REFERENCES
- Yilmaz, A. S., & Özer, Z. (2009). Pitch angle control in wind
turbines above the rated wind speed by multi-layer perceptron and
radial basis function neural networks. Expert Systems with
Applications , 36 (6), 9767-9775.
- Grieser, B., Sunak, Y., & Madlener, R. (2015). Economics of small
wind turbines in urban settings: An empirical investigation for
Germany. Renewable Energy , 78 , 334-350.
- Abdelkafi, A., & Krichen, L. (2011). New strategy of pitch angle
control for energy management of a wind
farm. Energy , 36 (3), 1470-1479.
- Slootweg, J. G., De Haan, S. W. H., Polinder, H., & Kling, W. L.
(2003). General model for representing variable speed wind turbines in
power system dynamics simulations. IEEE Transactions on power
systems , 18 (1), 144-151.
- Fraile, A. Mbistrova, Wind in power: 2017 European statistics. The
European Wind Association. (2018) 3 – 25.
- Bahaj, A. S., Myers, L., & James, P. A. B. (2007). Urban energy
generation: Influence of micro-wind turbine output on electricity
consumption in buildings. Energy and buildings , 39 (2),
154-165.
- Miller, W Chang, R. Issa, G. Chen, Review of computer-aided numerical
simulation in wind energy, Renew. Sustain. Energy Rev. 25 (2013)
122—134.
- R. Lanzafame, M. Messina, Horizontal axis wind turbine working at
maximum power coefficient continuously, Renew. Energy 35 (2010)
301—306.
- J.C. Dai, Y.P. Hu, D.S. Liu, X. Long, Aerodynamic loads calculation
and analysis for large scale wind turbine based on combining REM
modified theory with dynamic stall model, Renew, Energy 36(2011)
1095—1104.
- J.R.P. Vaz, J.T. Pinho, A.L Amarante Mesquita, An extension of BEM
method applied lo horizontal-axis wind turbine design, Renew. Energy
36 (2011)1734—1 740.
- E.P.N. Duque, C.P. van Darn, S.C Hughes, Navier stokes simulations of
the NREL Combined experiment phase II rotor, AIAA-99-0037, 1999, pp.
143—153.
- G. Xu, LN. Sankar, Computational study of horizontal axis wind
turbines, J. Sol.Energy Eng. 122(2000) 35—39.
- G. Xu, LN. Sankar, Application of a viscous flow methodology to the
NREL phase VI rotor, AIAA-2002-0030, 2002, pp. 84-93.
- J. Johansen, N.N. Sorensen,J.A. Michelsen, S. Schreck, Detached-Eddy
simulation of flow around the NREL phase Vi blade, AIAA-2002-0032,
2002, pp. 106-114.
- E.P.N, Duque, M.D. Iurklund, W, Johnson, Navier-Stokes and
comprehensive analysis performance predictions of the NREL phase VI
experiment, AIAA-2003-0355, 2003, pp. 1—19.
- N. Sezer-Uzol, LN. L.ong, 3-D time-accurate CFD simulations of wind
turbine rotor flow fields, AIAA-2006-394, 2006, pp. 1 —23.
- Thumthae, T. Chitsomboon, Optimal angle of attack [or untwisted
blade wind turbine, Renew. Energy 34 (2009) 1279—1284.
- J.-O. Mo, Y.-H.Lee, CFD Investigation on the aerodynamic
characteristics of a small-sized wind turbine of NREL PHASE VI
operating with a stall-regulated method, J. Mech. Sci. Technol. 26(1)
(2012) 81—92.
- Y. li, K.-J. Paik, T. Xing, P.M. Carrica, dynamic overset CFD
simulations of wind turbine aerodynamics, Renew. Energy 37 (2012)
285—298.
- John, D. and J. Anderson, Computational fluid dynamics: the
basics with applications. P. Perback,633 International ed.,
Published, 1995
- MM. Hand, D.A. Simms, L.J. Fingersh, D.W. Jager, J.R. Correll, S.
Schreck,cl al., Unsteady aerodynamics, experiment phase VI: wind
tunnel test configurations and available data campaigns. Technical
Report NREL JTP-500-29955, 2001.
- Fluent, A. N. S. Y. S. (2016). Fluent 15 users guide. Lebanon,
USA .
- Langtry, R., Gola, J., & Menter, F. (2006, January). Predicting 2D
airfoil and 3D wind turbine rotor performance using a transition model
for general CFD codes. In 44th AIAA aerospace sciences meeting
and exhibit (p. 395).
- Klausmeyer, S. M., & Lin, J. C. (1997). Comparative results from a
CFD challenge over a 2D three-element high-lift airfoil.
- Kim, B. S., Kim, M. E., & Lee, Y. H. (2008). Predicting the
aerodynamic characteristics of 2D airfoil and the performance of 3D
wind turbine using a CFD code. Transactions of the Korean
Society of Mechanical Engineers B , 32 (7), 549-557.
- Sørensen, N. N. (2009). CFD modelling of laminar‐turbulent transition
for airfoils and rotors using the γ− model. Wind Energy: An
International Journal for Progress and Applications in Wind Power
Conversion Technology , 12 (8), 715-733.
- Roul, R., Kumar, A., & Mohanty, S. C. (2019, May). Numerical
Investigation of Fluid Structure Interaction of 1.5 MW Wind Turbine
Rotor Blade System. In Proceedings of the 2019 International
Conference on Management Science and Industrial Engineering (pp.
254-259).
- Wang, L., Quant, R., & Kolios, A. (2016). Fluid structure interaction
modelling of horizontal-axis wind turbine blades based on CFD and
FEA. Journal of Wind Engineering and Industrial
Aerodynamics , 158 , 11-25.
- Bazilevs, Y., Hsu, M. C., & Scott, M. A. (2012). Isogeometric
fluid–structure interaction analysis with emphasis on non-matching
discretizations, and with application to wind turbines. Computer
Methods in Applied Mechanics and Engineering , 249 , 28-41.
- Menter, F. L. O. R. I. A. N. R. (1993, July). Zonal two equation kw
turbulence models for aerodynamic flows. In 23rd fluid dynamics,
plasma dynamics, and lasers conference (p. 2906).
- Jones, W. P., & Launder, B. (1972). The prediction of laminarization
with a two-equation model of turbulence. International journal
of heat and mass transfer , 15 (2), 301-314.
- Wilcox, D. C. (2008). Formulation of the kw turbulence model
revisited. AIAA Journal , 46 (11), 2823-2838.
- Sørensen, N. N., Michelsen, J. A., & Schreck, S. (2002).
Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames
80 ft× 120 ft wind tunnel. Wind Energy , 5 (2‐3), 151-169.
- Mo, J. O., & Lee, Y. H. (2012). CFD Investigation on the aerodynamic
characteristics of a small-sized wind turbine of NREL PHASE VI
operating with a stall-regulated method. Journal of mechanical
science and technology , 26 (1), 81-92.
- Anderson Jr, J.D., 2011. Fundamentals of Aerodynamics. Tata
McGraw-Hill Educa- tion, New York.
- Yelmule, M.M., Vsj, E.A., 2013.CFD predictions of NREL phase VI rotor
experiments in NASA/AMES wind tunnel. Int.J.Renew.Energy Res.3,
261–269.
- Somers. D.M., 1997. Design and Experimental Results for the S809
Airfoil. NREL/SR 440-6918.
- Gregorek G.M., Hoffmann M.J. and Mulh KE. 3-D Wind Tunnel Tests of the
S809 airfoil Model, 1991, Aeronautical and Astronautical Research
Laboratory. Ohio State University.
- Butterfield. CP., Musial, W.P., Simms, DA., 1992a. Combined Experiment
Final Report—Phase II. NREL TP-422-4807.
- Thumthae, C., & Chitsomboon, T. (2009). Optimal angle of attack for
untwisted blade wind turbine. Renewable energy , 34 (5),
1279-1284.
- Mo, J. O., & Lee, Y. H. (2012). CFD Investigation on the aerodynamic
characteristics of a small-sized wind turbine of NREL PHASE VI
operating with a stall-regulated method. Journal of mechanical
science and technology , 26 (1), 81-92.