References
1. Singh, R., Introduction to Basic Manufacturing Processes and
Workshop Technology,(2006). New Age International Pvt. Ltd, 2006.
2. Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing
technologies . Vol. 17. 2014: Springer.
3. Gebhardt, A. and J. Hötter, Additive Manufacturing: 3D Printing
for Prototyping and Manufacturing. Additive Manufacturing: Hanser,
2016: p. 93-290.
4. DebRoy, T., et al., Additive manufacturing of metallic
components–process, structure and properties. Progress in Materials
Science, 2018. 92 : p. 112-224.
5. ASTM, I., ASTM52900-15 Standard Terminology for Additive
Manufacturing—General Principles—Terminology. ASTM International,
West Conshohocken, PA, 2015.
6. Harun, W., et al., A review of powder additive manufacturing
processes for metallic biomaterials. Powder Technology, 2017.
7. Gorsse, S., et al., Additive manufacturing of metals: a brief
review of the characteristic microstructures and properties of steels,
Ti-6Al-4V and high-entropy alloys. Science and Technology of advanced
MaTerialS, 2017. 18 (1): p. 584-610.
8. Uhlmann, E., et al., Additive manufacturing of titanium alloy
for aircraft components. Procedia Cirp, 2015. 35 : p. 55-60.
9. Wohlers, T., Wohler’s report 2013. 2013.
10. Waterman, N.A. and P. Dickens, Rapid product development in
the USA, Europe and Japan. World Class Design to Manufacture, 1994.1 (3): p. 27-36.
11. Guo, N. and M. Leu, Additive manufacturing: Technology,
applications and research needs. Frontiers of Mechanical Engineering, 8
(3), 215–243 . 2013.
12. Dilip, J., et al., Influence of processing parameters on the
evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy
parts fabricated by selective laser melting. Progress in Additive
Manufacturing, 2017. 2 (3): p. 157-167.
13. Brückner, F., D. Lepski, and E. Beyer, Modeling the influence
of process parameters and additional heat sources on residual stresses
in laser cladding. Journal of thermal spray technology, 2007.16 (3): p. 355-373.
14. Wang, L., et al., Optimization of the LENS® process for steady
molten pool size. Materials Science and Engineering: A, 2008.474 (1-2): p. 148-156.
15. Dass, A. and A. Moridi, State of the art in directed energy
deposition: From additive manufacturing to materials design. Coatings,
2019. 9 (7): p. 418.
16. Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing
technologies. 2010. Google Scholar.
17. Al-Khazraji, K.K., R.A. Majed, and Z.N. Abdulhameed, Effect of
Uric acid Level on the Corrosion Behavior of SS 316L and Co-Cr-Mo Used
in Implant Applications. Engineering and Technology Journal, 2013.31 (17 Part (A) Engineering): p. 3382-3390.
18. Loicq, R., Additive Manufacturing Utilized for Prototype
Parts. 2017.
19. Gu, D., Laser additive manufacturing of high-performance
materials . 2015: Springer.
20. Griffith, M.L., et al., Understanding the microstructure and
properties of components fabricated by laser engineered net shaping
(LENS). MRS Online Proceedings Library Archive, 2000. 625 .
21. Aghasibeig, M. and H. Fredriksson, Laser cladding of a
featureless iron-based alloy. Surface and Coatings Technology, 2012.209 : p. 32-37.
22. Dada, M., et al., High Entropy Alloys for Aerospace
Applications , in Environmental Impact of Aviation and Sustainable
Solutions . 2019, IntechOpen.
23. Svensson, D.O., High Entropy Alloys: Breakthrough Materials
for Aero Engine Applications? 2014, Master’s Thesis.
24. Chikumba, S. and V.V. Rao. High Entropy Alloys: Development
and Applications . in 7th Int. Conf. Latest Trends Eng. Technol .
2015.
25. Gao, M.C., et al., High-Entropy Alloys . 2016: Springer.
26. Yeh, J.W., et al., Nanostructured high‐entropy alloys with
multiple principal elements: novel alloy design concepts and outcomes.Advanced Engineering Materials, 2004. 6 (5): p. 299-303.
27. Murty, B.S., J.-W. Yeh, and S. Ranganathan, High-entropy
alloys . 2014: Butterworth-Heinemann.
28. Shafeie, S., et al., High-entropy alloys as high-temperature
thermoelectric materials. Journal of Applied Physics, 2015.118 (18): p. 184905.
29. Tong, C.-J., et al., Microstructure characterization of Al x
CoCrCuFeNi high-entropy alloy system with multiprincipal elements.Metallurgical and Materials Transactions A, 2005. 36 (4): p.
881-893.
30. Kao, Y.-F., et al., Microstructure and mechanical property of
as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy
alloys. Journal of Alloys and Compounds, 2009. 488 (1): p.
57-64.
31. Hemphill, M.A., et al., Fatigue behavior of Al0. 5CoCrCuFeNi
high entropy alloys. Acta Materialia, 2012. 60 (16): p.
5723-5734.
32. Jiang, H., et al., Synthesis and Characterization of
AlCoCrFeNiNbx High-Entropy Alloy Coatings by Laser Cladding. Crystals,
2019. 9 (1): p. 56.
33. Chao, Q., et al., Direct laser deposition cladding of
AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel.Surface and Coatings Technology, 2017. 332 : p. 440-451.
34. Hofman, J.T., Development of an observation and control system
for industrial laser cladding. 2009.
35. Steen, W.M. and J. Mazumder, Laser material processing . 2010:
springer science & business media.
36. Deng, C., et al., Study on the selective laser melting of
CuSn10 powder. Materials, 2018. 11 (4): p. 614.
37. Mathe, N.R. and L.C. Tshabalala, The validation of the
microstructural evolution of selective laser-melted AlSi10Mg on the
in-house built machine: energy density studies. Progress in Additive
Manufacturing, 2019: p. 1-12.
38. Zuback, J. and T. DebRoy, The hardness of additively
manufactured alloys. Materials, 2018. 11 (11): p. 2070.
39. Ermurat, M., et al., Process parameters investigation of a
laser-generated single clad for minimum size using design of
experiments. Rapid Prototyping Journal, 2013. 19 (6): p.
452-462.
40. Graf, B., et al., Design of experiments for laser metal
deposition in maintenance, repair and overhaul applications. Procedia
CIRP, 2013. 11 : p. 245-248.
41. Liao, H.-T. and J.-R. Shie, Optimization on selective laser
sintering of metallic powder via design of experiments method. Rapid
Prototyping Journal, 2007. 13 (3): p. 156-162.
42. Fatoba, O., et al., Modelling and optimization of laser
alloyed AISI 422 stainless steel using taguchi approach and response
surface model (RSM). Current Journal of Applied Science and Technology,
2017: p. 1-16.
43. Gómez-Esparza, C.D., et al., Series of nanocrystalline
NiCoAlFe (Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical
alloying. Materials Research, 2016. 19 : p. 39-46.
44. Löbel, M., et al. Processing of AlCoCrFeNiTi high entropy
alloy by atmospheric plasma spraying . in IOP Conference Series:
Materials Science and Engineering . 2017. IOP Publishing.
45. Mohanty, S., et al., Powder metallurgical processing of
equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical
properties. Materials Science and Engineering: A, 2017. 679 :
p. 299-313.
46. Zhang, Y., et al., Microstructures and properties of
high-entropy alloys. Progress in Materials Science, 2014. 61 :
p. 1-93.
47. Li, J., et al., Enhanced mechanical properties of a CoCrFeNi
high entropy alloy by supercooling method. Materials & Design, 2016.95 : p. 183-187.
48. Khaled, T., Preheating, interpass and post-weld heat treatment
requirements for welding low alloy steels. vol, 2014. 6 : p.
1-14.
49. Zhang, H., et al., Laser cladding of Colmonoy 6 powder on
AISI316L austenitic stainless steel. Nuclear engineering and design,
2010. 240 (10): p. 2691-2696.
50. Akinlabi, E.T., et al., Effect of scanning speed on material
efficiency of laser metal deposited Ti6Al4V. 2012.
51. Wang, X., X. Gong, and K. Chou, Scanning speed effect on
mechanical properties of Ti-6Al-4V alloy processed by electron beam
additive manufacturing. Procedia Manufacturing, 2015. 1 : p.
287-295.
52. Pal, S., I. Drstvensek, and T. Brajlih, Physical behaviors of
materials in selective laser melting process. DAAAM International
Scientific Book, 2018.
53. Coniglio, N. and C.E. Cross, Mechanisms for solidification
crack initiation and growth in aluminum welding. Metallurgical and
Materials Transactions A, 2009. 40 (11): p. 2718-2728.
54. Hofmeister, W. and M. Griffith, Solidification in direct metal
deposition by LENS processing. Jom, 2001. 53 (9): p. 30-34.
55. Thijs, L., et al., A study of the microstructural evolution
during selective laser melting of Ti–6Al–4V. Acta materialia, 2010.58 (9): p. 3303-3312.
56. Farotade, G.A. and A.P. Popoola, A study on microhardness and
microstructural evolution of titanium/zirconium diboride cermet coatings
with varying scan speeds during laser cladding on Ti6Al4V substrate.International Journal of Microstructure and Materials Properties, 2017.12 (1-2): p. 25-37.
57. Wang, Y., et al., Optimizing mechanical properties of
AlCoCrFeNiTi x high-entropy alloys by tailoring microstructures. Acta
Metallurgica Sinica (English Letters), 2013. 26 (3): p. 277-284.
58. Tung, C.-C., et al., On the elemental effect of AlCoCrCuFeNi
high-entropy alloy system. Materials letters, 2007. 61 (1): p.
1-5.
59. Tian, L.-H., et al., Microstructure and wear behavior of
atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating.Journal of Materials Engineering and Performance, 2016. 25 (12):
p. 5513-5521.
60. Wen, L., et al., Effect of aging temperature on microstructure
and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics,
2009. 17 (4): p. 266-269.
61. Moravcik, I., et al., Effect of heat treatment on
microstructure and mechanical properties of spark plasma sintered
AlCoCrFeNiTi0. 5 high entropy alloy. Materials Letters, 2016.174 : p. 53-56.
62. Chen, W., et al., Alloying behavior, microstructure and
mechanical properties in a FeNiCrCo0. 3Al0. 7 high entropy alloy.Materials & Design, 2013. 51 : p. 854-860.
63. Suryanarayana, C., Mechanical alloying and milling. Progress
in materials science, 2001. 46 (1-2): p. 1-184.
64. Soare, V., et al., Influence of remelting on microstructure,
hardness and corrosion behaviour of AlCoCrFeNiTi high entropy alloy.Materials Science and Technology, 2015. 31 (10): p. 1194-1200.
65. Dolique, V., et al., Complex structure/composition
relationship in thin films of AlCoCrCuFeNi high entropy alloy.Materials Chemistry and Physics, 2009. 117 (1): p. 142-147.
66. Yue, T., et al., Solidification behaviour in laser cladding of
AlCoCrCuFeNi high-entropy alloy on magnesium substrates. Journal of
alloys and compounds, 2014. 587 : p. 588-593.
67. Li, W., et al., Effect of laser scanning speed on a
Ti-45Al-2Cr-5Nb alloy processed by selective laser melting:
microstructure, phase and mechanical properties. Journal of Alloys and
Compounds, 2016. 688 : p. 626-636.
68. Chen, S., Y. Tong, and P.K. Liaw, Additive Manufacturing of
High-Entropy Alloys: A Review. Entropy, 2018. 20 (12): p. 937.
69. Gwalani, B., et al., Cu assisted stabilization and nucleation
of L12 precipitates in Al0. 3CuFeCrNi2 fcc-based high entropy alloy.Acta Materialia, 2017. 129 : p. 170-182.
70. Derimow, N., et al., Processing pathway effects in CoCrCuNi+ X
(Fe, Mn) high-entropy alloys. Philosophical Magazine, 2019: p. 1-15.
71. Bratberg, J., TCFE6–TCS Steels/Fe–Alloys Database . 2011,
Version 6.2: Tech. rep.: Thermo–Calc software AB: Stockholm, Sweden.
72. Chen, M.-R., et al., Microstructure and properties of Al0.
5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. Materials transactions,
2006. 47 (5): p. 1395-1401.
73. Dolique, V., et al., Thermal stability of AlCoCrCuFeNi high
entropy alloy thin films studied by in-situ XRD analysis. Surface and
Coatings Technology, 2010. 204 (12-13): p. 1989-1992.
74. Yeh, J.W., et al. High-entropy alloys–a new era of
exploitation . in Materials Science Forum . 2007. Trans Tech Publ.
75. Shaysultanov, D., et al., Phase composition and superplastic
behavior of a wrought AlCoCrCuFeNi high-entropy alloy. Jom, 2013.65 (12): p. 1815-1828.
76. Zhang, K., et al., Microstructure and mechanical properties of
CoCrFeNiTiAlx high-entropy alloys. Materials Science and Engineering:
A, 2009. 508 (1-2): p. 214-219.
77. Ye, Y., et al., High-entropy alloy: challenges and prospects.Materials Today, 2016. 19 (6): p. 349-362.
78. Löbel, M., et al., Microstructure and wear resistance of
AlCoCrFeNiTi high-entropy alloy coatings produced by HVOF. Coatings,
2017. 7 (9): p. 144.
79. Shun, T.-T., C.-H. Hung, and C.-F. Lee, Formation of
ordered/disordered nanoparticles in FCC high entropy alloys. Journal of
Alloys and Compounds, 2010. 493 (1-2): p. 105-109.
80. Lindner, T., et al., The phase composition and microstructure
of AlxCoCrFeNiTi alloys for the development of high-entropy alloy
systems. Metals, 2017. 7 (5): p. 162.
81. Yue, T., et al., Microstructure of laser re-melted
AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying.Entropy, 2013. 15 (7): p. 2833-2845.
82. Li, G., et al., Equation of state of an AlCoCrCuFeNi
high-entropy alloy. Jom, 2015. 67 (10): p. 2310-2313.
83. Chen, S., et al., Temperature effects on the serrated behavior
of an Al0. 5CoCrCuFeNi high-entropy alloy. Materials Chemistry and
Physics, 2017.
84. Sriharitha, R., B. Murty, and R.S. Kottada, Phase formation in
mechanically alloyed AlxCoCrCuFeNi (x= 0.45, 1, 2.5, 5 mol) high entropy
alloys. Intermetallics, 2013. 32 : p. 119-126.
85. Lin, X., et al., Solidification behavior and the evolution of
phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy.Metallurgical and Materials Transactions A, 2007. 38 (1): p.
127-137.
86. Zhang, Y., C. Pan, and A. Male, Improved microstructure and
properties of 6061 aluminum alloy weldments using a double-sided arc
welding process. Metallurgical and Materials Transactions A, 2000.31 (10): p. 2537-2543.
87. Löbel, M., et al., Influence of titanium on microstructure,
phase formation and wear behaviour of AlCoCrFeNiTix high-entropy alloy.Entropy, 2018. 20 (7): p. 505.
88. He, J., et al., A precipitation-hardened high-entropy alloy
with outstanding tensile properties. Acta Materialia, 2016.102 : p. 187-196.
89. Bhadeshia, H., High entropy alloys . 2015, Taylor & Francis.
90. Lu, Y., et al., Directly cast bulk eutectic and near-eutectic
high entropy alloys with balanced strength and ductility in a wide
temperature range. Acta materialia, 2017. 124 : p. 143-150.
91. Asthana, R. Solidification Processing of Reinforced Metals:
Frabrication Techniques . in Key Engineering Materials . 1998.
Trans Tech Publ.
92. Hansen, N., Hall–Petch relation and boundary strengthening.Scripta Materialia, 2004. 51 (8): p. 801-806.
93. AlMangour, B., D. Grzesiak, and J. Yang, EFFECT OF SCANNING
METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES.
94. Tong, C.-J., et al., Mechanical performance of the Al x
CoCrCuFeNi high-entropy alloy system with multiprincipal elements.Metallurgical and Materials Transactions A, 2005. 36 (5): p.
1263-1271.
95. Veiga, C., J. Davim, and A. Loureiro, Properties and
applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci,
2012. 32 (2): p. 133-148.
96. Peters, M., et al., Titanium alloys for aerospace
applications. Advanced engineering materials, 2003. 5 (6): p.
419-427.
97. Liu, Y., et al., Microstructure and mechanical performance of
AlxCoCrCuFeNi high-entropy alloys. Rare metal materials and
engineering, 2009. 38 (9): p. 1602-1607.
98. Trapp, J., et al., In situ absorptivity measurements of
metallic powders during laser powder-bed fusion additive manufacturing.Applied Materials Today, 2017. 9 : p. 341-349.
99. Saqib, S., R. Urbanic, and K. Aggarwal, Analysis of laser
cladding bead morphology for developing additive manufacturing travel
paths. Procedia Cirp, 2014. 17 : p. 824-829.
100. Pimsawat, A., et al., Effect of Substrate Surface Roughening
on the Capacitance and Cycling Stability of Ni (OH) 2 Nanoarray Films.Scientific reports, 2019. 9 (1): p. 1-11.
101. Vasinonta, A., J.L. Beuth, and R. Ong. Melt pool size control
in thin-walled and bulky parts via process maps . in Solid
Freeform Fabrication Proceedings . 2001. Proc. 2001 Solid Freeform
Fabrication Symposium, Austin.
102. He, Y., et al., Melt pool geometry and microstructure of
Ti6Al4V with B additions processed by selective laser melting additive
manufacturing. Materials & Design, 2019. 183 : p. 108126.
103. Aggarangsi, P., J.L. Beuth, and M.L. Griffith. Melt pool size
and stress control for laser-based deposition near a free edge . inSolid freeform fabrication proceedings . 2003. Citeseer.
104. Li, R., et al., Balling behavior of stainless steel and
nickel powder during selective laser melting process. The International
Journal of Advanced Manufacturing Technology, 2012. 59 (9-12):
p. 1025-1035.
105. Kumar, A. and S. Roy, Effect of three-dimensional melt pool
convection on process characteristics during laser cladding.Computational Materials Science, 2009. 46 (2): p. 495-506.
106. Cheng, B. and K. Chou. Melt pool geometry simulations for
powder-based electron beam additive manufacturing . in 24th Annual
International Solid Freeform Fabrication Symposium-An Additive
Manufacturing Conference, Austin, TX, USA . 2013.
107. Xiong, W., et al., Effect of selective laser melting
parameters on morphology, microstructure, densification and mechanical
properties of supersaturated silver alloy. Materials & Design, 2019.170 : p. 107697.