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Abstract

In this study, we investigate the sum-type singular nonlinear fractional g-integro-
differential m-point boundary value problem. The existence of positive solutions is ob-
tained by the properties of the Green function, standard Caputo g-derivative, Riemann-
Liouville fractional g-integral and the means of a fixed point theorem on a real Banach
space (X, ]|.|]) which has a partially order by using a cone P C X. The proofs are
based on solving the operator equation O1x + Osx = x such that the operator O1, Os
are r-convex, sub-homogeneous, respectively and define on cone P. As applications, we
provide an example illustrating the primary effects.

(2010) Mathematics Subject Classifications: 34A08, 39A12, 34B16.
Keywords: Positive solutions, Caputo g-derivative, Singularity, g-integro-fractional differen-
tial equation.

1 Introduction

It is known that the subject of g-difference equations introduced by Jackson in 1910 |[19]. After
it, some researchers studied g¢-difference equations |1, 2, @, &, 9, 3, 5, 22, B4, BY, 42]. On
the other hand, it published recently many modern works on integro-differential equations by
using different views and fractional derivatives which young researchers could use main idea
of the works for their works (see for example, [0, B, 12, 20, 32, B6|.

In 2012, Ahmad et al. studied the existence and uniqueness of solutions for the fractional
g-difference equations “Dgu(t) = T (t,u(t)) with boundary conditions a;u(0) — 81 Dyu(0) =
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yu(m) and asu(l) — BaDyu(l) = ~u(ne), where o € (1,2], oy, Bi,vi, m;i are real numbers,
fori=1,2and T € C(J x R,R) (|5]). In 2013, Zhao el al. reviewed the g-integral problem
(Dgu)(t) + f(t,u(t)) = 0 with boundary conditions u(1) = pullu(n) and u(0) = 0 for almost
all t € (0,1), where g € (0,1), a € (1,2], 8 € (0,2], n € (0,1), p is positive real number,
Dy is the g-derivative of Riemann-Liouville and real-values continuous map u defined on
I x [0,00) ([22]). In 2014, Ahmad et al. investigated the problem °DZ(°DY + Au(t) =
pf(t,u(t)) + kISg(t, u(t)) with boundary conditions ayu(0) — S (t(l_V)un(O))h:O = oru(m)
and awu(l)+ o Dyu(l) = o9u(ny), where t, ¢ € [0, 1], CDg is the fractional Caputo ¢-derivative,
0<pB,v<1, [qf (.) denotes the Riemann-Liouville integral with £ € (0,1), f and g are given
continuous functions, A and p, k are real constants, «;, 5;,0; € R and n; € (0,1) for ¢ = 1,2
(|a]). In 2019, Samei et al. [37] discussed the fractional hybrid g-differential inclusions

cNna T
Dq <f(t7$7]g‘lx7,,, ;L?”Z‘)) S F(t,x7]51x7... ’ngm)7

with the boundary conditions z(0) = 2y and z(1) = z1, where 1 < o < 2, ¢ € (0,1),
o, 71 € R, o > 0, for i = 1,2,...,n, §; > 0, for j = 1,2,... )k, n,k € N, D7 denotes
Caputo type g-derivative of order «, [, 5 denotes Riemann-Liouville type g-integral of order /3,
f:J xR"— (0,00) is continuous and F : J x R¥ — P(R) is multifunction. Also, Ntouyas
et al. |25] by applying definition of the fractional g-derivative of the Caputo type and the
fractional g-integral of the RiemannLiouville type, studied the existence and uniqueness of
solutions for a multi-term nonlinear fractional g-integro-differential equations under some
boundary conditions

‘Dea(t) = w(t, z(t), (e12)(t), (p22) (1), CDflm(t), CDf%(t), . ,CDg”x(t)).

In 2020, Liang et al. [26] investigated the existence of solutions for a nonlinear problems
regular and singular fractional g-differential equation

D f(t) =w(t, f(8), ['(t), D] f (1)),
with conditions f(0) = c1f(1), f'(0) = 2*DZf(1) and f*(0) = 0 for 2 < k < n — 1, here
n—1<a<nwithn >3, 8,¢,¢c; € (0,1), c2 € (0,I',(2—)), function w is a L*-Carathéodory,
w(t, 1, e, x3) may be singular and “Dy the fractional Caputo type g-derivative. Similar re-

sults have been presented in other studies [IR, B4, BR|.

In this article, motivated by main idea of the works such |14, B0, [7], and among these
achievements, we are going to stretch out the singular fractional g-integro-differential equation

Dy x(t) + w, <t, x(t), (Q)(t), DY x(t),. .. ,ng%(t))
+ wo (t, x(t), (Qz)(t), D) a(t), . . . ,ngzx(t)) =0, (1.1)

(Qz)(t) = /0 p(t,qs)f(t,s,x(s), DI x(s), . .., nglx(s)) dys
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with m-point boundary conditions Dfix(O) = DJ’x(0) = 0 for 4,5 in Ny, Ny,, , respectively,
here N, = {1,2,3,...,k}, ngzﬂx(()) = D;”“?Hx(O) = D3k2+3x(0) =0 and

m—

wcg +3 Z %2 +3
7

k=1

where t € J = (0,1), « € (n — 1,n] with n more than or equal to five, 0 < f; < o < -+ <

Bk1§’7/€27
0<y <7 <" < Vi

a— Y, € (4,5], e € (0,00), 7 € (0,1) such that 7, < 7 + 1, here k € N,,_o, also

d—ZUkQWQ <17

I 7 = [0,00), f : T x RE+L [0,00), positive real-valued functions w; define on
(0,1] x R¥2*2 are continuous such that lim,_ o+ w;(t,.,.,...,.) = +oo, that is, w; are sin-
gular at ¢ = 0 and D, is the Riemann-Liouville fractional g-derivative.

2 Preliminaries

First, we point out some of the materials on the fractional g-calculus and fundamental results
of it which needed in the next sections (for more information, consider |28, 6, 19]). Then,
some well-known theorems of fixed point theorem and definition are expressed.

Let ¢ € (0,1) and a € R. Define [a], = [IH] The power function (z —y) with n € Ny

is defined by (z — g = "oz —yd®) for n 2 1 and (x y)go) = 1, where = and y are real
numbers and Ny := {0} UN [d]. Also, for « € R and a # 0, we have

(z — H r —yq") /(& — yg* ).

If y = 0, then it is clear that 2(® = 2% (Algorithm 0). The ¢-Gamma function is given by
[,(2) = (1—¢q)Y/(1—q)*!, where z € R\{0,—1,—2,---} [19]. Note that, T'y(z + 1) =
[2],['y(2). The value of ¢-Gamma function, I'y(z), for input values ¢ and z with counting the
number of sentences n in summation by simplifying analysis. For this design, we prepare a
pseudo-code description of the technique for estimating ¢-Gamma function of order n which
show in Algorithm B. The g¢-derivative of function f, is defined by (D,f)(z) = W
and (D, f)(0) = lim,_o(D,f)(z) which is shown in Algorithm B (|0]). Also, the higher order
g-derivative of a function f is defined by (D7 f)(x) = Dg(Dp~'f)(x) for all n > 1, where
(Dgf)(x) = f(x) ([1]). The g-integral of a function f defined on [0, 8] is defined by

- /m f(s)dgs = 2(1—q) Y _ ¢"f(xq")
0 k=0
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for 0 < x < b, provided the series is absolutely converges [{]. The g-derivative of function f is

defined by (D, f)(z) = % and (D, f)(0) = lim,_,o(D,f)(z) which is shown in Algorithm

)

B [1]. If @ € [0, 0], then fa fu)dgu = (1—q) > 5y q" [bf(bg") — af(ag®)] whenever the series
exists [0]. The operator I} is given by (IJh)(z) = h(z) and (I7h)(z) = (I,(I}"h))(x) for
n>1and g € C([0,b]) [0]. It has been proved that (Dy(,f))(x) = f(z) and (I,(D,f))(x) =
f(z) — f(0) whenever f is continuous at = 0 ([I]. The fractional Riemann-Liouville type
g-integral of the function f on J for a > 0 is defined by (IJf)(t) = f(t) and (Igf)(t) =
% [5(t —gs)@ D f(s)dys for t € J and @ > 0 |15 Also, the Caputo fractional g-derivative
of a function f is defined by

(D) (8) = (L7 (DJT 1) ()
= [, (D) <)

where ¢ € J and o > 0 [T5]. It has been proved that (I7(I2f))(z) = (Ig*°f)(x) and
(D2(Igf)) (x) = f(z), where a, 3 > 0 [T5]. By using Algorithm B, we can calculate (I f)(z)
which is shown in Algorithm @.

(2.1)

‘Throughout this article, we denote L'(0,1), L'[0, 1], C(0, 1), C[0, 1], C*(0,1), C'[0, 1] by
L, L, A, A, B, B, respectively. You can find the following lemmas in the |27, 23, 21].

Lemma 2.1. If v € ANL with Dyx € ANL, then I$Dgx(t) = x(t) + Y7, ¢it*™", where n
15 the smallest integer greater than or equal to o and c¢; is some real number.

Lemma 2.2. Ifx € £ and o > 3> 0, then Ig10x(t) = 19%Px(t), DEIx(t) = 107 Px(t) and
DiIa(t) = I(Q If a >0 and v > —1, then Dgt" = %ﬂ*a. Also, Iz € A for all
a>0andzx e A

Lemma P72 implies next result.

Lemma 2.3. Assume that 2(t) = 1,*2y(t) where y(t) € A. Then the problem (II) reduces to
the problem

t
D$%w0+mQJ%mm/}m»ﬁwaﬁ@<>ﬂ@mM@ 172y () ds,
0

B0, 10, I

2.2)
¢ (
+wy (t,IZ’“Z’y(t),/ plt ) F(t s, 132 y(5), 13 M ys), . 13 " ry(s)) ds,
0
-[('17/k2_"7’1y(_[;)7 ];/k2_'72y(t)’ o ,];/kZ 'YkQ 1 )
where t € J, with boundary conditions y(0) = y'(0) = y"( y"(0) =0 and
m—2
y" (1) =) ey (i)
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Moreover, if y € A is a positive solution of the problem (22), then this implies that x(t) =
I*2y(t) is a positive solution for the problem (ICT).

Theorem 2.4. ([T77]) Suppose that (X, p) be a complete metric space which has an order
<. Also, let self-map F define on X an increasing and x,, < x for each natural number n
whenever {x,} is an increasing sequence belongs to X with x, — x. Then F has a fized
point whenever there exists xog € X such that xo < Fxg and there exists a continuous and
increasing function ¢ : [0,00) — [0,00) such that ¢ is positive on (0,00), ¢(0) = 0 and
p(F(x), F(y)) < p(x,y)— d(p(x,y)) for each x > y. In addition to, F' has a unique fized point
whenever there exists z € X which is comparable to x and y, for each x,y € X.

An operator O : P — P is said to be r-concave whenever O(tx) > t"Ox for any z € P
and ¢t € J, here P C X is a cone and r € [0,1) [41]. Also, O : P — P is called homogeneous,
sub-homogeneous whenever O(rz) = rOz for each r € (0, 00), whenever O(tz) > tOx for all
t € J, respectively, for x € P [d1].

Theorem 2.5. ([41]) Let P C X be a normal cone, O1,Oy : P — P are increasing r-concave
map, increasing sub-homogeneous operator, respectively. Assume that there is z > 19 such that
O1z and Oyz belong to P,. Then the operator equation O1x + Osx = = has a unique solution
x* in P, whenever there exists 0o > 0 such that O1x > 6oOsx for each x € P. Moreover, the
sequence Y, = O1y,_1 + Ooy,_1 here n > 1, with initial value yg € Py, converges to x*.

Note that last result holds whenever O, is a null operator. In this paper, we use the
Banach space X = C(J) with the partial order f; < f, if and only if f,(t) < fo(t) for all t € J
and f1, fo € X. It has been proved (X, <) has this property that f, < f for all n whenever
{fn} is an increasing sequence in X with f,, — f [24]. Moreover, max{f;, fo} € X for each
f1, fo € X, that is, for almost all fi, fo € X there exists g € X which is comparable to f; and
fa. We consider the normal cone P which is the set of all f € X such that f(t) > 0 for all ¢
belongs to J with normal constant 1.

3 Main results

First, we state and prove the following key results.

Lemma 3.1. The problem Dy *x(t) +v(t) = 0 with the boundary conditions x(0) = 2/(0) =
2"(0) = 2”(0) = 0 and 2" (1) = 72 mea” (1) has the unique solution

1
(t) = / Gy (t, gs)u(s) ds
0
dgtai’y’“z*l /1
" G (T, gs)v(s) ds,
== (a—m =2 (0= =3 (1=q) [, e
whenever there exists v € C(0,1], and o — y, € (4,5], d # 1, here dy = ZZ;Q e, d =

Zk:l MeTy 5

Fq (a_’YkQ )

1 a—"Yg, —1 _ a—Yg, —4
Fq(a—ka)t b2 (1 QS) k27, t < S,

Gl (t, S) =

1 toz—'ka—l 1— qs a—Yg,—4 _ t — qs O‘_'WQ_l’ s < t,
{ et (1 gs) (t - as) o
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and Go(t,qs) = %

et Dl 2 (jo (] — gs) et — (1= gs)? ), s <1

e Dle e B e By (1 — gs)o t<s.

Proof. First of all, it can be seen that Lemma P implies that the solution of the problem
(22) is
5
x(t) = —Igﬂk%(t) + Z cit M
i=1
where ¢; belongs to R. By employing the conditions, we obtain ¢y = c3 = ¢4 = ¢5 = 0 and

T, (a— 719 (1—d) [/01(1 — qs)* M2~ (s) dys

2

- Z Mk /OTk (e — qs)* M2 u(s) dqs} .

k=1

CcC1 =

Therefore, we can conclude that the unique solution of the problem is

z(t) = —/0 (tr_q(f)_a;:; v(s)dy,s

$O Vg — 1

* T, (o — ) (1 —d) [/;(1 —¢s)* 2 (s) dys

t — Yo —1
(t —qs)*
= — d

/O Fq(a - 7k2) U(S> a® +

$OVko = 1

FQ(Q - 7192)

dt(x—ka—l 1 o »
T T J, (e s
q 2
dot® ka1 Tk o
- Tyla = Viy) (1 —d) /0 (i = qs)™ 2" 0(s) dys
q 2
_ 1
FQ(a - /ng)

t
8 / (ta_ka_l(l - qs)a_vk2_4 - (t - qs)a_%Q_l)U(S) qu
0

1 /1
bt [ (1 ) o (s) dys
Lol =) Ji 7

d ta_’yh_l ! a—"g, —4 A= —
et S | [T s d
q 2
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- / (e — gs)* a0 (s) dys
10
— / Gi(t, qs)u(s) dys
0

dgt® k21

05_7162 _1)<&_7k2 _2)(05_7162 _3) (1_d)

/ G2 Tk7 qS )

This finishes the validation. O]

_|_

By simple review we can see the function Gy in (Bd) is a continuous on 72, G1(t,gqs) > 0,
G1(t,qs) > 0 for each t,s belong to .J, J, respectively, and Ga(t,qs) > 0 for almost all , s
beloing to J. Also,

s(s% — 35+ 3)(1 — gs)* W24y 71
FQ(O‘ - ’yk2)
for all ¢,s € J. In addition to,

(1 - qs)a—7k2—4ta—yk2—1
FQ(a - ’7/62)

S Gl(t7 QS) S

1
1
sup/ Gi(t,qs)s 7 ds = T [Bq(l — 0,00 — Y, —3) — By(1—0,a — %2)],

ted q(O‘ — Vka)

and

1 — Yy — D) — Y, — 2) (0 — Vi —
/ G(6,qs)s 7 ds = (& =, X? Yoy = 2) (0 — Y, — 3)
’ Q<a - Pykg)
X [504_71@2—4 . 504—’%2—0—3] Bq (1 G0 — o, — 3)

for each 0,0 € J. This conclude that

1
A= sup/ {Gl(t,qs)
teJ JO
dOtO‘_'Yk2—]. :| -
- G Tk,4s)|S 7d S
(=Y, — D) — g, — 2) (0 — Y, — 3) (1 — d) 2(Tk, q5) q
4

m—2 O~y — a—Yg, —0—3
1 k=1 nk(Tk - 7 ))
— N i B,(l—0,a6 — v, — 3
I ( _’7k2> |:( q( ’ )

1—-d
—Bq(l—a,oz—yb)].

We can prove next theorem by applying some calculations.

Theorem 3.2. Leto € J, 4 < a— vy, <5, d+# 1 and real- Ualued functz’on H define on (0, 1]
be a continuous such that lim;_,o+ H(t) = co. The functions F(t fo Gi1(t,qs)H(s) dys and
tai'Yk?ildo

B e e 2, 3

)(1—d)/0 Ga(T, qs)H(s) dys

are continuous on J whenever t? H(t) is a continuous function on J.
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You can find the following results in [I6, A1]. Consider a real Banach space (X, ||.||) which
has a partially order by using a cone P C X. A nonempty closed convex set P C & is called
cone, if for each r € P and all A > 0 implies Ar belongs to P and P N (—P) = {0}. Each
cone P defines the order < on X by r < s if and only if s —r € P. We say a cone P is solid,
normal whenever interior of P is nonempty, there exists a constant & > 0 such that ¥ <r <
implies ||7|| < &||s||, respectively. In this case, least number ¢ is called the normal constant
of P. Define r ~ s whenever there exist £;,& > 0 such that &7 < s < &r. Then ~ is an
equivalence relation on X. For each k > o with k # ¢, define P, = {r € X : r ~ k}. It is
easy to check that P, C P for almost all & € P.

Theorem 3.3. Let wy, ws : (0, 1]xR*T2 — [0, 00) are continuous maps such that w;(t, ., .,...,.)
and wy(t, ., .,...,.) tend to infty as t — 0F. Also, for all x;,y; € [0,00) (i € Ng,11,J € Niyi2)
and o, \ € J, consider the following assumptions:

1) The maps t"wi(t, Y1, Y2, - -, Ynat2) and t7wa(t, Y1, Yo, - .., Yry+2) define on J x RF+2 are
continuous and increasing with respect their components on R=% for each fized t in J
such that t°ws(t,0,0,...,0) Z 0 and

t0w2(ta )‘yla )\927 ceey )‘yk2+2) > /\tUUJQ(t, Y, Y2y - - ayk2+2)'

2) There exists the map f(t,s,.,...,.): T x R+l 0, 00) such that

flt, s, e, Mg, oo, Az 41) > Af(E, 8,21, T, .o Ty 11)-
3) There exists a constant r € [0,1) such that
17w (t, AyY1, Y2y« oy AYkyao) = AW (6, Y1, Y2y - - oy Ykoro)-
4) There exists 69 > 0 such that
7w, Y1, Y2y - -5 Ykor2) > S0t walt, Y1, Y2, - - - s Ykot2),
for allt € J.

Then the problem (E22) has a unique solution x* € Py, and the sequence

! ) dok(t)
i = [ 60090+ e e
X [wi(s, zn(s)) + wa(s, zn(s))] ds

GQ(Tkv qS)

converges to x* for each initial value xg € Py, where

w1 (s, x,(s)) = wy (t,:cn(t),/o u(t,qs)f(t,s,:vn(s),Dgl:Bn(s),

o D () dys, DY xa(t), .. D;kzxn(t)),
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62(37 xn(s)) = W2 <t7 xn<t>7/0 M(ta qs)f(t, S, xn(8)7 Dfl$n(3)7
DY w(5)) dys, DY wa(), .., Dg’%n(t))

and k(t) = to 1,

Proof. First, we define the operators ©1,05 : P — X by

- 1r dok(t)
O©1x(t) = /0 _Gl(tvqs) + (=7 — D=y —2)(@—, —3)(1—d
X wi (s, x(s))dys,

Oqz(t) :/0 _Gl(t,qs) +

X Wa (s, x(s)) dys

>G2(Tk, QS)

GQ(Tka QS)

dok(t)
(o =Yy = D)@ = Yh, = 2) (@ — 1, — 3) (1 = d)

for all t € J. By simple review, we obvious that necessary and sufficient conditions for z
is a solution for the problem (E2), is © = ©12 + Osx. By employing Theorem B2 and the
assumptions, we conclude that the operators ©; and ©5 maps P into P. Let x > y. Then,
we have

dok(t)

Or2(t) = /01 Gt gs) +

X wq(s,x(s)) dys

(a = Yy — 1)(a = Yy — 2)(0{ = Yy — 3) (1 - d)

dok(t)

1
= / Gl (ta qS) +
0

X s 757w (s, x(s)) dys

(@ =, = D@ =, = 2)(@ =, —3) (1 = d)

dok(t)

1r
Z / Gl(t,QS) -+
0 L

X s 757w (s, y(s)) dgs

(@ =, = Dl =7k, = 2)(@ =, =3) (1 = d)

dok(t)

1
= / G1(t,qs) +
o L

X wi(s,y(s))dys

(@ =7, = V(@ =k, = 2)(a =, = 3) (1 = d)

GZ(Tj7 qs)

G2(Tk7 QS)
G2(Tk7 qS)

GQ(TIW qS)

for each t € J. Hence, ©,2 > ©,y. By using similar method, we conclude that O,z > O,y.

Therefore, ©; and ©, are increasing operators. Let A € J and x € P. Then,

01 (Az)(t) = /0 1

Gy(t,qs) +

dok(t)

(@ =, = D@ =, = 2)(@ =, =3) (1 = d)

X Wi (s, Ax(s)) dys

-/

dok(t)

GZ(Tk7 QS)

) T T (o — 20— 3 (= d)

G2<Tk7 qS)
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X s 7s7w(s, Ax(s)) dys

r 1 dok(t)
> A <A [G1(t,qs) + (0 — Y, — D)@ — Y, — 2) (a0 =y, — 3) (1 — d) GQ(Tk7QS):|

X s~ 757w (s, z(s)) dqs>

vl [ dok(t)
=)\ (/0 [G(t,qS) + (0 =0 = (o =m0 —2)(a = —3) (1= d>G2(Tk,(Js)]

X wy(s,z(s)) dqs)
= \'Ox(t)

for t € J. Hence, ©;(\z) > N0,z for all A € J and € P. Therefore, ©, is a r-concave
operator. The same method, implies that the operator O, is sub-homogeneous. Note that,

(T ) dok(t)
oukt) = | A S A P P pa——1 ¥ s )
X Wy (s, k(s))dys
M e dok(t)
/0 L P [ § )

X s 757w (s, k(s)) dys

k(t) /1 e g) 0 o~
< l—qs(a Thy =4 g7 7 s,1)d,s
Lyl =) 0( ) s, 1)
dok(t)

_|._
(@ =y = D = vk, = 2)(@ =, — 3) (1 = d)
1
X / Go(T, qs)s 7swy(s, 1) d,s
0
= l1k(t),

B 1r . dok(t) o us ]
@2k(t> - /0 _Gl(t’q ) " (a = Ve — 1)(0[ — Vko — 2)(0( = Yy — 3) (1 - d)G2( bl )_

G2 (Tk7 QS)

G2 (Tk> qS)

X wy (s, k(s)) dys

T dok(t) ]
_ /0 R s s g (R LA D)
X s 757w (s, k(s)) dys

k(t) /1 ) g} —o o~
- s(s? =35+ 3)(1 — ¢s) @ 257757, (5,0) dys
Fq(@_’}/kz) o ( )( ) 1( ) q

dok(t)
(= Yoy = D)@ = Yhy = 2) (@ — 1, — 3) (1 — d)

+
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X /1 Ga(Tk, qs)s 7 s°wi(s,0) dys
= lgk(ot)
for all t € J. By using the assumptions, we get
s7wy(s,1) > swq(s,0) > sw(s,0,0,...,0) > dpsws(s,0,0,...,0) > 0.

Since s%ws(s,0,0,...,0) Z 0,

1 1 1
/ s%wq(s,1)ds > / swq(s,0)ds > (50/ s%wy(s,0,0,...,0)ds >0
0 0 0

and so I1,ly € (0,00). Thus, [ik(t) < ©1k(t) < lrk(t) for all t € J and so O,k € P,. Again
with the same technique, we obtain Ok € P,.. On the other hand, for x € P, we get

= 1 S dok (1) Tk, S
0urtt) = || |60+ i S g )
X Wy (s, x(s)) dys
= gl s dok(1) T, 5_
= [ |0t e e A g
X s 757w (s, x(s)) dys
i dok(t) '
200 [ |G+ e e s g )

X s 7s%wy(s, x(s)) dys

1r
= 50/ Gl(t,qs) +
0 L

X Wa (s, x(s)) dys
= 50@21’(t)

dok(t)
(Oé — Yk — 1)(04_77432 - 2)(05 — Vka _3) (1 —d

) Go(T, qs):

Hence, ©1x > 090qx for all x € P. Thus, Theorem 23 implies that the operator equation
©12 + ©2x = x has a unique solution z* € P,. Moreover, the sequence z,, = O1x,,_1 + Osx,,_1
for n > 1 with initial value xy € Py converges to x*. Indeed, the problem (22) has the unique
positive solution z* € P, and ,[; " 2* is a unique positive solution for the problem (I0). [

In the sequel, by using different conditions in Theorem P4, we show similar result such as
Theorem B23, which we omit its proof.

Theorem 3.4. Assume that the positive real-valued functions wy and t°w; define on (0, 1] x

R*2+2 and J x R¥2+2 ) respectively, are continuous such that lim,_ o+ wi(t,.,.,...,.) = 4o0.
Also, suppose that we =0, 5y =0, 0 € J and consider positive constants ny, ..., N, such that
k1
0< f(t,s,a:o,xl, . ,xkl) — f(t,s,yo,yl,...,ykl) < an(mj — ;)
5=0

for each t,s € J and x;,y; € [0,00) with x; > y;, here 0 < j < ky. Then the problem (1)
has a unique positive solution whenever the following assumptions hold.
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ko+2

1) There exist positive constants py, ..., Pk,+o such that A (ZZ 1 pz> < 1.

2) For each i € Ni,4a, there exist b; > 0, defined as by < T'(7,

biva < Tq(k, = 7i +
0< t7 (wl (ta L1, 22, - - - aIkQ-‘r?) — Wy (t7y17y27 SR )yk2+2)) <

fort € J and x;,y; €

+1),

-1
by <
2 = (TOZT]]F /yk2 /8]+1)) )

1), for 1 <i<ky—1and 0 < by,12 <1 such that

ko+2

Z pip(zi(w

[0,00) with x; > y; (1 < i < ky+2), where positive real-valued

- yi))7

continuous map ¢ define on [0,00) is nondecreasing such that ¢ [0,00) — [0,00) is
nondecreasing, ¢(0) = 0 and ¢ is positive on (0,00) in Theorem [Z4. Here, ¢(t) =

t—p(t).

Here, we provide some examples to illustrate our main results.

a computational technique for checking the problem (I).
analysis could be executed values of the g-Gamma function. To this aim, we consider a pseudo-
code description of the method for calculation of the -Gamma function of order n in Algorithm
2 (for more details, see the link https://en.wikipedia.org/wiki/Q-gamma_function).

Example 3.5. We consider a similar example of the problem (L) to form of

where o =

%,klzkgzg,ﬁlz

() (2) + x(2)

% [|g;(t)|5 +r1() <1 + (Q)(t) + a(
+ 1o(t) ( arctan ‘inu(t)‘ ) Z +

+ arctan ( )+ D4 D + r3(t
’D‘* )+ D (t)‘
—|-7“4(t)
1+‘D4 )+ DF (t)’

1

+1n(1+(‘pe (1)

%752:%;/63:

21 _
10’ 71 =

|1ﬁ)|)é
(‘D(};)x(t)

1+|Qx)()|

L 'DE%@)D
Qz)(t)]|

+ ‘D”’ (t )D) +rs(t) + = + G

2

1 _ 10
2= g BT

constant, r; : J — [0,00) are continuous, with boundary conditions

Dj(0) = Dy 2(0) = DO x(0) =
61 1 4
— D x(0) = D x(0) = D§ x(0)

D x(0) =
21
— DOx(0) =0,

51
Dq°z(0)

L
12

10’

In this way, we give
We need to present a simplified

(3.3)

(>01isa
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61 T 6 1 1 & 1. 3 o 3
Dy’ x(1) = ZDJOJU(E) + - Da’e(z) + - Daa(y)

3 @ 5 4 s 7

— Do _ Do _

s 673
wh6r6771:Z)772:%7;773277774:%;775:%;7—12%;7—2_%;7—32357—4:%}7—5:%7
and

it —qgs)® P sin?s 34 cos(s?
@y = [ St
0 1+ s2 1+¢4 1+s
1 Qg 4 a3 21 oy
X (ln(l + |z(s)|) + |x(s)|** |DJ z(s) D§ x(s) Dg°x(s)

+ (bl|x(s)|p + by

1 p 4 21 p %
D(]:L'(s)‘ +b3‘D§’x(s 4 by |DPx ()( ) ) ds,

here cv; and b; € [0,00) fori € Ny, Zle a; <1,p>0. We take

=

W1 (ta T1,T2,T3, Ty, 1:5) -

1
1 |l’2+$1| 3
r|2 +r(t)| ———— + ro(t) (arctan |x
frlt i) (252 ) () (anctan o)

1
Vi

9

1 Y
+ (|lzal® + |2s]) 2 + r3(t) + 5t G2

Wa (ty T1,T2,T3, Ty, m5)

1 |l” ‘1’34—334‘
arctan (|1 + z3|) +r —I—T ) ————
ﬁ[ (1 +-asl) +r5(t) e

i (1 (af + Josl) ) + G- ]

and

et sin?s 3+ cos (53)

+ In(1+
m 1—|—82 |: ( ’y1|>
4 4 1
T + (S elr)']
j=1 Jj=1

for each t,s € J and x;,Yy; belong to R, here t € N5, j € Ny. We take 0 = ¢ = %, and Tmax,

Smax are mazimum of r3(t), r4(t), , respectively, for t € J, with 0 < ¢ < % One can easy
to review that the maps tws(t, .,.,...,.), t2ws(t,.,.,...,.) and f(t,s,.,.,
with respect to their components on [0,00) for each t,s € J and

f (tv S, Y1, Y2, Y3, y4) =

PN ) are increasing

tUWQ(t,O,O,...,O):Cl—CQ > 0.

Also, we have

t7wo(t, \x1, Ao, A3, Ax g, Ax5) = arctan(A(z1 + x3))
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Mg + 4)
1 + /\(I’g + [E4)

+1In (1 + (N2 + )\x5)TIQ> + (1 — G
o)

1—{—172

)\ZL‘Q

+ T3<t> 1 —I— )\ZEQ

+ T4 (t)

>\ < arctan(zy + x3) + r3(t)

LL’3—|—JI4

) —
—|—7“4< >1+I3+Q?4

+In <1+ (Ii—l-%)%) + G —C2>

g
— )\t wQ(ty T1,T2,T3,Ly4, $5),

1
1 1 A :
17 f (8, Ay, Avg, Aws, Avy, Aws) = A2af + (1) <1 +(§(2:c+j—19>c ))
2 1

+ 7o(t) (arctan()\xg))%
1
+ (Va4 As) = 4 rs(0) 4+ 5 + G

1

1 To + T1 3
2 t)| ———
(:pl +7“1( ) (1+I2+$1)

1

+ ro(t) (arctan(zsz))*

NI

> )\

1 ™
b))+ T4 G)

ag
= )\7t wl(t, T1,T9,x3,T4, 1’5)
and

e~ sin? s N 3 + cos(s?)
V14t 1+ s?

4 i (0% QU o (03
+ Ay iy ey oy

F(t, 8, Ay1, Ay, Ays, Ays) =

(ln(l + )

,t3 ) 3
e “sin®s = 34 cos(s”) o an aa
( V14t * 1+ s? [1n(1+y1)+y11y22y33y44

1
+ (b1yy + bay’ + bsyh + bay))® })

B =

+ A (b1y] + bayy + bsys + bayy)

> A

= )\f(t, S, Y1,Y2, Y3, y4)

for each t, s belong to J, X € J and x;,y; € [0,00), here i € N5, j € Ny. If

C
d €10, 5
0 ( Tmax + Smax + Cl - C2:|
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then we obtain
3
1 To + 1
7w (t = 2 ==
wl( ,$1,$2,$3,$47$5) $1 +T1()<1+$2+$1>
+ 7o(t) (arctan(xg))%
1 s
+ (@) +25) " +r5(t) + 5 +G
T
> 54‘(%24‘955)% + G
1
> arctan(z; + x3) + In (1 + (2§ + z5) 12)

+ CZ(Tmax + Smax + Cl - §2>
T'max + Smax + Cl - C2

)
>0 t t
> O(arc an (x1 + x3) + r3( )1+$2
T3 + X4
t—
+T4()1+I‘3+ZL‘4

1
+1In (1 + (1‘2—|—x5) 12) + ¢ — CZ)
= 50t0w2(t7 L1, 22,3, Ty, xS)'

Therefor, Theorem [B=3 implies that the problem (B33) has a unique solution.
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Algorithm 1 The proposed method for calculated (a — b)ff“)
Input: a, b, o, n, g
1: s+1
2: if n =0 then
3 p+1
else
for k=0ton do
s+ s*(a—bxak)/(a—bxqg*tF)
end for
paxs
9: end if
Output: (a — b))

Algorithm 2 The proposed method for calculated I';(x)

Input: n, g € (0,1), z € R\{0,—1,2,---}
1:p+1

2: for k=0ton do

3 pep(l—g" (1 —¢" )

4: end for

5 Ty(x) = p/(1 - q)"!

Output: T'j(z)

Algorithm 3 The proposed method for calculated (D, f)(x)
Input: ¢ € (0,1), f(z), =
1: syms z
: if x =0 then
g < lim((f(2) — f(g*2))/((1 —q)z),z,0)

2
3
4: else

2: g+ (f(x) = flg*z))/((1 - q)z)
O

: end if
utput: (D, f)(z)

Algorithm 4 The proposed method for calculated (I f)(x)

Input: ¢ € (0,1), a, n, f(x),
s+ 0

1
2: for i =0 ton do

3 pfe (=gt

4: s+ s+pfrq* flxxq)
5: end for

6: g« (2% * (1 —q) *5)/(Dg(2))
Output: (Ij;f)(x)
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Table 1:
in Algorithm D.

Some numerical results for calculation of 'y (z) with ¢ =

19

% which is constant, for x = 9.5, 65,110, 780

=95

xr =65

x =110

x =780

2.679786
2.674552
2.673899
2.673818
2.673808
2.673806
2.673806
2.673806
2.673806
10 2.673806
11 2.673806
12 2.673806
13 2.673806
14 2.673806
15 2.673806
16 2.673806
17 2.673806
18 2.673806
19 2.673806

© 00~ O Uk WS

4432.545834
4423.888518
4422 .808467
4422.673494
4422.656623
4422.654514
4422.654250
4422.654217
4422.654213
4422.654213

4422.654212

4422.654212
4422.654212
4422.654212
4422.654212
4422.654212
4422.654212
4422.654212
4422.654212

1804225.634753
1800701.756560
1800262.132108
1800207.192468
1800200.325222
1800199.466820
1800199.359519
1800199.346107
1800199.344430
1800199.344221
1800199.344195

1800199.344191

1800199.344191
1800199.344191
1800199.344191
1800199.344191
1800199.344191
1800199.344191
1800199.344191

1.29090809480473E + 45
1.28838678993206 ' + 45
1.28807224237593EF + 45
1.28803293353064 F + 45
1.28802802007493F + 45
1.28802740589531EF + 45
1.28802732912289EF + 45
1.28802731952634EF + 45
1.28802731832677E + 45
1.28802731817683E + 45
1.28802731815808E + 45
1.28802731815574E + 45
1.28802731815545E + 45
1.28802731815541F + 45

1.28802731815541F + 45
1.28802731815541F + 45
1.28802731815541F + 45
1.28802731815541F + 45
1.28802731815541EF + 45

3,5 for x = 9.5 of Algorithm 8.

Table 2:  Some numerical results for calculation of I';(z) with ¢ %, %,
n___4=g = ¢=3 ¢=3
1 2.679786 136.046206 79062.138227 6301918.338883
2 2.674552 119.081545 41793.335091 2528395.395827
3 2.673899 111.658224 26290.733638 1232715.590371
4 2.673818 108.178242 18589.881264 689176.848061
5 2.673808 106.492553 14278.326587  426538.394173
6 2.673806 105.662861 11650.586796  285518.687713
7 2.673806 105.251251 9946.3508930  203363.796571

26 2.673806 104.841780  5522.283831 25842.863721
27 2.673806 104.841780  5513.202433 25230.371788
28 2.673806 104.841779  5505.949683 24699.649904
29  2.673806 104.841779 5500.155385 24238.446645
106  2.673806 104.841779  5477.048235 20879.606269
107 2.673806 104.841779 5477.048234 20879.566792
108  2.673806 104.841779 5477.048234 20879.531702
118 2.673806 104.841779  5477.048234 20879.337427
119 2.673806 104.841779 5477.048234 20879.327822
120 2.673806 104.841779 5477.048234 20879.319284
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Table 3:  Some numerical results for calculation of I'y(z) with ¢ = g, i

A. Ahmadian, Sh. Rezapur, S. Salahshour, M.E. Samei

for x = 110 of Algorithm B.

q=3

qg=3

=3

—
O © 00O U WS

—
N —

48

90
91
92
93

118
119
120

1804225.634753

1800701.75656
1800262.132108
1800207.192468
1800200.325222

1800199.46682
1800199.359519
1800199.346107

1800199.34443
1800199.344221
1800199.344195

1800199.344191

1800199.344191

1800199.344191
1800199.344191
1800199.344191
1800199.344191

1800199.344191
1800199.344191
1800199.344191

2.4338891524382F + 32
2.12965300838343 F + 32
1.99654969535946 F' + 32
1.93415751737948E + 32
1.90393630617042F + 32
1.88906180377847E + 32
1.88168265610746 E + 32
1.87800749466975F + 32
1.87617350297573E + 32
1.87525740263248EF + 32
1.87479957611817E + 32
1.87457071874804E + 32

1.87434189862553 L + 32

1.87434189862553F + 32
1.87434189862553 ' + 32
1.87434189862553F + 32
1.87434189862553E + 32

1.87434189862553F + 32
1.87434189862553E + 32
1.87434189862553E + 32

1.10933564801075E + 75
5.41355796236824 F 4 74

3.196164621018E + 74
2.14884539802207F + 74
1.58553847001434F + 74
1.25302695267477E + 74
1.04280391429109EF + 74
9.02841142168746E + 73
8.05899312693661F + 73
7.36673088857628E + 73
6.86049299667128E + 73
6.48333340557523E + 73

5.18960499065178E + 73

0.18923469131315E 4 73

5.18923468501255F + 73
5.18923467997207E + 73
5.18923467593968E + 73

5.18923465987107E + 73
5.18923465985889F + 73
5.18923465984914F 4 73

2.3996994906237E + 102
7.1431517307455E + 101
2.6837217226512F + 101
1.1944485864825E + 101
6.0526350536381E + 100
3.3987862057282E + 100
2.0741306563269E + 100
1.3555712905453E + 100
9.3812910130705E + 99
6.8133560326577E + 99
5.1555644082141F + 99
4.0405190844465E + 99

6.66324790738213E + 98

6.5002587652483 L + 98

6.50013085733126 £ + 98

6.50001716364224E + 98
6.499916104353E + 98

6.4991502295767F + 98
6.4991455029345E + 98
6.49914130147782F 4 98
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