Author contributions
AB and CAP performed surgery, microdialysis experiments and HPLC
analysis; MM and AB conceived the study and wrote the manuscript.
Conflict of interests : AB is postdoc at the University of
Ferrara, CAP is PhD student at the University of Ferrara, MM is employed
by the University of Ferrara.
REFERENCES
Bastide MF, Meissner WG, Picconi B,
Fasano S, Fernagut PO, Feyder M, et al. (2015). Pathophysiology
of L-dopa-induced motor and non-motor complications in Parkinson’s
disease. Prog Neurobiol 132: 96-168.
Bernard V, Normand E, Bloch B (1992).
Phenotypical characterization of the rat striatal neurons expressing
muscarinic receptor genes. J Neurosci 12 (9):3591-3600.
Billard W, Binch H, 3rd, Crosby G,
McQuade RD (1995). Identification of the primary muscarinic autoreceptor
subtype in rat striatum as m2 through a correlation of in vivo
microdialysis and in vitro receptor binding data. J Pharmacol Exp
Ther 273 (1): 273-279.
Bohme TM, Augelli-Szafran CE, Hallak
H, Pugsley T, Serpa K, Schwarz RD (2002). Synthesis and pharmacology of
benzoxazines as highly selective antagonists at M(4) muscarinic
receptors. J Med Chem 45 (14): 3094-3102.
Bonsi P, Martella G, Cuomo D, Platania
P, Sciamanna G, Bernardi G, et al. (2008). Loss of muscarinic
autoreceptor function impairs long-term depression but not long-term
potentiation in the striatum. J Neurosci28 (24): 6258-6263.
Bordia T, Perez XA (2019). Cholinergic
control of striatal neurons to modulate L-dopa-induced dyskinesias.Eur J Neurosci 49 (6): 859-868.
Bordia T, Perez XA, Heiss J, Zhang D,
Quik M (2016). Optogenetic activation of striatal cholinergic
interneurons regulates L-dopa-induced dyskinesias. Neurobiol Dis91: 47-58.
Brady AE, Jones CK, Bridges TM,
Kennedy JP, Thompson AD, Heiman JU, et al. (2008). Centrally
active allosteric potentiators of the M4 muscarinic acetylcholine
receptor reverse amphetamine-induced hyperlocomotor activity in rats.J Pharmacol Exp Ther 327 (3): 941-953.
Brugnoli A, Napolitano F, Usiello A,
Morari M (2016). Genetic deletion of Rhes or pharmacological blockade of
mTORC1 prevent striato-nigral neurons activation in levodopa-induced
dyskinesia. Neurobiol Dis 85: 155-163.
Byun NE, Grannan M, Bubser M, Barry
RL, Thompson A, Rosanelli J, et al. (2014). Antipsychotic
drug-like effects of the selective M4 muscarinic acetylcholine receptor
positive allosteric modulator VU0152100. Neuropsychopharmacology39 (7): 1578-1593.
Calabresi P, Centonze D, Gubellini P,
Pisani A, Bernardi G (2000). Acetylcholine-mediated modulation of
striatal function. Trends Neurosci 23 (3):120-126.
Calabresi P, Centonze D, Gubellini P,
Pisani A, Bernardi G (1998). Endogenous ACh enhances striatal
NMDA-responses via M1-like muscarinic receptors and PKC activation.Eur J Neurosci 10 (9): 2887-2895.
Carrillo-Reid L, Tecuapetla F,
Vautrelle N, Hernandez A, Vergara R, Galarraga E, et al. (2009).
Muscarinic enhancement of persistent sodium current synchronizes
striatal medium spiny neurons. J Neurophysiol102 (2): 682-690.
Cenci MA, Lee CS, Bjorklund A (1998).
L-DOPA-induced dyskinesia in the rat is associated with striatal
overexpression of prodynorphin- and glutamic acid decarboxylase mRNA.Eur J Neurosci 10 (8): 2694-2706.
Cenci MA, Lundblad M (2007). Ratings
of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of
Parkinson’s disease in rats and mice. Curr Protoc NeurosciChapter 9: Unit 9 25.
Chambers NE, Meadows SM, Taylor A,
Sheena E, Lanza K, Conti MM, et al. (2019). Effects of Muscarinic
Acetylcholine m1 and m4 Receptor Blockade on Dyskinesia in the
Hemi-Parkinsonian Rat. Neuroscience 409: 180-194.
Croy CH, Chan WY, Castetter AM, Watt
ML, Quets AT, Felder CC (2016). Characterization of PCS1055, a novel
muscarinic M4 receptor antagonist. Eur J Pharmacol 782:70-76.
Curtis MJ, Alexander S, Cirino G,
Docherty JR, George CH, Giembycz MA, et al. (2018). Experimental
design and analysis and their reporting II: updated and simplified
guidance for authors and peer reviewers. Br J Pharmacol175 (7): 987-993.
Ding Y, Won L, Britt JP, Lim SA,
McGehee DS, Kang UJ (2011). Enhanced striatal cholinergic neuronal
activity mediates L-DOPA-induced dyskinesia in parkinsonian mice.Proc Natl Acad Sci U S A 108 (2): 840-845.
Divito CB, Steece-Collier K, Case DT,
Williams SP, Stancati JA, Zhi L, et al. (2015). Loss of VGLUT3
Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor
Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson’s
Disease. J Neurosci 35 (45): 14983-14999.
Doods HN, Mathy MJ, Davidesko D, van
Charldorp KJ, de Jonge A, van Zwieten PA (1987). Selectivity of
muscarinic antagonists in radioligand and in vivo experiments for the
putative M1, M2 and M3 receptors. J Pharmacol Exp Ther242 (1): 257-262.
Galarraga E, Hernandez-Lopez S, Reyes
A, Miranda I, Bermudez-Rattoni F, Vilchis C, et al. (1999).
Cholinergic modulation of neostriatal output: a functional antagonism
between different types of muscarinic receptors. J Neurosci19 (9): 3629-3638.
Gangarossa G, Guzman M, Prado VF,
Prado MA, Daumas S, El Mestikawy S, et al. (2016). Role of the
atypical vesicular glutamate transporter VGLUT3 in l-DOPA-induced
dyskinesia. Neurobiol Dis 87: 69-79.
Gardoni F, Morari M, Kulisevsky J,
Brugnoli A, Novello S, Pisano CA, et al. (2018). Safinamide
Modulates Striatal Glutamatergic Signaling in a Rat Model of
Levodopa-Induced Dyskinesia. J Pharmacol Exp Ther367 (3): 442-451.
Gubellini P, Eusebio A, Oueslati A,
Melon C, Kerkerian-Le Goff L, Salin P (2006). Chronic high-frequency
stimulation of the subthalamic nucleus and L-DOPA treatment in
experimental parkinsonism: effects on motor behaviour and striatal
glutamate transmission. Eur J Neurosci 24 (6):1802-1814.
Hernandez-Flores T,
Hernandez-Gonzalez O, Perez-Ramirez MB, Lara-Gonzalez E, Arias-Garcia
MA, Duhne M, et al. (2015). Modulation of direct pathway striatal
projection neurons by muscarinic M(4)-type receptors.Neuropharmacology 89: 232-244.
Hernandez-Lopez S, Bargas J, Surmeier
DJ, Reyes A, Galarraga E (1997). D1 receptor activation enhances evoked
discharge in neostriatal medium spiny neurons by modulating an L-type
Ca2+ conductance. J Neurosci 17 (9): 3334-3342.
Hersch SM, Gutekunst CA, Rees HD,
Heilman CJ, Levey AI (1994). Distribution of m1-m4 muscarinic receptor
proteins in the rat striatum: light and electron microscopic
immunocytochemistry using subtype-specific antibodies. J Neurosci14 (5 Pt 2): 3351-3363.
Kljakic O, Janickova H, Prado VF,
Prado MAM (2017). Cholinergic/glutamatergic co-transmission in striatal
cholinergic interneurons: new mechanisms regulating striatal
computation. J Neurochem 142 Suppl 2: 90-102.
Lazareno S, Birdsall NJ (1993).
Pharmacological characterization of acetylcholine-stimulated
[35S]-GTP gamma S binding mediated by human muscarinic m1-m4
receptors: antagonist studies. Br J Pharmacol109 (4): 1120-1127.
Lazareno S, Buckley NJ, Roberts FF
(1990). Characterization of muscarinic M4 binding sites in rabbit lung,
chicken heart, and NG108-15 cells. Mol Pharmacol38 (6): 805-815.
Mark KA, Soghomonian JJ, Yamamoto BK
(2004). High-dose methamphetamine acutely activates the striatonigral
pathway to increase striatal glutamate and mediate long-term dopamine
toxicity. J Neurosci 24 (50): 11449-11456.
Marti M, Manzalini M, Fantin M,
Bianchi C, Della Corte L, Morari M (2005). Striatal glutamate release
evoked in vivo by NMDA is dependent upon ongoing neuronal activity in
the substantia nigra, endogenous striatal substance P and dopamine.J Neurochem 93 (1): 195-205.
Marti M, Rodi D, Li Q, Guerrini R,
Fasano S, Morella I, et al. (2012). Nociceptin/orphanin FQ
receptor agonists attenuate L-DOPA-induced dyskinesias. J
Neurosci 32 (46): 16106-16119.
Mela F, Marti M, Bido S, Cenci MA,
Morari M (2012). In vivo evidence for a differential contribution of
striatal and nigral D1 and D2 receptors to L-DOPA induced dyskinesia and
the accompanying surge of nigral amino acid levels. Neurobiol Dis45 (1): 573-582.
Mela F, Marti M, Dekundy A, Danysz W,
Morari M, Cenci MA (2007). Antagonism of metabotropic glutamate receptor
type 5 attenuates l-DOPA-induced dyskinesia and its molecular and
neurochemical correlates in a rat model of Parkinson’s disease. J
Neurochem 101 (2): 483-497.
Moehle MS, Conn PJ (2019). Roles of
the M4 acetylcholine receptor in the basal ganglia and the treatment of
movement disorders. Mov Disord 34 (8):1089-1099.
Moehle MS, Pancani T, Byun N, Yohn
SE, Wilson GH, 3rd, Dickerson JW, et al. (2017). Cholinergic
Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine
Modulation of Basal Ganglia through the M4 Muscarinic Receptor.Neuron 96 (6): 1358-1372 e1354.
Morari M, O’Connor WT, Darvelid M,
Ungerstedt U, Bianchi C, Fuxe K (1996). Functional neuroanatomy of the
nigrostriatal and striatonigral pathways as studied with dual probe
microdialysis in the awake rat–I. Effects of perfusion with
tetrodotoxin and low-calcium medium. Neuroscience72 (1): 79-87.
Ostock CY, Dupre KB, Jaunarajs KL,
Walters H, George J, Krolewski D, et al. (2011). Role of the
primary motor cortex in L-Dopa-induced dyskinesia and its modulation by
5-HT1A receptor stimulation. Neuropharmacology61 (4): 753-760.
Pancani T, Bolarinwa C, Smith Y,
Lindsley CW, Conn PJ, Xiang Z (2014). M4 mAChR-mediated modulation of
glutamatergic transmission at corticostriatal synapses. ACS
chemical neuroscience 5 (4): 318-324.
Paolone G, Brugnoli A, Arcuri L,
Mercatelli D, Morari M (2015). Eltoprazine prevents levodopa-induced
dyskinesias by reducing striatal glutamate and direct pathway activity.Mov Disord 30 (13): 1728-1738.
Paxinos G, Watson C (1986). The
rat brain in stereotaxic coordinates . 2nd edn. Academic Press: Sydney ;
Orlando.
Pemberton KE, Jones SV (1995).
Enhancement of an L-type calcium current in AtT-20 cells; a novel effect
of the m4 muscarinic receptor. Pflugers Arch429 (5): 699-707.
Perez-Garci E, Bargas J, Galarraga E
(2003). The role of Ca2+ channels in the repetitive firing of striatal
projection neurons. Neuroreport 14 (9):1253-1256.
Perez-Rosello T, Figueroa A, Salgado
H, Vilchis C, Tecuapetla F, Guzman JN, et al. (2005). Cholinergic
control of firing pattern and neurotransmission in rat neostriatal
projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J
Neurophysiol 93 (5): 2507-2519.
Pisani A, Bernardi G, Ding J,
Surmeier DJ (2007). Re-emergence of striatal cholinergic interneurons in
movement disorders. Trends Neurosci 30 (10):545-553.
Pisanò CA, Brugnoli A, Novello S,
Caccia C, Keywood C, Melloni E, et al. (2020). Safinamide
inhibits in vivo glutamate release in a rat model of Parkinson’s
disease. Neuropharmacology 167 .
Quik M, Bordia T, Zhang D, Perez XA
(2015). Nicotine and Nicotinic Receptor Drugs: Potential for Parkinson’s
Disease and Drug-Induced Movement Disorders. Int Rev Neurobiol124: 247-271.
Shen W, Hamilton SE, Nathanson NM,
Surmeier DJ (2005). Cholinergic suppression of KCNQ channel currents
enhances excitability of striatal medium spiny neurons. J
Neurosci 25 (32): 7449-7458.
Shen W, Plotkin JL, Francardo V, Ko
WK, Xie Z, Li Q, et al. (2015). M4 Muscarinic Receptor Signaling
Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced
Dyskinesia. Neuron 88 (4): 762-773.
Shen W, Tian X, Day M, Ulrich S,
Tkatch T, Nathanson NM, et al. (2007). Cholinergic modulation of
Kir2 channels selectively elevates dendritic excitability in
striatopallidal neurons. Nat Neurosci 10 (11):1458-1466.
Stoll C, Eltze M, Lambrecht G,
Zentner J, Feuerstein TJ, Jackisch R (2009). Functional characterization
of muscarinic autoreceptors in rat and human neocortex. J
Neurochem 110 (3): 837-847.
Tanda G, Ebbs AL, Kopajtic TA, Elias
LM, Campbell BL, Newman AH, et al. (2007). Effects of muscarinic
M1 receptor blockade on cocaine-induced elevations of brain dopamine
levels and locomotor behavior in rats. J Pharmacol Exp Ther321 (1): 334-344.
Tanimura A, Du Y, Kondapalli J,
Wokosin DL, Surmeier DJ (2019). Cholinergic Interneurons Amplify
Thalamostriatal Excitation of Striatal Indirect Pathway Neurons in
Parkinson’s Disease Models. Neuron 101 (3):444-458 e446.
Won L, Ding Y, Singh P, Kang UJ
(2014). Striatal cholinergic cell ablation attenuates L-DOPA induced
dyskinesia in Parkinsonian mice. J Neurosci34 (8): 3090-3094.
Xiao C, Cho JR, Zhou C, Treweek JB,
Chan K, McKinney SL, et al. (2016). Cholinergic Mesopontine
Signals Govern Locomotion and Reward through Dissociable Midbrain
Pathways. Neuron 90 (2): 333-347.
Zhang W, Basile AS, Gomeza J,
Volpicelli LA, Levey AI, Wess J (2002). Characterization of central
inhibitory muscarinic autoreceptors by the use of muscarinic
acetylcholine receptor knock-out mice. J Neurosci22 (5): 1709-1717.
Ztaou S, Maurice N, Camon J,
Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, et al.(2016). Involvement of Striatal Cholinergic Interneurons and M1 and M4
Muscarinic Receptors in Motor Symptoms of Parkinson’s Disease. J
Neurosci 36 (35): 9161-9172.