
A family of novel exact solutions to

(2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli

equation

Nadia Mahak, Ghazala Akram∗

Abstract

In this manuscript, some novel exact traveling wave solutions are constructed for
(2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli(BLMP) equation. The analytical
techniques, namely extended rational sine-cosine method and extended rational sinh-
cosh method are utilized for constructing the new solitary wave solutions of BLMP
equation. The proposed techniques provides different types of solutions which are ex-
pressed in terms of singular periodic wave, solitary waves, bright solitons, dark solitons,
periodic wave and kink wave solutions with specific values of parameters.
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1 Introduction

Nonlinear dynamics is an engine of modern sciences which describes nonlinear phenomena. Many
nonlinear phenomena in engineering, physics, biology, economics, chemistry and other fields are
described by nonlinear partial differential equations (NPDEs). Nonlinear PDE is one of the main
research area and interesting issue in mathematics and physics. Their exact and numerical traveling
wave solutions in the type of soliton solutions have essential significance since they create a strong
relation between mathematics and physics. Exact traveling wave solutions are considered best to
understand the phenomena of natural sciences. A better deal of applications of NPDEs therefore
appealed numerous researchers to look for their exact solutions. Many methods have been applied
to find exact solutions of NPDEs such as, generalized exponential rational function [1], tanh method
[2], the exp(−ϕξ)-expansion method [3], the extended rational sine-cosine approach and extended
rational sinh-cosh approach [4, 5], exp-function method [6], F-expansion method [7], Hirotas method

[8], extended Fan sub-equation method [9], sine-cosine method [10], the (G
′

G )−expansion method [11],

the first integral method [12, 13], the unified method [14], the extended (G′

G2 )−expansion [15], and
so on.
However, the present work focus on the adoption of two novel approaches: the extended rational
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sine-cosine approach and extended rational sinh-cosh approach to seek exact traveling wave solutions
of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. The BLMP equation is firmly
identified with the Korteweg-de Vries (KdV) equation. Boiti et al. [16] first derived the system of
equations

ϕx − ψy = 0

ϕt − 3(ϕψ)x + ϕxxx = 0,

and the Asymmetric-Nizhnik-Novikov-Veselov equation (ANNV) is described by the above system
of equations. The ANNV equation is, in fact, a two-dimensional KdV equation and by inserting the
transformation: = Φx and ϕ = Φy, this system of equations yields

Φyt +Φxxxy − 3ΦxxΦy − 3ΦxyΦx = 0, (1.1)

where Φ = Φ(x, y, t) and this equation is called as Boiti-Leon-Manna-Pempinelli (BLMP) equation,
which was derived by Gilson et al.[17] during their researched a (2 + 1)-dimensional generalization
of the AKNS shallow-water wave equation using the bilinear method. This equation was utilized
to depict the (2+1)-dimensional interaction of the Riemann wave propagated along the y-axis with
a long wave propagated along the x-axis. Nowadays, many researchers are focusing to extract
exact solutions of BLMP equation using various different methods such as, based on the binary Bell
polynomials [18], Wronskian formalism and the Hirota method [19, 20], the extended homoclinic
test approach [21] and so on.
The strategy of the paper is summarized as follows: Demarcation of extended rational sine-cosine
and extended rational sinh-cosh approaches are presented, in Section 2. In Section 3, application
of these methods on the BLMP equation is investigated and graphs of some obtained solutions are
drawn. Conclusion is given in Section 4.

2 Algorithms

Consider the nonlinear partial differential equation (NPDE):

F (Φ,Φx,Φt,Φxx,Φxt, ...) = 0, (2.2)

where Φ = Φ(x, t) and inserting the following traveling wave transformation

Φ(x, t) = Φ(ψ), ψ = x− ct, (2.3)

where c refers the wave speed, which converts the NPD Eq.(2.2)into an ODE:

G(Φ,−cΦ
′
,Φ

′
, c2Φ

′′
,Φ

′′
,−cΦ

′′
, ...) = 0, (2.4)

where
′
denotes the derivative with respect to ψ

2.1 Extended rational sine-cosine method

Step 1. To obtain the solutions of Eq.(2.4), extended rational sine-cosine method asserts the general
solution in the form

Φ(ψ) =
ξ0 sin(µψ)

ξ2 + ξ1 cos(µψ)
, cos(µψ) ̸= −ξ2

ξ1
, (2.5)



or,

Φ(ψ) =
ξ0 cos(µψ)

ξ2 + ξ1 sin(µψ)
, sin(µψ) ̸= −ξ2

ξ1
, (2.6)

where the unknown parameters ξ0, ξ1, ξ2 and µ is the wave number can be determined later.
Step 2. By substituting Eq.(2.5) or Eq.(2.6) into Eq.(2.4), polynomials in cos(µψ) or sin(µψ) are
obtained. Then collecting all coefficients with like powers of cos(µψ)z or sin(µψ)z, (where z is a
positive integer) and equating them to zero. A set of algebraic equations can be obtained. The
resulting equations are solved with the aid of Maple to get the values of unknown constants ξ0, ξ1,
ξ2, c and µ.
Step 3. Substituting the obtained unknown values from Step 2 into Eq.(2.5) or Eq.(2.6), the solution
of Eq.(2.4) can be found.

2.2 Extended rational sinh-cosh method

Step 1. To obtain the solutions of Eq.(2.4), extended rational sinh-cosh method asserts the general
solution in the form

Φ(ψ) =
ξ0 sinh(µψ)

ξ2 + ξ1 cosh(µψ)
, cosh(µψ) ̸= −ξ2

ξ1
, (2.7)

or,

Φ(ψ) =
ξ0 cosh(µψ)

ξ2 + ξ1 sinh(µψ)
, sinh(µψ) ̸= −ξ2

ξ1
, (2.8)

where the unknown parameters ξ0, ξ1, ξ2 and µ refers the wave number can be determined later.
Step 2. By substituting Eq.(2.7) or Eq.(2.8) into Eq.(2.4), polynomials in cosh(µψ) or sinh(µψ)
are obtained. Then collecting all coefficients with like powers of cosh(µψ)z or sinh(µψ)z, (where z
is a positive integer) and equating them to zero. A set of equations can be obtained. The resulting
equations are solved with the aid of Maple to get the values of unknown constants ξ0, ξ1, ξ2, c and
µ.
Step 3. Substituting the obtained unknown values from Step 2 into Eq.(2.7) or Eq.(2.8), the solution
of Eq.(2.4) can be found.

3 Exact solutions of the Proposed PDE

The transformation:
Φ(x, y, t) = U(ψ), ψ = λ1x+ λ2y − ct, (3.9)

where λ1, λ2 and c are constants, is inserting into Eq.(1.1) and the resulting ODE can be written as

−cλ2U
′′
+ λ31λ2U

′′′′
− 6λ21λ2U

′
U

′′
= 0. (3.10)

Integrating Eq.(3.10) and setting the constant of integration equals to zero which leads

−cλ2U
′
+ λ31λ2U

′′′
− 3λ21λ2(U

′
)2 = 0. (3.11)

3.1 Exact solutions by extended rational sine-cosine method

Suppose that solution of Eq.(3.11) has the form

U(ψ) =
ξ0 sin (µψ)

ξ2 + ξ1 cos (µψ)
. (3.12)



Substituting Eq.(3.12) into Eq.(3.11), we get a polynomial in cos(µψ) and then collecting all coeffi-
cient of the like powers of cos(µψ)z and setting them to zero. The following algebraic equations are
obtained:

cos(µψ)3 : cλ2ξ2ξ1
2 + λ1

3µ2ξ2ξ1
2 = 0,

cos(µψ)2 : cλ2ξ1
3 + 2 cλ2ξ2

2ξ1 + 4λ1
3µ2ξ1

3 − 4λ1
3µ2ξ2

2ξ1 + 3λ1
2ξ0µa2

2 = 0,

cos(µψ)1 : cλ2ξ2
3 + 2 cλ2ξ2ξ1

2 − 4λ1
3µ2ξ2a1

2 + λ1
3µ2ξ2

3 + 6λ1
2ξ0µ ξ2ξ1 = 0,

cos(µψ)0 : cλ2ξ2
2ξ1 − 6λ1

3µ2ξ1
3 + 4λ1

3µ2ξ2
2ξ1 + 3λ1

2ξ0µ ξ1
2 = 0.

The solutions of above equations are classified as

Case 1. µ = ± 1

2λ1

√
−cλ2
λ1

, ξ0 = ±
√
−cλ2
λ1

ξ1, ξ1 = ξ1, ξ2 = 0.

For the case 1 the solutions of Eq.(1.1):

Φ11(x, y, t) =

√
−cλ2
λ1

tan

[
1

2λ1

√
−cλ2
λ1

(λ1x+ λ2y − ct)

]
.

Φ12(x, y, t) = −
√
−cλ2
λ1

tan

[
1

2λ1

√
−cλ2
λ1

(λ1x+ λ2y − ct)

]
.

(3.13)

Case 2. µ = ± 1

λ1

√
−cλ2
λ1

, ξ0 = ±
√
−cλ2
λ1

ξ1, ξ1 = ±ξ2, ξ2 = ξ2.

For the case 2 the solutions of Eq.(1.1):

Φ21(x, y, t) =

√
−cλ2
λ1

sin
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + cos

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ22(x, y, t) =

√
−cλ2
λ1

sin
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1− cos

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ23(x, y, t) = −

√
−cλ2
λ1

sin
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + cos

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ24(x, y, t) = −

√
−cλ2
λ1

sin
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1− cos

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .

(3.14)

OR
Suppose that Eq.(3.11) has solution in the form, as

U(ψ) =
ξ0 cos (µψ)

ξ2 + ξ1 sin (µψ)
. (3.15)

Substituting Eq.(3.15) into Eq.(3.11), we get a polynomial in sin(µψ) and collecting all coefficients of
the like powers of sin(µψ) and setting them to zero. The following algebraic equations are obtained:

sin(µψ)3 : −cλ2ξ12ξ2 + λ1
3µ2ξ2ξ1

2 = 0,

sin(µψ)2 : −2 cλ2ξ1ξ2
2 − cλ2ξ1

3 + 4λ1
3µ2ξ1

3 − 4λ1
3µ2ξ2

2ξ1 + 3λ1
2ξ0µd2

2 = 0,

sin(µψ)1 : −cλ2ξ23 − 2 cλ2ξ1
2ξ2 + λ1

3µ2ξ2
3 − 4λ1

3µ2ξ2ξ1
2 + 6λ1

2ξ0µ ξ2ξ1 = 0,

sin(µψ)0 : −cλ2ξ1ξ22 − 6λ1
3µ2ξ1

3 + 4λ1
3µ2ξ2

2ξ1 + 3λ1
2ξ0µ ξ1

2 = 0.



The solutions of above equations are classified as

Case 3. µ = ± 1

2λ1

√
cλ2
λ1

, ξ0 = ξ0, ξ1 = ±
√

λ1
cλ2

ξ0, ξ2 = 0.

For the case 3 the solutions of Eq.(3.11):

Φ31(x, y, t) =

√
cλ2
λ1

cot

[
1

2λ1

√
cλ2
λ1

(λ1x+ λ2y − ct)

]
.

Φ32(x, y, t) = −
√
cλ2
λ1

cot

[
1

2λ1

√
cλ2
λ1

(λ1x+ λ2y − ct)

]
.

(3.16)

Case 4. µ = ± 1

2λ1

√
cλ2
λ1

, ξ0 = ±
√
cλ2
λ1

ξ2, ξ1 = ±ξ2, ξ2 = ξ2.

For the case 4 the solutions of Eq.(3.11):

Φ41(x, y, t) =

√
cλ2
λ1

cos
[

1
2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + sin

[
1

2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ42(x, y, t) =

√
cλ2
λ1

cos
[

1
2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1− sin

[
1

2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ43(x, y, t) = −

√
cλ2
λ1

cos
[

1
2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + sin

[
1

2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ44(x, y, t) = −

√
cλ2
λ1

cos
[

1
2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1− sin

[
1

2λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .

(3.17)

3.2 Exact solutions by extended rational sinh-cosh method

Suppose that the traveling wave solution of Eq.(3.11) has the form,

U(ψ) =
ξ0 sinh (µψ)

ξ2 + ξ1 cosh (µψ)
. (3.18)

Substituting Eq.(3.18) into Eq.(3.11), we get a polynomial in cosh(µψ) and collecting all terms
with the like powers of cosh(µψ)z and setting them to zero. The following algebraic equations are
obtained:

cosh(µψ)3 : cλ2ξ2ξ1
2 − λ1

3µ2ξ2ξ1
2 = 0,

cosh(µψ)2 : 2 cλ2ξ2
2ξ1 + cλ2ξ1

3 − 4λ1
3µ2ξ1

3 + 4λ1
3µ2ξ2

2ξ1 + 3λ1
2ξ0µa2

2 = 0,

cosh(µψ)1 : cλ2ξ2
3 + 2 cλ2ξ2ξ1

2 − λ1
3µ2ξ2

3 + 4λ1
3µ2ξ2ξ1

2 + 6λ1
2ξ0µ ξ2ξ1 = 0,

cosh(µψ)0 : cλ2ξ2
2ξ1 − 4λ1

3µ2ξ2
2ξ1 + 6λ1

3µ2ξ1
3 + 3λ1

2ξ0µ ξ1
2 = 0.

The solutions of above equations are classified as

Case 5. µ = ± 1

2λ1

√
cλ2
λ1

, ξ0 = ±
√
cλ2
λ1

ξ1, ξ1 = ξ1, ξ2 = 0.



Figure 1: 3D graphics of Φ11 with
λ1 = 0.09, λ2 = −1.78 and c =
0.078.

Figure 2: 3D graphics of Φ24 with
λ1 = 0.09, λ2 = −0.6 and c = 0.78.

For the case 5 the solutions of Eq.(3.11):

Φ51(x, y, t) =

√
cλ2
λ1

tanh

[
1

2λ1

√
cλ2
λ1

(λ1x+ λ2y − ct)

]
.

Φ52(x, y, t) = −
√
cλ2
λ1

tanh

[
1

2λ1

√
cλ2
λ1

(λ1x+ λ2y − ct)

]
.

(3.19)

Case 6. µ = ± 1

λ1

√
cλ2
λ1

, ξ0 = ±
√
cλ2
λ1

ξ2, ξ1 = ±ξ2, ξ2 = ξ2.

For the case 6 the solutions of Eq.(3.11):

Φ61(x, y, t) =

√
cλ2
λ1

sinh
[

1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + cosh

[
1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ62(x, y, t) = −

√
cλ2
λ1

sinh
[

1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + cosh

[
1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ63(x, y, t) =

√
cλ2
λ1

sinh
[

1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1− cosh

[
1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ64(x, y, t) = −

√
cλ2
λ1

sinh
[

1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

]
1− cosh

[
1
λ1

√
cλ2

λ1
(λ1x+ λ2y − ct)

] .

(3.20)

OR
Suppose that Eq.(3.11) has solution in the form, as

U(ψ) =
ξ0 cosh (µψ)

ξ2 + ξ1 sinh (µψ)
. (3.21)



Figure 3: 3D graphics of Φ52 with
λ1 = 0.09, λ2 = 0.76 and c = 0.078. Figure 4: 3D graphics of Φ61 with

λ1 = 0.5, λ2 = −1.76 and c = 0.078.

Substituting Eq.(3.21) into Eq.(3.11), we get a polynomial in sinh(µψ) and collecting all terms of the
like powers of sinh(µψ)z and setting them to zero. The following algebraic equations are obtained:

sinh(µψ)3 : cλ2ξ1
2ξ2 + λ1

3µ2ξ1
2ξ2 = 0,

sinh(µψ)2 : 2 cλ2ξ2
2ξ1 − cλ2ξ1

3 − 4λ1
3µ2ξ1

3 − 4λ1
3µ2ξ2

2ξ1 − 3λ1
2ξ0µa2

2 = 0,

sinh(µψ)1 : cλ2ξ2
3 − 2 cλ2ξ1

2ξ2 + λ1
3µ2ξ2

3 + 4λ1
3µ2ξ1

2ξ2 + 6λ1
2ξ0µ ξ2ξ1 = 0,

sinh(µψ)0 : −cλ2ξ22ξ1 − 6λ1
3µ2ξ1

3 − 4λ1
3µ2ξ2

2ξ1 − 3λ1
2ξ0µ ξ1

2 = 0.

The solutions of above equations are classified as

Case 7. µ = ± 1

2λ1

√
−cλ2
λ1

, ξ0 = ξ0, ξ1 = ±ι
√

λ1
cλ2

ξ0, ξ2 = 0.

For the case 7 the solutions of Eq.(3.11):

Φ71(x, y, t) =

√
−cλ2
λ1

coth

[
1

2λ1

√
−cλ2
λ1

(λ1x+ λ2y − ct)

]
.

Φ72(x, y, t) = −
√

−cλ2
λ1

coth

[
1

2λ1

√
−cλ2
λ1

(λ1x+ λ2y − ct)

]
.

(3.22)

Case 8. µ = ± 1

λ1

√
−cλ2
λ1

, ξ0 = ±
√
cλ2
λ1

ξ2, ξ1 = ±ιξ2, ξ2 = ξ2.



(a) (b)

Figure 5: 3D graphics of real and imaginary parts of Φ81 with λ1 = −0.5, λ2 = 0.06 and
c = 3.

For the case 8 the solutions of Eq.(3.11):

Φ81(x, y, t) =

√
−cλ2
λ1

cosh
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + ι sinh

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ82(x, y, t) = −

√
−cλ2
λ1

cosh
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1 + ι sinh

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ83(x, y, t) =

√
−cλ2
λ1

cosh
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1− ι sinh

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .
Φ84(x, y, t) = −

√
−cλ2
λ1

cosh
[

1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

]
1− ι sinh

[
1
λ1

√
− cλ2

λ1
(λ1x+ λ2y − ct)

] .

(3.23)

Numerical simulations: Some obtained exact rational trigonometric solutions of (2+1)-dimensional
Boiti-Leon-Manna-Pempinelli equation are shown by graphs along with the physical explanations
which are plotted only for −10 ≤ x ≤ 10, −10 ≤ y ≤ 10 and t = 0. Fig.1 illustrates the evolution
of singular periodic wave solutions for Φ11(x, y, t). Fig.(2) shows periodic solutions for Φ24(x, y, t).
Fig.(3) describes kink and dark soliton solutions for Φ52(x, y, t). Fig.(4) also represents kink type
wave solutions for Φ61(x, y, t). Part (a) of Fig.(5) illustrates the graph of the real part of Φ81(x, y, t)
which represents bright soliton wave solutions, while part (b) of Fig.(5) shows the graph of the
imaginary part of Φ81(x, y, t) which describes kink and dark soliton solutions.

4 Conclusion

Exact rational trigonometric solutions of (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
have been constructed via extended rational sine-cosine and extended rational sinh-cosh methods.



The obtained solutions are expressed as solitary waves, bright soltiton, dark soliton, periodic wave
and kink wave solutions. Some new graphical representations are obtained with the help of these
methods. It is found that from the two proposed techniques the former provides a variety of different
solutions as compared to later.
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