References

1. Singh, R., Introduction to Basic Manufacturing Processes and Workshop Technology,(2006). New Age International Pvt. Ltd, 2006.
2. Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing technologies . Vol. 17. 2014: Springer.
3. Gebhardt, A. and J. Hötter, Additive Manufacturing: 3D Printing for Prototyping and Manufacturing. Additive Manufacturing: Hanser, 2016: p. 93-290.
4. DebRoy, T., et al., Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 2018. 92 : p. 112-224.
5. ASTM, I., ASTM52900-15 Standard Terminology for Additive Manufacturing—General Principles—Terminology. ASTM International, West Conshohocken, PA, 2015.
6. Harun, W., et al., A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 2017.
7. Gorsse, S., et al., Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Science and Technology of advanced MaTerialS, 2017. 18 (1): p. 584-610.
8. Uhlmann, E., et al., Additive manufacturing of titanium alloy for aircraft components. Procedia Cirp, 2015. 35 : p. 55-60.
9. Wohlers, T., Wohler’s report 2013. 2013.
10. Waterman, N.A. and P. Dickens, Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture, 1994.1 (3): p. 27-36.
11. Guo, N. and M. Leu, Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8 (3), 215–243 . 2013.
12. Dilip, J., et al., Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Progress in Additive Manufacturing, 2017. 2 (3): p. 157-167.
13. Brückner, F., D. Lepski, and E. Beyer, Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding. Journal of thermal spray technology, 2007.16 (3): p. 355-373.
14. Wang, L., et al., Optimization of the LENS® process for steady molten pool size. Materials Science and Engineering: A, 2008.474 (1-2): p. 148-156.
15. Dass, A. and A. Moridi, State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings, 2019. 9 (7): p. 418.
16. Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing technologies. 2010. Google Scholar.
17. Al-Khazraji, K.K., R.A. Majed, and Z.N. Abdulhameed, Effect of Uric acid Level on the Corrosion Behavior of SS 316L and Co-Cr-Mo Used in Implant Applications. Engineering and Technology Journal, 2013.31 (17 Part (A) Engineering): p. 3382-3390.
18. Loicq, R., Additive Manufacturing Utilized for Prototype Parts. 2017.
19. Gu, D., Laser additive manufacturing of high-performance materials . 2015: Springer.
20. Griffith, M.L., et al., Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). MRS Online Proceedings Library Archive, 2000. 625 .
21. Aghasibeig, M. and H. Fredriksson, Laser cladding of a featureless iron-based alloy. Surface and Coatings Technology, 2012.209 : p. 32-37.
22. Dada, M., et al., High Entropy Alloys for Aerospace Applications , in Environmental Impact of Aviation and Sustainable Solutions . 2019, IntechOpen.
23. Svensson, D.O., High Entropy Alloys: Breakthrough Materials for Aero Engine Applications? 2014, Master’s Thesis.
24. Chikumba, S. and V.V. Rao. High Entropy Alloys: Development and Applications . in 7th Int. Conf. Latest Trends Eng. Technol . 2015.
25. Gao, M.C., et al., High-Entropy Alloys . 2016: Springer.
26. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.Advanced Engineering Materials, 2004. 6 (5): p. 299-303.
27. Murty, B.S., J.-W. Yeh, and S. Ranganathan, High-entropy alloys . 2014: Butterworth-Heinemann.
28. Shafeie, S., et al., High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 2015.118 (18): p. 184905.
29. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements.Metallurgical and Materials Transactions A, 2005. 36 (4): p. 881-893.
30. Kao, Y.-F., et al., Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 2009. 488 (1): p. 57-64.
31. Hemphill, M.A., et al., Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys. Acta Materialia, 2012. 60 (16): p. 5723-5734.
32. Jiang, H., et al., Synthesis and Characterization of AlCoCrFeNiNbx High-Entropy Alloy Coatings by Laser Cladding. Crystals, 2019. 9 (1): p. 56.
33. Chao, Q., et al., Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel.Surface and Coatings Technology, 2017. 332 : p. 440-451.
34. Hofman, J.T., Development of an observation and control system for industrial laser cladding. 2009.
35. Steen, W.M. and J. Mazumder, Laser material processing . 2010: springer science & business media.
36. Deng, C., et al., Study on the selective laser melting of CuSn10 powder. Materials, 2018. 11 (4): p. 614.
37. Mathe, N.R. and L.C. Tshabalala, The validation of the microstructural evolution of selective laser-melted AlSi10Mg on the in-house built machine: energy density studies. Progress in Additive Manufacturing, 2019: p. 1-12.
38. Zuback, J. and T. DebRoy, The hardness of additively manufactured alloys. Materials, 2018. 11 (11): p. 2070.
39. Ermurat, M., et al., Process parameters investigation of a laser-generated single clad for minimum size using design of experiments. Rapid Prototyping Journal, 2013. 19 (6): p. 452-462.
40. Graf, B., et al., Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. Procedia CIRP, 2013. 11 : p. 245-248.
41. Liao, H.-T. and J.-R. Shie, Optimization on selective laser sintering of metallic powder via design of experiments method. Rapid Prototyping Journal, 2007. 13 (3): p. 156-162.
42. Fatoba, O., et al., Modelling and optimization of laser alloyed AISI 422 stainless steel using taguchi approach and response surface model (RSM). Current Journal of Applied Science and Technology, 2017: p. 1-16.
43. Gómez-Esparza, C.D., et al., Series of nanocrystalline NiCoAlFe (Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical alloying. Materials Research, 2016. 19 : p. 39-46.
44. Löbel, M., et al. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying . in IOP Conference Series: Materials Science and Engineering . 2017. IOP Publishing.
45. Mohanty, S., et al., Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Materials Science and Engineering: A, 2017. 679 : p. 299-313.
46. Zhang, Y., et al., Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014. 61 : p. 1-93.
47. Li, J., et al., Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. Materials & Design, 2016.95 : p. 183-187.
48. Khaled, T., Preheating, interpass and post-weld heat treatment requirements for welding low alloy steels. vol, 2014. 6 : p. 1-14.
49. Zhang, H., et al., Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel. Nuclear engineering and design, 2010. 240 (10): p. 2691-2696.
50. Akinlabi, E.T., et al., Effect of scanning speed on material efficiency of laser metal deposited Ti6Al4V. 2012.
51. Wang, X., X. Gong, and K. Chou, Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing. Procedia Manufacturing, 2015. 1 : p. 287-295.
52. Pal, S., I. Drstvensek, and T. Brajlih, Physical behaviors of materials in selective laser melting process. DAAAM International Scientific Book, 2018.
53. Coniglio, N. and C.E. Cross, Mechanisms for solidification crack initiation and growth in aluminum welding. Metallurgical and Materials Transactions A, 2009. 40 (11): p. 2718-2728.
54. Hofmeister, W. and M. Griffith, Solidification in direct metal deposition by LENS processing. Jom, 2001. 53 (9): p. 30-34.
55. Thijs, L., et al., A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta materialia, 2010.58 (9): p. 3303-3312.
56. Farotade, G.A. and A.P. Popoola, A study on microhardness and microstructural evolution of titanium/zirconium diboride cermet coatings with varying scan speeds during laser cladding on Ti6Al4V substrate.International Journal of Microstructure and Materials Properties, 2017.12 (1-2): p. 25-37.
57. Wang, Y., et al., Optimizing mechanical properties of AlCoCrFeNiTi x high-entropy alloys by tailoring microstructures. Acta Metallurgica Sinica (English Letters), 2013. 26 (3): p. 277-284.
58. Tung, C.-C., et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials letters, 2007. 61 (1): p. 1-5.
59. Tian, L.-H., et al., Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating.Journal of Materials Engineering and Performance, 2016. 25 (12): p. 5513-5521.
60. Wen, L., et al., Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics, 2009. 17 (4): p. 266-269.
61. Moravcik, I., et al., Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0. 5 high entropy alloy. Materials Letters, 2016.174 : p. 53-56.
62. Chen, W., et al., Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0. 3Al0. 7 high entropy alloy.Materials & Design, 2013. 51 : p. 854-860.
63. Suryanarayana, C., Mechanical alloying and milling. Progress in materials science, 2001. 46 (1-2): p. 1-184.
64. Soare, V., et al., Influence of remelting on microstructure, hardness and corrosion behaviour of AlCoCrFeNiTi high entropy alloy.Materials Science and Technology, 2015. 31 (10): p. 1194-1200.
65. Dolique, V., et al., Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy.Materials Chemistry and Physics, 2009. 117 (1): p. 142-147.
66. Yue, T., et al., Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. Journal of alloys and compounds, 2014. 587 : p. 588-593.
67. Li, W., et al., Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: microstructure, phase and mechanical properties. Journal of Alloys and Compounds, 2016. 688 : p. 626-636.
68. Chen, S., Y. Tong, and P.K. Liaw, Additive Manufacturing of High-Entropy Alloys: A Review. Entropy, 2018. 20 (12): p. 937.
69. Gwalani, B., et al., Cu assisted stabilization and nucleation of L12 precipitates in Al0. 3CuFeCrNi2 fcc-based high entropy alloy.Acta Materialia, 2017. 129 : p. 170-182.
70. Derimow, N., et al., Processing pathway effects in CoCrCuNi+ X (Fe, Mn) high-entropy alloys. Philosophical Magazine, 2019: p. 1-15.
71. Bratberg, J., TCFE6–TCS Steels/Fe–Alloys Database . 2011, Version 6.2: Tech. rep.: Thermo–Calc software AB: Stockholm, Sweden.
72. Chen, M.-R., et al., Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. Materials transactions, 2006. 47 (5): p. 1395-1401.
73. Dolique, V., et al., Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surface and Coatings Technology, 2010. 204 (12-13): p. 1989-1992.
74. Yeh, J.W., et al. High-entropy alloys–a new era of exploitation . in Materials Science Forum . 2007. Trans Tech Publ.
75. Shaysultanov, D., et al., Phase composition and superplastic behavior of a wrought AlCoCrCuFeNi high-entropy alloy. Jom, 2013.65 (12): p. 1815-1828.
76. Zhang, K., et al., Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Materials Science and Engineering: A, 2009. 508 (1-2): p. 214-219.
77. Ye, Y., et al., High-entropy alloy: challenges and prospects.Materials Today, 2016. 19 (6): p. 349-362.
78. Löbel, M., et al., Microstructure and wear resistance of AlCoCrFeNiTi high-entropy alloy coatings produced by HVOF. Coatings, 2017. 7 (9): p. 144.
79. Shun, T.-T., C.-H. Hung, and C.-F. Lee, Formation of ordered/disordered nanoparticles in FCC high entropy alloys. Journal of Alloys and Compounds, 2010. 493 (1-2): p. 105-109.
80. Lindner, T., et al., The phase composition and microstructure of AlxCoCrFeNiTi alloys for the development of high-entropy alloy systems. Metals, 2017. 7 (5): p. 162.
81. Yue, T., et al., Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying.Entropy, 2013. 15 (7): p. 2833-2845.
82. Li, G., et al., Equation of state of an AlCoCrCuFeNi high-entropy alloy. Jom, 2015. 67 (10): p. 2310-2313.
83. Chen, S., et al., Temperature effects on the serrated behavior of an Al0. 5CoCrCuFeNi high-entropy alloy. Materials Chemistry and Physics, 2017.
84. Sriharitha, R., B. Murty, and R.S. Kottada, Phase formation in mechanically alloyed AlxCoCrCuFeNi (x= 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics, 2013. 32 : p. 119-126.
85. Lin, X., et al., Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy.Metallurgical and Materials Transactions A, 2007. 38 (1): p. 127-137.
86. Zhang, Y., C. Pan, and A. Male, Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process. Metallurgical and Materials Transactions A, 2000.31 (10): p. 2537-2543.
87. Löbel, M., et al., Influence of titanium on microstructure, phase formation and wear behaviour of AlCoCrFeNiTix high-entropy alloy.Entropy, 2018. 20 (7): p. 505.
88. He, J., et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016.102 : p. 187-196.
89. Bhadeshia, H., High entropy alloys . 2015, Taylor & Francis.
90. Lu, Y., et al., Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta materialia, 2017. 124 : p. 143-150.
91. Asthana, R. Solidification Processing of Reinforced Metals: Frabrication Techniques . in Key Engineering Materials . 1998. Trans Tech Publ.
92. Hansen, N., Hall–Petch relation and boundary strengthening.Scripta Materialia, 2004. 51 (8): p. 801-806.
93. AlMangour, B., D. Grzesiak, and J. Yang, EFFECT OF SCANNING METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES.
94. Tong, C.-J., et al., Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements.Metallurgical and Materials Transactions A, 2005. 36 (5): p. 1263-1271.
95. Veiga, C., J. Davim, and A. Loureiro, Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci, 2012. 32 (2): p. 133-148.
96. Peters, M., et al., Titanium alloys for aerospace applications. Advanced engineering materials, 2003. 5 (6): p. 419-427.
97. Liu, Y., et al., Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys. Rare metal materials and engineering, 2009. 38 (9): p. 1602-1607.
98. Trapp, J., et al., In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing.Applied Materials Today, 2017. 9 : p. 341-349.
99. Saqib, S., R. Urbanic, and K. Aggarwal, Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia Cirp, 2014. 17 : p. 824-829.
100. Pimsawat, A., et al., Effect of Substrate Surface Roughening on the Capacitance and Cycling Stability of Ni (OH) 2 Nanoarray Films.Scientific reports, 2019. 9 (1): p. 1-11.
101. Vasinonta, A., J.L. Beuth, and R. Ong. Melt pool size control in thin-walled and bulky parts via process maps . in Solid Freeform Fabrication Proceedings . 2001. Proc. 2001 Solid Freeform Fabrication Symposium, Austin.
102. He, Y., et al., Melt pool geometry and microstructure of Ti6Al4V with B additions processed by selective laser melting additive manufacturing. Materials & Design, 2019. 183 : p. 108126.
103. Aggarangsi, P., J.L. Beuth, and M.L. Griffith. Melt pool size and stress control for laser-based deposition near a free edge . inSolid freeform fabrication proceedings . 2003. Citeseer.
104. Li, R., et al., Balling behavior of stainless steel and nickel powder during selective laser melting process. The International Journal of Advanced Manufacturing Technology, 2012. 59 (9-12): p. 1025-1035.
105. Kumar, A. and S. Roy, Effect of three-dimensional melt pool convection on process characteristics during laser cladding.Computational Materials Science, 2009. 46 (2): p. 495-506.
106. Cheng, B. and K. Chou. Melt pool geometry simulations for powder-based electron beam additive manufacturing . in 24th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, Austin, TX, USA . 2013.
107. Xiong, W., et al., Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Materials & Design, 2019.170 : p. 107697.