, MM is employed by the University of Ferrara.
REFERENCES
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, et al. (2015). Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132: 96-168.
Bernard V, Normand E, Bloch B (1992). Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12 (9):3591-3600.
Billard W, Binch H, 3rd, Crosby G, McQuade RD (1995). Identification of the primary muscarinic autoreceptor subtype in rat striatum as m2 through a correlation of in vivo microdialysis and in vitro receptor binding data. J Pharmacol Exp Ther 273 (1): 273-279.
Bohme TM, Augelli-Szafran CE, Hallak H, Pugsley T, Serpa K, Schwarz RD (2002). Synthesis and pharmacology of benzoxazines as highly selective antagonists at M(4) muscarinic receptors. J Med Chem 45 (14): 3094-3102.
Bonsi P, Martella G, Cuomo D, Platania P, Sciamanna G, Bernardi G, et al. (2008). Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J Neurosci28 (24): 6258-6263.
Bordia T, Perez XA (2019). Cholinergic control of striatal neurons to modulate L-dopa-induced dyskinesias.Eur J Neurosci 49 (6): 859-868.
Bordia T, Perez XA, Heiss J, Zhang D, Quik M (2016). Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias. Neurobiol Dis91: 47-58.
Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, et al. (2008). Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats.J Pharmacol Exp Ther 327 (3): 941-953.
Brugnoli A, Napolitano F, Usiello A, Morari M (2016). Genetic deletion of Rhes or pharmacological blockade of mTORC1 prevent striato-nigral neurons activation in levodopa-induced dyskinesia. Neurobiol Dis 85: 155-163.
Byun NE, Grannan M, Bubser M, Barry RL, Thompson A, Rosanelli J, et al. (2014). Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology39 (7): 1578-1593.
Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000). Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23 (3):120-126.
Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (1998). Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation.Eur J Neurosci 10 (9): 2887-2895.
Carrillo-Reid L, Tecuapetla F, Vautrelle N, Hernandez A, Vergara R, Galarraga E, et al. (2009). Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons. J Neurophysiol102 (2): 682-690.
Cenci MA, Lee CS, Bjorklund A (1998). L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA.Eur J Neurosci 10 (8): 2694-2706.
Cenci MA, Lundblad M (2007). Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc NeurosciChapter 9: Unit 9 25.
Chambers NE, Meadows SM, Taylor A, Sheena E, Lanza K, Conti MM, et al. (2019). Effects of Muscarinic Acetylcholine m1 and m4 Receptor Blockade on Dyskinesia in the Hemi-Parkinsonian Rat. Neuroscience 409: 180-194.
Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC (2016). Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol 782:70-76.
Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol175 (7): 987-993.
Ding Y, Won L, Britt JP, Lim SA, McGehee DS, Kang UJ (2011). Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice.Proc Natl Acad Sci U S A 108 (2): 840-845.
Divito CB, Steece-Collier K, Case DT, Williams SP, Stancati JA, Zhi L, et al. (2015). Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson’s Disease. J Neurosci 35 (45): 14983-14999.
Doods HN, Mathy MJ, Davidesko D, van Charldorp KJ, de Jonge A, van Zwieten PA (1987). Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J Pharmacol Exp Ther242 (1): 257-262.
Galarraga E, Hernandez-Lopez S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, et al. (1999). Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci19 (9): 3629-3638.
Gangarossa G, Guzman M, Prado VF, Prado MA, Daumas S, El Mestikawy S, et al. (2016). Role of the atypical vesicular glutamate transporter VGLUT3 in l-DOPA-induced dyskinesia. Neurobiol Dis 87: 69-79.
Gardoni F, Morari M, Kulisevsky J, Brugnoli A, Novello S, Pisano CA, et al. (2018). Safinamide Modulates Striatal Glutamatergic Signaling in a Rat Model of Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther367 (3): 442-451.
Gubellini P, Eusebio A, Oueslati A, Melon C, Kerkerian-Le Goff L, Salin P (2006). Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: effects on motor behaviour and striatal glutamate transmission. Eur J Neurosci 24 (6):1802-1814.
Hernandez-Flores T, Hernandez-Gonzalez O, Perez-Ramirez MB, Lara-Gonzalez E, Arias-Garcia MA, Duhne M, et al. (2015). Modulation of direct pathway striatal projection neurons by muscarinic M(4)-type receptors.Neuropharmacology 89: 232-244.
Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997). D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17 (9): 3334-3342.
Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI (1994). Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci14 (5 Pt 2): 3351-3363.
Kljakic O, Janickova H, Prado VF, Prado MAM (2017). Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J Neurochem 142 Suppl 2: 90-102.
Lazareno S, Birdsall NJ (1993). Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol109 (4): 1120-1127.
Lazareno S, Buckley NJ, Roberts FF (1990). Characterization of muscarinic M4 binding sites in rabbit lung, chicken heart, and NG108-15 cells. Mol Pharmacol38 (6): 805-815.
Mark KA, Soghomonian JJ, Yamamoto BK (2004). High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci 24 (50): 11449-11456.
Marti M, Manzalini M, Fantin M, Bianchi C, Della Corte L, Morari M (2005). Striatal glutamate release evoked in vivo by NMDA is dependent upon ongoing neuronal activity in the substantia nigra, endogenous striatal substance P and dopamine.J Neurochem 93 (1): 195-205.
Marti M, Rodi D, Li Q, Guerrini R, Fasano S, Morella I, et al. (2012). Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesias. J Neurosci 32 (46): 16106-16119.
Mela F, Marti M, Bido S, Cenci MA, Morari M (2012). In vivo evidence for a differential contribution of striatal and nigral D1 and D2 receptors to L-DOPA induced dyskinesia and the accompanying surge of nigral amino acid levels. Neurobiol Dis45 (1): 573-582.
Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA (2007). Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 101 (2): 483-497.
Moehle MS, Conn PJ (2019). Roles of the M4 acetylcholine receptor in the basal ganglia and the treatment of movement disorders. Mov Disord 34 (8):1089-1099.
Moehle MS, Pancani T, Byun N, Yohn SE, Wilson GH, 3rd, Dickerson JW, et al. (2017). Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M4 Muscarinic Receptor.Neuron 96 (6): 1358-1372 e1354.
Morari M, O’Connor WT, Darvelid M, Ungerstedt U, Bianchi C, Fuxe K (1996). Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat–I. Effects of perfusion with tetrodotoxin and low-calcium medium. Neuroscience72 (1): 79-87.
Ostock CY, Dupre KB, Jaunarajs KL, Walters H, George J, Krolewski D, et al. (2011). Role of the primary motor cortex in L-Dopa-induced dyskinesia and its modulation by 5-HT1A receptor stimulation. Neuropharmacology61 (4): 753-760.
Pancani T, Bolarinwa C, Smith Y, Lindsley CW, Conn PJ, Xiang Z (2014). M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses. ACS chemical neuroscience 5 (4): 318-324.
Paolone G, Brugnoli A, Arcuri L, Mercatelli D, Morari M (2015). Eltoprazine prevents levodopa-induced dyskinesias by reducing striatal glutamate and direct pathway activity.Mov Disord 30 (13): 1728-1738.
Paxinos G, Watson C (1986). The rat brain in stereotaxic coordinates . 2nd edn. Academic Press: Sydney ; Orlando.
Pemberton KE, Jones SV (1995). Enhancement of an L-type calcium current in AtT-20 cells; a novel effect of the m4 muscarinic receptor. Pflugers Arch429 (5): 699-707.
Perez-Garci E, Bargas J, Galarraga E (2003). The role of Ca2+ channels in the repetitive firing of striatal projection neurons. Neuroreport 14 (9):1253-1256.
Perez-Rosello T, Figueroa A, Salgado H, Vilchis C, Tecuapetla F, Guzman JN, et al. (2005). Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J Neurophysiol 93 (5): 2507-2519.
Pisani A, Bernardi G, Ding J, Surmeier DJ (2007). Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 30 (10):545-553.
Pisanò CA, Brugnoli A, Novello S, Caccia C, Keywood C, Melloni E, et al. (2020). Safinamide inhibits in vivo glutamate release in a rat model of Parkinson’s disease. Neuropharmacology 167 .
Quik M, Bordia T, Zhang D, Perez XA (2015). Nicotine and Nicotinic Receptor Drugs: Potential for Parkinson’s Disease and Drug-Induced Movement Disorders. Int Rev Neurobiol124: 247-271.
Shen W, Hamilton SE, Nathanson NM, Surmeier DJ (2005). Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J Neurosci 25 (32): 7449-7458.
Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, et al. (2015). M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron 88 (4): 762-773.
Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, et al. (2007). Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10 (11):1458-1466.
Stoll C, Eltze M, Lambrecht G, Zentner J, Feuerstein TJ, Jackisch R (2009). Functional characterization of muscarinic autoreceptors in rat and human neocortex. J Neurochem 110 (3): 837-847.
Tanda G, Ebbs AL, Kopajtic TA, Elias LM, Campbell BL, Newman AH, et al. (2007). Effects of muscarinic M1 receptor blockade on cocaine-induced elevations of brain dopamine levels and locomotor behavior in rats. J Pharmacol Exp Ther321 (1): 334-344.
Tanimura A, Du Y, Kondapalli J, Wokosin DL, Surmeier DJ (2019). Cholinergic Interneurons Amplify Thalamostriatal Excitation of Striatal Indirect Pathway Neurons in Parkinson’s Disease Models. Neuron 101 (3):444-458 e446.
Won L, Ding Y, Singh P, Kang UJ (2014). Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice. J Neurosci34 (8): 3090-3094.
Xiao C, Cho JR, Zhou C, Treweek JB, Chan K, McKinney SL, et al. (2016). Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways. Neuron 90 (2): 333-347.
Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J (2002). Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci22 (5): 1709-1717.
Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, et al.(2016). Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson’s Disease. J Neurosci 36 (35): 9161-9172.