REFERENCES
  1. Yilmaz, A. S., & Özer, Z. (2009). Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Systems with Applications36 (6), 9767-9775.
  2. Grieser, B., Sunak, Y., & Madlener, R. (2015). Economics of small wind turbines in urban settings: An empirical investigation for Germany. Renewable Energy78 , 334-350.
  3. Abdelkafi, A., & Krichen, L. (2011). New strategy of pitch angle control for energy management of a wind farm. Energy36 (3), 1470-1479.
  4. Slootweg, J. G., De Haan, S. W. H., Polinder, H., & Kling, W. L. (2003). General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Transactions on power systems18 (1), 144-151.
  5. Fraile, A. Mbistrova, Wind in power: 2017 European statistics. The European Wind Association. (2018) 3 – 25.
  6. Bahaj, A. S., Myers, L., & James, P. A. B. (2007). Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings. Energy and buildings39 (2), 154-165.
  7. Miller, W Chang, R. Issa, G. Chen, Review of computer-aided numerical simulation in wind energy, Renew. Sustain. Energy Rev. 25 (2013) 122—134.
  8. R. Lanzafame, M. Messina, Horizontal axis wind turbine working at maximum power coefficient continuously, Renew. Energy 35 (2010) 301—306.
  9. J.C. Dai, Y.P. Hu, D.S. Liu, X. Long, Aerodynamic loads calculation and analysis for large scale wind turbine based on combining REM modified theory with dynamic stall model, Renew, Energy 36(2011) 1095—1104.
  10. J.R.P. Vaz, J.T. Pinho, A.L Amarante Mesquita, An extension of BEM method applied lo horizontal-axis wind turbine design, Renew. Energy 36 (2011)1734—1 740.
  11. E.P.N. Duque, C.P. van Darn, S.C Hughes, Navier stokes simulations of the NREL Combined experiment phase II rotor, AIAA-99-0037, 1999, pp. 143—153.
  12. G. Xu, LN. Sankar, Computational study of horizontal axis wind turbines, J. Sol.Energy Eng. 122(2000) 35—39.
  13. G. Xu, LN. Sankar, Application of a viscous flow methodology to the NREL phase VI rotor, AIAA-2002-0030, 2002, pp. 84-93.
  14. J. Johansen, N.N. Sorensen,J.A. Michelsen, S. Schreck, Detached-Eddy simulation of flow around the NREL phase Vi blade, AIAA-2002-0032, 2002, pp. 106-114.
  15. E.P.N, Duque, M.D. Iurklund, W, Johnson, Navier-Stokes and comprehensive analysis performance predictions of the NREL phase VI experiment, AIAA-2003-0355, 2003, pp. 1—19.
  16. N. Sezer-Uzol, LN. L.ong, 3-D time-accurate CFD simulations of wind turbine rotor flow fields, AIAA-2006-394, 2006, pp. 1 —23.
  17. Thumthae, T. Chitsomboon, Optimal angle of attack [or untwisted blade wind turbine, Renew. Energy 34 (2009) 1279—1284.
  18. J.-O. Mo, Y.-H.Lee, CFD Investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method, J. Mech. Sci. Technol. 26(1) (2012) 81—92.
  19. Y. li, K.-J. Paik, T. Xing, P.M. Carrica, dynamic overset CFD simulations of wind turbine aerodynamics, Renew. Energy 37 (2012) 285—298.
  20. John, D. and J. Anderson, Computational fluid dynamics: the basics with applications. P. Perback,633 International ed., Published, 1995
  21. MM. Hand, D.A. Simms, L.J. Fingersh, D.W. Jager, J.R. Correll, S. Schreck,cl al., Unsteady aerodynamics, experiment phase VI: wind tunnel test configurations and available data campaigns. Technical Report NREL JTP-500-29955, 2001.
  22. Fluent, A. N. S. Y. S. (2016). Fluent 15 users guide. Lebanon, USA .
  23. Langtry, R., Gola, J., & Menter, F. (2006, January). Predicting 2D airfoil and 3D wind turbine rotor performance using a transition model for general CFD codes. In 44th AIAA aerospace sciences meeting and exhibit  (p. 395).
  24. Klausmeyer, S. M., & Lin, J. C. (1997). Comparative results from a CFD challenge over a 2D three-element high-lift airfoil.
  25. Kim, B. S., Kim, M. E., & Lee, Y. H. (2008). Predicting the aerodynamic characteristics of 2D airfoil and the performance of 3D wind turbine using a CFD code. Transactions of the Korean Society of Mechanical Engineers B32 (7), 549-557.
  26. Sørensen, N. N. (2009). CFD modelling of laminar‐turbulent transition for airfoils and rotors using the γ− model. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology12 (8), 715-733.
  27. Roul, R., Kumar, A., & Mohanty, S. C. (2019, May). Numerical Investigation of Fluid Structure Interaction of 1.5 MW Wind Turbine Rotor Blade System. In Proceedings of the 2019 International Conference on Management Science and Industrial Engineering  (pp. 254-259).
  28. Wang, L., Quant, R., & Kolios, A. (2016). Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. Journal of Wind Engineering and Industrial Aerodynamics158 , 11-25.
  29. Bazilevs, Y., Hsu, M. C., & Scott, M. A. (2012). Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering249 , 28-41.
  30. Menter, F. L. O. R. I. A. N. R. (1993, July). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasma dynamics, and lasers conference  (p. 2906).
  31. Jones, W. P., & Launder, B. (1972). The prediction of laminarization with a two-equation model of turbulence. International journal of heat and mass transfer15 (2), 301-314.
  32. Wilcox, D. C. (2008). Formulation of the kw turbulence model revisited. AIAA Journal46 (11), 2823-2838.
  33. Sørensen, N. N., Michelsen, J. A., & Schreck, S. (2002). Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft× 120 ft wind tunnel. Wind Energy5 (2‐3), 151-169.
  34. Mo, J. O., & Lee, Y. H. (2012). CFD Investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method. Journal of mechanical science and technology26 (1), 81-92.
  35. Anderson Jr, J.D., 2011. Fundamentals of Aerodynamics. Tata McGraw-Hill Educa- tion, New York.
  36. Yelmule, M.M., Vsj, E.A., 2013.CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel. Int.J.Renew.Energy Res.3, 261–269.
  37. Somers. D.M., 1997. Design and Experimental Results for the S809 Airfoil. NREL/SR 440-6918.
  38. Gregorek G.M., Hoffmann M.J. and Mulh KE. 3-D Wind Tunnel Tests of the S809 airfoil Model, 1991, Aeronautical and Astronautical Research Laboratory. Ohio State University.
  39. Butterfield. CP., Musial, W.P., Simms, DA., 1992a. Combined Experiment Final Report—Phase II. NREL TP-422-4807.
  40. Thumthae, C., & Chitsomboon, T. (2009). Optimal angle of attack for untwisted blade wind turbine. Renewable energy34 (5), 1279-1284.
  41. Mo, J. O., & Lee, Y. H. (2012). CFD Investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method. Journal of mechanical science and technology26 (1), 81-92.