[1] B. C. Sakiadis, “Boundary-layer behaviour of continuous solid surfaces: I. boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE Journal, vol. 7, no. 1, pp. 26–28, 1961. https://doi.org/10.1002/aic.690070108
[2] O. D. Makinde and A. Aziz, “MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition,” Int. J. of Therm. Sci., vol. 49, no. 9, pp. 1813-1820, 2010. https://doi.org/10.1016/j.ijthermalsci.2010.05.015
[3] N. Bachok and A. Ishak, I. Pop, “Boundary layer flow over a moving surface in a nanofluid with suction or injection,” Acta Mech. Sin., vol. 28, no. 1, pp. 34-40, 2012.
[4] W. N. Mutuku and O. D. Makinde, “On hydromagnetic boundary layer flow of nanofluids over a permeable moving surface with newtonian heating,” Latin American Applied Research, vol, 44. no. 1, pp. 57-62, 2014. ISSN 1851-8796
[5] M. Khan and W. A. Khan, “MHD boundary layer flow of a power-law nanofluid with new mass flux condition,” AIP Advances, vol. 6, 025211, 2016. doi:10.1063/1.4942201
[6] O. D. Makinde, “Computational modeling of mhd unsteady flow and heat transfer toward a flat plate with Navier slip and Newtonian heating,” Braz. J. Chem. Eng., vol. 29, no. 2, pp. 159-166, 2012.
[7] L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, pp. 645-647, 1970. http://dx.doi.org/10.1007/BF01587695
[8] C. K. Chen and M. I. Char, “Heat transfer of a continuous stretching surface with suction or blowing,” J. Math. Anal. Appl., vol. 135, pp. 568–80, 1988.
[9] T. C. Chiam, “Stagnation-point flow towards a stretching plate,” J. Phys. Soc. Jpn., vol. 63, pp. 2443–4, 1994. http://dx.doi.org/10.1143/JPSJ.63.2443
[10] G. C. Layek, S. Mukhopadhyay and S. K. A. Samad, “Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing,” Int. Commun. Heat Mass Transfer, vol. 34, pp. 347–56, 2007
[11] O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” Int. J. Therm. Sci., vol. 50, pp.1326–32, 2011.
[12] P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering, vol. 55, pp. 744-746, 1977. http://dx.doi.org/10.1002/cjce.5450550619
[13] Y. Lun-Shin Yao and M. Md. Mamun, “Non-Newtonian Fluid Flow on a Flat Plate Part 1: Boundary Layer,” Journal of Thermophysics and Heat Transfer, vol. 22, no. 4, pp. 758-761, 2008. http://dx.doi.org/10.2514/1.35187
[14] B. S. Reddy, N. Kishan, and M. N. Rajasekhar, “MHD boundary layer flow of a non-newtonian power-law fluid on a moving flat plate,” Advances in Applied Science Research, vol. 3, no. 3, pp. 1472-1481, 2012
[15] H. Xu and L. Shi-Jun, “Laminar flow and heat transfer in the boundary-layer of non-newtonian fluids over a stretching flat sheet,” Computers and Mathematics with Applications, vol. 57, pp. 1425–1431, 2009
[16] V. G. Fox, L. E. Erickson and L. T. Fan, “The laminar boundary layer on a moving continuous flat sheet immersed in a non-newtonian fluid,” AIChE Journal, vol. 15, pp. 327-333, 1969. http://dx.doi.org/10.1002/aic.690150307
[17] N. Casson, “A flow equation for pigment oil suspensions of the printing ink type. In: Mill, C.C., Ed., Rheology of Disperse Systems,” Pergamon Press, Oxford, pp. 84-102, 1959.
[18] K. Bhattacharyya, “Boundary layer stagnation point flow of casson fluid and heat transfer towards a shrinking/sketching sheet,” Frontiers in Heat and Mass Transfer, vol. 4, 023003, 2013. DOI:10.5098/hmt.v4.2.3003
[19] T. Hussain, S. A. Shehzad, A. Alsaedi, T. Hayat and M. Ramzan, “Flow of Casson Nanofluid with Viscous Dissipation and Convective Conditions: A Mathematical Model,” Journal of Central South University, vol. 22, pp. 1132-1140, 2015. http://dx.doi.org/10.1007/s11771-015-2625-4
[20] S. Pramanik, “Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation,” Ain Shams Engineering Journal, vol. 5, pp. 205–212, 2014.
[21] M. Mustafa, T. Hayat, I. Pop, and A. Aziz, “Unsteady boundary layer flow of a casson fluid due to an impulsively started moving flat plate,” Heat Transfer, vol. 40, pp. 563-576, 2011. http://dx.doi.org/10.1002/htj.20358
[22] M. Medikare, S. Joga and K. K. Chidem, ”MHD stagnation point flow of a casson fluid over a nonlinearly stretching sheet with viscous dissipation,” American J. of Comp. Mathematics, vol. 6, pp. 37-48, 2016. http://dx.doi.org/10/4236/ajcm.2016.61005
[23] W. N. Mutuku, “Ethylene glycol (EG) based nanofluids as a coolant for automotive radiator,” Asia Pacific Journal for Computational Engineering, vol. 3, no. 1, pp. 1-15, 2016. DOI 10.1186/s40540-016-0017-3
[24] F. Mabood, S. M. Ibrahim, P. V. Kumar and W. A. Khan, ”Viscous dissipation effects on unsteady mixed convective stagnation point flow using Tiwari-Das nanofluid model,” Results in Physics, vol. 7, pp. 280-287, 2017. http://dx.doi.org/10.1016/j.rinp.2016.12.037
[25] G. S. Seth, R. Tripathi and M. K. Mishra, ”Hydromagnetic thin film flow of casson fluid in non-darcy porous medium with joule dissipation and navier’s partial slip,” Applied Mathematics and Mechanics, vol. 38, pp. 1613-1626, 2017. https://doi.org/10.1007/s10483-017-2272-7
[26] K. Bhattacharyya, ”MHD stagnation-point flow of casson fluid and heat transfer over a stretching sheet with thermal radiation,” Journal of Thermodynamics, 2013. http://dx.doi.org/10.1155.2013/169674
[27] K. Battacharyya, ”Dual solution in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet,” International Communications in Heat and Mass Transfer, vol. 38, no. 7, pp. 917-922, 2011.
[28] T. R. Mahapatra and A. S. Gupta, ”Magnetohydrodynamic stagnation-point flow towards a stretching sheet,” Acta Mechanica, vol. 152, no. 1-4, pp. 191-196, 2001.