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Abstract In this paper, we focus on designing a well-conditioned Glarkin
spectral methods for solving a two-sided fractional diffusion equations with
drift, in which the fractional operators are defined neither in Riemann-Liouville
nor Caputo sense, and its physical meaning is clear. Based on the image spaces
of Riemann-Liouville fractional integral operators on Lp([a, b]) space discussed
in our previous work, after a step by step deduction, three kinds of Galerkin
spectral formulations are proposed, the final obtained corresponding scheme of
which shows to be well-conditioned—the condition number of the stiff matrix
can be reduced from O(N2α) to O(Nα), where N is the degree of the polyno-
mials used in the approximation. Another point is that the obtained schemes
can also be applied successfully to approximate fractional Laplacian with gen-
eralized homogeneous boundary conditions, whose fractional order α ∈ (0, 2),
not only having to be limited to α ∈ (1, 2). Several numerical experiments
demonstrate the effectiveness of the derived schemes. Besides, based on the
numerical results, we can observe the behavior of mean first exit time, an in-
teresting quantity that can provide us with a further understanding about the
mechanism of abnormal diffusion.
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1 Introduction

In the past two decades, there has been important progress in developing
adaptive mesh methods for PDEs. Mesh adaptivity is usually of two types in
form: local mesh refinement and moving mesh method.

2 Introduction

In this paper, we target on investigating a well-conditioned Galerkin spectral
methods for the following two-sided fractional diffusion equation with drift{

− (p̄ ·Dαu(x) + q̄ ·Dα∗u(x)) + d̄ ·Du(x) = h(x), x ∈ (a, b),
u(a) = u(b) = 0,

(1)

where 1 < α < 2, 0 ≤ p̄, q̄ ≤ 1 satisfying p̄ + q̄ = 1, and Dα, Dα∗ are neither
the Riemann-Liouville operators nor the Caputo ones [25]; rather, in general,
for n− 1 ≤ γ < n,

Dγu(x) := DaI
n−γ
x Dn−1u(x), (2)

Dγ∗u(x) := (−1)nDxI
n−γ
b Dn−1u(x), (3)

with aI
β
x and xI

β
b , 0 < β < 1, denote separately the left Riemann-Liouville

fractional integral

aI
β
xu(x) =

1

Γ (β)

∫ x

a

(x− s)β−1u(s)ds,

and the right Riemann-Liouville fractional integral operator

xI
β
b u(x) =

1

Γ (β)

∫ b

x

(s− x)β−1u(s)ds.

Here Γ (·) presents the Euler gamma function.
The fractional Dirichlet problem and variants thereof appear in many ap-

plications, in particular in physical settings where anomalous dynamics occur
and where the spread of mass grows faster than linearly in time. Examples
include turbulent fluids, contaminant transport in fractured rocks, chaotic dy-
namics and disordered quantum ensembles; see [16,17,27]. The authors in [11]
believe that problem (1), which can be interpreted as the steady-state equation
for a time dependent advection and anomalous diffusion problem, is a more
physical model than the corresponding Riemann-Liouville or Caputo fraction-
al equation. During the derivation of Eq. (1), the authors in [11] point out that
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besides obeying the conservation of energy principle, the physical interpreta-
tion of the flux at a given cross section x, is that “there is a nonlocal effect
from a flux originating at a cross section s, proportional to 1/(distance for
that point)α−1”. In other words, the contribution to the flux at cross section
x, from points to its left and right is given by

−k
∫ x

a

(x− s)1−α ∂u(s, t)

∂s
ds,

and

−k
∫ b

x

(s− x)1−α
∂u(s, t)

∂s
ds,

respectively, where k is a dispersion coefficient. In this way, when considering
the case of Dirichlet boundary conditions u(a) = u(b) = 1, after by changing
the unknown v = u−1, the simulation of the model equation would require the
same energy source as for the case u(a) = u(b) = 0, which physically makes
sense.

Besides can be viewed as the steady-state equation for a time dependent
advection and anomalous diffusion problem, we shall see that when h(x) =
−1, under the framework of the image spaces of Riemann-Liouville fractional
integral operators on Lp([a, b]) space [35], Problem (1) itself can also be used
to describe the mean first exit time of a stochastic process never leaving a
fixed region in the state space [8]—an interesting deterministic quantity that
can provide us with a further understanding about the mechanism of the
anomalous diffusion.

Another topic we want to note is that from a mathematical view, under
suitable assumptions on u, fractional Laplacian operator [30]

(−4)su(x) =
22s−1Γ (s+ 1

2 )

π
1
2Γ (1− s)

∫
R

u(x+ y) + u(x− y)− 2u(x)

|y|1+2s
dy. (4)

is equivalent to

(−4)
α
2 u(x) = 1

2 cos(πα2 )

(
RL
−∞D

α
x + RL

x Dα
∞
)
u(x)

= 1
2 cos(πα2 )

(
D2
−∞I

α
x +D2

xI
α
∞
)
u(x),

where α ∈ (0, 2). Actually, the proof in [30] also ensures that

(−4)
α
2 u(x) =

1

2 cos(πα2 )
(D−∞I

α
xD +DxI

α
∞D)u(x).

Therefore, mathematically, the following one-dimensional Poisson problem
with generalized Dirichlet boundary condition:{

(−4)α/2u(x) = h(x), x ∈ Ω = (a, b),

u(x) = 0, x ∈ R\Ω,
(5)
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can be changed as{
− 1

2 (Dαu(x) + Dα∗u(x)) = − cos(πα2 )h(x), x ∈ (a, b),
u(a) = u(b) = 0,

(6)

which is a special case of (1), where α ∈ (0, 2) (not only limited to (1,2)
as in (1)).

From the view of stochastic processes, the physical meaning of the frac-
tional Laplacian defined in above way with Dirichlet boundary conditions is
the negative infinitesimal generator of stopped subordinated Brownian mo-
tion (i.e., stopped α-stable Lévy motion), which represents particles that are
stopped upon exiting the domain via a jump over the boundary [8,9,22]. Here,
we do not concern the detailed conditions under which (5) and (6) are equiv-
alent. Instead, we mainly focus on the spectral methods that are effective for
them, and leave the theoretical part in our future work.

Comparing with the classical differential equations, one of the big chal-
lenges we have to face is the expensiveness of its computation cost besides its
complexity, since fractional operators are pseudodifferential operators which
are non-local. Finite difference methods and finite elements methods are not
easy to apply when solving especially a two-sided fractional problems, because
the information on the whole domain is needed which results in a huge com-
putational cost. In this case, spectral method, as a global method, appears
to be a natural choice. There are existing spectral work, used to solve one-
sided or two-sided fractional differential equations with Riemann-Liouville or
variable order fractional operators [6,18,21,31,32]. Early spectral collocation
methods for fractional problems using classical interpolation basis functions
with Legendre-Gauss-Lobatto or Chebyshev-Gauss-Lobatto collocated points
are proposed in [19] and [29]. Eigenfunctions of a fractional Sturm-Liouville op-
erator are derived in [33]. Spectral approximation results in weighted Sobolev
spaces involving fractional derivatives are derived in [6], including also rig-
orous convergence analysis. The authors in [14] introduce fractional Birkhoff
interpolation basis functions into collocation methods to reduce the condition
numbers when solving the one-sided Caputo fractional equations.

As for the problem (1), a variational formulation is studied in [10], together
with a finite element error analysis. The regularity of (1) is studied, also a finite
elements method and a spectral type approximation method are proposed in
it.

As far as we know, there is little literature to discuss the weak formulation
of the two-sided fractional diffusion problems with drift, in which the fractional
operators are physically well-defined. Also, there has been no relevant work to
talk about the corresponding well-conditioned scheme.

This paper mainly proposes three kinds of Galerkin spectral schemes for
solving Eq. (1). These three Galerkin spectral schemes are based on different
weak variational formulations and have different regularity requirements, all of
which shows to be effective to this kind of two-sided fractional diffusion equa-
tion with drift, even when the solution has a low regularity. In special, based
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on the former two formulations, the third one, named as mixed Galerkin spec-
tral formulation, is designed by splitting the Eq. (1) into three subequations.
In this way, the trial and test functions are more flexible to choose, so that
the coefficient matrices can be expressed in a simpler way. Besides, compared
with the condition numbers of the stiff matrices in the other two schemes,
the condition number in mixed Galerkin spectral scheme can be reduced from
O(N2α) to about O(Nα), where N is the degree of the polynomials used in
the approximation.

The rest of this paper is organized as follows. Section 3 reviews some im-
portant definitions and results about the image spaces of Riemann-Liouville
fractional integrals on Sobolev space Wm,p(Ω) space, which are the framework
of the weak formulation in this paper. Three different weak formulations and
Galerkin spectral methods are presented step by step in Sections 4, where the
differences among them are discussed. Section 5 provides the numerical results
for solving problems (1) and (5), in which one can observed that the condition
numbers are substantially decreased in the mixed Galerkin spectral method.
Finally, the main results are summarized in Section 6.

3 Preliminaries

In this section, we outline the definition and some results about the image
spaces of α-order Riemann-Liouville fractional integral operators on Lp(Ω) or
Wm,p(Ω), which is called “spaces of fractional integrals” for short [35], where
Wm,p(Ω) is a given classical Sobolev space and Ω = [a, b].

As we all know that the concept of fractional calculus is almost as old
as their more familiar integer order counterparts, and many mathematical
results about fractional operators are also discussed in the early days [24,23,
25,26]. Until recently, fractional derivatives have been widely and successfully
explored as a tool for developing more sophisticated mathematical models.
Here, we borrow (not simply copy but sometimes have to flip through pages)
the space, which we call as the image space of Riemann-Liouville fractional
integral operators on Lp([a, b]) space, introduced in [26], and some results given
in [26] and [35], to begin our discussion. The reason we choose this kind of
space, not only because it comes from a “non state of the art” references, but
also because the key difficulty of the fractional operators that are widely used,
such as Riemann-Liouville derivative or Caputo deriavative, are actually come
from the pseudo-differential or Riemann-Liouville fractional integral operator
in them. Since the space of fractional integrals of Lp functions can catch this
characteristic very well, it is a natural way to begin our discussion from it.

Denote Lp(Ω) (1 ≤ p < ∞) as Lp space on Ω = [a, b]. The set of α-th
order left and right Riemann-Liouville fractional integrals of Lp(Ω) functions,
1 ≤ p < ∞, are firstly given in Definition 2.3 of [26]. We rearrange them as
follows:

Definition 1

Iα[Lp(Ω)] := {f : f(x) = aI
α
xϕ(x), ϕ(x) ∈ Lp(Ω), x ∈ Ω} , α > 0, (7)
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and

Iα∗[Lp(Ω)] := {f : f(x) = xI
α
b ϕ(x), ϕ(x) ∈ Lp(Ω), x ∈ Ω} , α > 0. (8)

Now we only list some results about Iα[Lp(Ω)]; similar results can be
derived for Iα∗[Lp(Ω)].

In [35], Corollary 2.10 shows that actually if u(x) ∈ Iα[Lp(Ω)], then
RL
a Dα

xu(x) := Dn
aI
n−α
x u(x) = Dαu(x). Therefore, the following lemmas hold

[35].

Lemma 1 If u(x) ∈ Iα[L1(Ω)], n− 1 ≤ α < n, then

aI
α
xD

αu(x) = u(x). (9)

Lemma 2 Let n− 1 ≤ α < n. If u(x) ∈ Iα[L2(Ω)], v(x) ∈ Iα∗[L2(Ω)], then

(Dαu(x), v(x)) = (u(x),Dα∗v(x)) . (10)

Lemma 3 Let α1 > 0, α2 > 0, α1 + α2 = α. If u(x) ∈ Iα[Lp(Ω)], then

Dαu(x) = Dα1Dα2u(x), (11)

and

Dα2u(x) ∈ Iα1 [Lp(Ω)]. (12)

If u(x) ∈ Iα[L1(Ω)], then there exists a unique ϕ(x) ∈ L1(Ω) [26,35], such
that u(x) = aI

α
x v(x). Using Lemma 1, we have∫ b

a
u(x) ·Dα∗φ(x) dx

=
∫ b
a a
Iαxϕ(x) ·Dα∗φ(x) dx

=
∫ b
a
ϕ(x) · xIαb Dα∗φ(x) dx

=
∫ b
a
ϕ(x)φ(x) dx ∀φ(x) ∈ C∞c (Ω),

(13)

where the integrals make sense because of the Hölder inequality ‖fg‖L1 ≤
‖f‖L1

· ‖g‖L∞ .
Because Iα[Lp(Ω)] ⊆ Iα[L1(Ω)], p ≥ 1, so, Eqs. (9)-(13) still hold for

Iα[Lp(Ω)], p ≥ 1. Therefore, we can say that Iα[Lp(Ω)] is a Sobolev space.
Since for p ≥ 1, Iα[Lp(Ω)] ↪→ Lp(Ω) (Theorem 2.6 in [26]), i.e., (similar to

Poincaré inequality [10])

‖aIαxϕ(x)‖p ≤
(b− a)α

Γ (α+ 1)
‖ϕ(x)‖p ∀ϕ(x) ∈ Lp(Ω).

We can introduce the norm in Iα[Lp(Ω)] by

‖u(x)‖Iα[Lp(Ω)] := ‖aDα
xu(x)‖p. (14)
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Remark 1 In the later sections, we can see that actually, for α > 0, δ > −1,
γ ∈ R, functions (1 +x)δ+αJγ−α,δ+αn (x) and (1−x)δ+αJδ+α,γ−αn (x) belong to
Iα[L1(−1, 1)] and Iα∗[Lp(−1, 1)], respectively, where {Jσ,ηn (x)}n=0 denote the
Jacobi polynomials, which are defined by Rodrigues’ formula

(1− x)σ(1 + x)ηJσ,ηn (x) =
(−1)n

2nn!

dn

dxn
[
(1− x)n+σ(1 + x)n+η

]
,

and they are orthogonal on [−1, 1] with respect to (1 − x)σ(1 + x)η when
σ > −1, η > −1 [28].

Lemma 4 Let 0 < α < 1
2 . If u(x) ∈ Lp(Ω), p = 2

1+2α , then

( aI
α
x u(x), xI

α
b u(x)) = cos(πα) · ‖ aIαx u(x)‖22 = cos(πα) · ‖ xIαb u(x)‖22. (15)

Next, the Sobolev space with higher regularity can be defined [35]:

Definition 2 The image space of α-th order left Riemann-Liouville fractional
integrals on Wm,p(Ω) is defined as

Iα [Wm,p(Ω)] := {f : f(x) = aI
α
xϕ(x), ϕ(x) ∈Wm,p(Ω), x ∈ Ω} , (16)

and with norm

‖f(x)‖Iα[Wm,p(Ω)] := ‖Dα
xf(x)‖Wm,p(Ω),

where Wm,p(Ω) is a given classical integer Sobolev space.

The relationships between the image spaces Iα [Wm,p(Ω)] and Iα∗ [Wm,p(Ω)]
are briefly listed in the following lemmas, in which besides the case m = 0,
the most interested cases is when p = 2 and Wm,2(Ω) = Hm(Ω).

Lemma 5 [26] When 0 < α < 1/p, and 1 < p <∞, then

Hα,p(Ω) = Îα[Lp(Ω)] := Iα[Lp(Ω)] = Iα∗[Lp(Ω)]. (17)

When 1/p < α < 1/p+ 1, then

Hα,p
0 (Ω) = Iα[Lp(Ω)] ∩ Iα∗[Lp(Ω)], (18)

where

Hα,p
0 (Ω) = {f : f(x) ∈ Hα,p(Ω), and f(a) = f(b) = 0} ,

Hα,p(Ω) =
{
f : ∃ g(x) ∈ Hα,p(R), s.t. g(x)

∣∣
Ω

= f(x)
}
,

Hα,p(R) = {f(x) ∈ Lp(R) : F−1[(1 + |ξ|2)
α
2 F [f ]] ∈ Lp(R)}.
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Lemma 6 [35] If 0 ≤ α < 1
2 , then

Iα[Hm(Ω)] ∩ Iα∗[Hm(Ω)]

=

{
f : f(x) ∈Wm,q(Ω), f(x) = o((x− a)m+α− 1

2 ), as x→ a,

f(x) = o((b− x)m+α− 1
2 ), as x→ b

}
, q =

2

1− 2α
. (19)

If 1
2 < α < 1, then

Iα[Hm(Ω)] ∩ Iα∗[Hm(Ω)]

=

{
f : f(x) ∈Wm+1,q(Ω), f(x) = o((x− a)m+α− 1

2 ), as x→ a,

f(x) = o((b− x)m+α− 1
2 ), as x→ b

}
, q =

2

3− 2α
. (20)

Denote PN (Ω) as the polynomials spaces of degree less than or equal to
N on Ω. Then Iα [PN (Ω)] := {f : f(x) = aI

α
xϕ(x), ϕ(x) ∈ PN (Ω), x ∈ [Ω]} is

a subspace of Iα[L2(Ω)].
Denote ΠN as the orthogonal projection operator from L2(Ω) onto PN (Ω).

Then the following approximation property holds:

Lemma 7 [35] If α ∈ (0, 12 ) ∪ ( 1
2 , 1), and u(x) ∈ Iαa+[Hm(Ω)], then there

exists a constant C = C(α,Ω,m), such that

‖u−QαNu‖L2(Ω) ≤ CN−m‖ aDα
xu‖Hm(Ω), (21)

where QαNu(x) := aI
α
x (ΠN aD

α
xu) (x).

4 Variational formulations and spectral methods

We use the spaces of fractional integrals introduced above to design Galerkin
spectral methods for solving problem (1). Without loss of generality, we now
restrict our attention to the interval Ω = [−1, 1].

4.1 Variational formulations

In order to derive a variational form of (1), we firstly assume for the moment
that u(x) is a sufficiently smooth solution. By multiplying an arbitrary v(x) ∈
C∞c (Ω), it can be obtained that∫ 1

−1
− (p̄ ·Dαu(x) + q̄ ·Dα∗u(x))·v(x) dx+d̄Du(x)·v(x) dx =

∫ 1

−1
h(x)v(x) dx.

(22)
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4.1.1 Variational formulation I

Taking integration by parts for the left hand of (22), and noting that Du(x) =
D

α
2 D

α
2 u(x) for smooth u with u(−1) = 0 by the definition of Dγ in(2), we

can obtain

−p̄
∫ 1

−1 D
α
2 u(x) ·D

α
2 ∗v(x) dx− q̄

∫ 1

−1 D
α
2 ∗u(x) ·D

α
2 v(x) dx

+d̄
∫ 1

−1 D
1
2u(x) ·D

1
2∗v(x) dx =

∫ 1

−1 h(x)v(x) dx.
(23)

Denote

Φ
α
2
1 (Ω) := I

α
2 [L2(Ω)] ∩ I α2 ∗[L2(Ω)].

Now we define the associated bilinear form B1 : Φ
α
2
1 (Ω)× Φ

α
2
1 (Ω)→ R for (1)

as

B1(u, v) := −p̄
(
D

α
2 u,D

α
2 ∗v
)
− q̄

(
D

α
2 ∗u,D

α
2 v
)

+ d̄ ·
(
D

1
2u,D

1
2∗v
)
. (24)

For a given function h(x), which belongs to the dual space of W 1,p1
0 (Ω)

[4], and be denoted as W−1,q1(Ω), where p1 = 2
3−α , q1 = 2

α−1 , we define the

associated linear functional F1 : Φ
α
2
1 (Ω)→ R as

F1(v) := 〈h, v〉, (25)

where 〈·, ·〉 is the duality pair of W−1,q1(Ω) and W 1,p1
0 (Ω).

By Lemma 3 and formula (20) in Lemma 6, we can check that both (24)
and (25) make sense.

Thus, the corresponding variational formulation of (1) can be defined as
follows.

Definition 3 (Variational Formulation I) A function u(x) ∈ Φ
α
2
1 (Ω) is a

variational solution of problem (1) provided

B1(u, v) = F1(v) ∀v(x) ∈ Φ
α
2
1 (Ω). (26)

The well-posedness of problem (26) is guaranteed by the well-known Lax-
Milgram lemma. The continuity of the bilinear form B1(·, ·) and the functional

F1 is obvious. The coercivity of B1(·, ·) in the space Φ
α
2
1 (Ω) is guaranteed by

Lemma 4.

Denote

Φ
α
2

1,N (Ω) = I
α
2 [PN (Ω)] ∩ I α2 ∗[PN (Ω)].

Then the Galerkin approximation of (26) is: find u1,N (x) ∈ Φ
α
2

1,N (Ω), such that

B1(u1,N , v1,N ) = F1(v1,N ) ∀v1,N (x) ∈ Φ
α
2

1,N (Ω). (27)
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4.1.2 Variational formulation II

As a connecting link between the subsections above and below, we consider
another kind of variational formulation in which test functions bear stronger
regularity limitation. Actually, for smooth solution u with u(−1) = u(1) = 0,
and an arbitrary given v(x) ∈ C∞c (Ω), instead of Eq. (23), we can get another
formula by taking integration by part for the left side of Eq. (22), as follows:

−p̄
∫ 1

−1 D
α−1
2 u(x) ·D

α+1
2 ∗v(x) dx− q̄

∫ 1

−1 D
α−1
2 ∗u(x) ·D

α+1
2 v(x) dx

− d̄
∫ 1

−1 u(x) ·Dv(x) dx =
∫ 1

−1 h(x)v(x) dx.
(28)

Denote

Φ
α−1
2

2 (Ω) :=
{
f : f ∈ Î

α−1
2 [L2(Ω)], and f(−1) = f(1) = 0

}
.

We now define another type of bilinear form B2 : Φ
α−1
2

2 (Ω) × Φ
α+1
2

1 (Ω) → R
for (1) as

B2(u, v) := −p̄
(
D

α−1
2 u,D

α+1
2 ∗v

)
− q̄

(
D

α−1
2 ∗u,D

α+1
2 v
)
− d̄ · (u,Dv) . (29)

For a given source term h(x), which belongs to the dual space of W 1,p2
0 (Ω)

[4], and be denoted as W−1,q2(Ω), where p2 = 2
2−α , q2 = 2

α , we define the

associated linear functional F2 : Φ
α+1
2

1 (Ω)→ R as

F2(v) := 〈h, v〉, (30)

where 〈·, ·〉 is the duality pair of W−1,q2(Ω) and W 1,p2
0 (Ω).

By Lemma 3, formula (18) in Lemma 5, and formula (19) in Lemma 6, we
can check that both (29) and (30) make sense.

Thus, the corresponding variational formulation of (1) can be defined as
follows.

Definition 4 (Variational Formulation II) A function u(x) ∈ Φ
α−1
2

2 (Ω)
is a variational solution of problem (1) provided

B2(u, v) = F2(v) ∀v(x) ∈ Φ
α+1
2

1 (Ω). (31)

The well-posedness of problem (31) is guaranteed by the well-known inf-sup
condition [3].

Remark 2 It is not difficulty to see that the weak solution as well as the linear
functional in (31) lie in weaker spaces than the weak solution and the linear
functional of (26) do; the classical solution can be recovered from both (26)
and (31) if u is smooth enough.
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Denote

Φ
α−1
2

2,N (Ω) := Î
α−1
2 [PN (Ω)].

We can see that if f(x) ∈ Φ
α−1
2

2,N (Ω), then f(±1) = 0.

The Galerkin approximation of (31) is: find u2,N (x) ∈ Φ
α−1
2

2,N (Ω), such that

B2(u2,N , v2,N ) = F2(v2,N ) ∀v2,N (x) ∈ Φ
α+1
2

1,N (Ω). (32)

4.1.3 Variational formulation III

Since by Lemma 5, when γ > 1
2 , Iγ [PN (Ω)] 6= Iγ∗[PN (Ω)], it is not simple

to manipulate Iγ [PN (Ω)] ∩ Iγ∗[PN (Ω)] during the numerical realization. One
way to get rid of using it during the computation, is based on the following
splitting formula, which is equivalent to problem (1):

l(x) = p̄ −1I
2−α
x Du(x),

r(x) = q̄ xI
2−α
1 Du(x),

−D[l(x) + r(x)] + d̄ ·Du(x) = h(x),
u(−1) = u(1) = 0.

(33)

Similarly to the above discussions, by assuming for the moment that u(x) is a
sufficiently smooth solution, then multiplying the first three equalities of (33)
separately by ψ1 ∈ C∞c (Ω), ψ2 ∈ C∞c (Ω), ψ3 ∈ C∞c (Ω), and taking integration
by parts, we can get

∫ 1

−1 l(x)ψ1(x) dx = p̄
∫ 1

−1 D
α−1
2 u(x) ·D

α−1
2 ∗ψ1(x) dx,∫ 1

−1 r(x)ψ2(x) dx = q̄
∫ 1

−1 D
α−1
2 ∗u(x) ·D

α−1
2 ψ2(x) dx,∫ 1

−1[l(x) + r(x)]Dψ3(x) dx− d̄ ·
∫ 1

−1 u(x)Dψ3(x) dx =
∫ 1

−1 h(x)ψ3(x) dx.

(34)

If u(x) ∈ Φ
α−1
2

2 (Ω), ψ1(x) and ψ2(x) belong to Î
α−1
2 [L2(Ω)], then l(x) and

r(x) belong to Lq2(−1, 1), ψ3(x) ∈ W 1,p2
0 (−1, 1), and h(x) ∈ W−1,q2(−1, 1),

where p2 = 2
2−α , q2 = 2

α . In this case, (34) is actually the same as Variational
Formulation II (4).

For the convenience of computation and implementation, we partially yield
to the requirements on the regularity in (28). Specifically, we define the third
type of mixed variational formulation of (1) in the following way:

Definition 5 (Variational Formulation III) Find u(x) ∈ Φ
α−1
2

2 (Ω), l(x) ∈
L2(−1, 1), and r(x) ∈ L2(−1, 1), such that

(l(x), ψ1(x))− p̄
(
D

α−1
2 u(x),D

α−1
2 ∗ψ1(x)

)
= 0 ∀ψ1(x) ∈ Î α−1

2 [L2(−1, 1)],

(r(x), ψ2(x))− q̄
(
D

α−1
2 ∗u(x),D

α−1
2 ψ2(x)

)
= 0 ∀ψ2(x) ∈ Î α−1

2 [L2(−1, 1)],

(l(x) + r(x), Dψ3(x))− d̄ · (u(x), Dψ3(x)) = F3(ψ3) ∀ψ3(x) ∈ H1
0 (−1, 1),

(35)
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where for a given h(x) ∈ H−1(−1, 1), F3 : H1
0 (−1, 1)→ R is a linear functional

defined as

F3(v) := 〈h, v〉, (36)

and 〈·, ·〉 is the duality pair of H−1(−1, 1) and H1
0 (−1, 1).

We can see that the main difference between the weak formulae (31) and
(35) is that the linear functional h(x) of later one lies in a bit smaller space
than that of former one , and as a sequence, the weak solution u(x) of (35)
lies in a smaller space.

Denote

Ψ3,N (Ω) = {f : f ∈ PN (Ω), and f(−1) = f(1) = 0} .

Then the Galerkin approximation of (35) is: find u3,N (x) ∈ Φ
α−1
2

2,N (Ω), lN (x) ∈
PN (Ω), and rN (x) ∈ PN (Ω), such that

(lN , ψ1,N )− p̄
(
D

α−1
2 u3,N ,D

α−1
2 ∗ψ1,N

)
= 0 ∀ψ1,N ∈ Î

α−1
2 [PN (Ω)],

(rN , ψ2,N )− q̄
(
D

α−1
2 ∗u3,N ,D

α−1
2 ψ2,N

)
= 0 ∀ψ2,N ∈ Î

α−1
2 [PN (Ω)],

(lN + rN , Dψ3,N )− d̄ · (u3,N , Dψ3,N ) = F3(ψ3,N ) ∀ψ3,N ∈ Ψ3,N (Ω).

(37)

4.2 Numerical implementation

In this paper, we mainly focus on designing the numerical schemes for the
above variational formulations, and leave the theoretical part in our future
work.

We shall make use of the so-called Generalized Jacobi functions that we
mentions in Remark 1 and have been widely used in other papers of spectral
methods for fractional problem, such as [29,18,33,6] and so on.

Recall the following formulas ([2], p.20):

−1I
α
x

(
(1 + x)δJγ,δn (x)

)
=

Γ (n+ δ + 1)

Γ (n+ δ + α+ 1)
(1 + x)δ+αJγ−α,δ+αn (x), (38)

xI
α
1

(
(1− x)δJδ,γn (x)

)
=

Γ (n+ δ + 1)

Γ (n+ δ + α+ 1)
(1− x)δ+αJδ+α,γ−αn (x), (39)

where α > 0, δ > −1, γ ∈ R.
Using the properties

Dα
−1I

α
x = I,

and

Dα∗
xI
α
1 = I,
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we can get from formulae (38) and (39) respectively that

Dα
(
(1 + x)δ+αJγ−α,δ+αn (x)

)
=
Γ (n+ δ + α+ 1)

Γ (n+ δ + 1)
(1 + x)δJγ,δn (x), (40)

Dα∗((1− x)δ+αJδ+α,γ−αn (x)
)

=
Γ (n+ δ + α+ 1)

Γ (n+ δ + 1)
(1− x)δJδ,γn (x). (41)

4.2.1 Galerkin spectral scheme of Variational Formulation-I

For the discrete variational formulation (27), we construct two kinds of trial
functions as

φL1,n(x) := −1I
α
2
x Ln(x) =

Γ (n+ 1)

Γ (n+ 1 + α
2 )

(1 + x)
α
2 J
−α2 ,

α
2

n (x), 0 ≤ n ≤ N − 1,

(42)
and

φR1,n(x) := xI
α
2
1 Ln(x) =

Γ (n+ 1)

Γ (n+ 1 + α
2 )

(1− x)
α
2 J

α
2 ,−

α
2

n (x), 0 ≤ n ≤ N − 1,

(43)
where Ln(x) = J0,0

n (x), n ≥ 0, are Legendre polynomials, which are orthogo-
nal in the L2 sense [5,13]:∫ 1

−1
Ln(x)Lm(x) = γnδmn, γn =

2

2n+ 1
;

and take test functions as

v1,k(x) := (1 + x)xI
α
2
1 Lk(x), 0 ≤ k ≤ N − 1. (44)

Denote

u1,N (x) :=

N−1∑
n=0

uL1,nφ
L
1,n(x)

be the approximation of the exact solution u, and let

u1,N (xi) =

N−1∑
n=0

uL1,nφ
L
1,n(xi) =

N−1∑
m=0

uR1,mφ
R
1,m(xi), i = 1, · · · , N, (45)

for some given nodes {xi}Ni=1.
Denote

uL1 = [uL1,0, u
L
1,1, · · · , uL1,N−1]T , uR1 = [uR1,0, u

R
1,1, · · · , uR1,N−1]T ,

and AL1 and AR1 as two N ×N matrices with

(AL1 )i,j = φL1,j−1(xi), (AR1 )i,j = φR1,j−1(xi).
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Then (45) can be rewritten as

AL1 uL1 = AR1 uR1 . (46)

Use the properties of Legendre polynomials [13]

(2k + 1)Lk(x) =
d

dx
(Lk+1(x)− Lk−1(x)), (47)

Lk(±1) = (±1)k, (48)

and Leibniz rule for fractional derivative [25], we can obtain from (44) that

D
α
2 ∗v1,k(x) =

{
(1 + x)Lk(x) + α

2(2k+1) (Lk+1(x)− Lk−1(x)), k ≥ 1,

(1 + x)Lk(x) + α
2(2k+1) (Lk+1(x)− 1), k = 0.

For computing the left fractional derivative of v1,k(x), we denote

v1,k(x) =

∞∑
n=0

(v1,k)n −1I
α
2
x Ln(x). (49)

Taking inner product with D
α
2 ∗Lm(x) in (49), using the orthogonality of Leg-

endre polynomials and formulae (39), (41), one obtains

(v1,k)m =

(
m+

1

2

)
Γ (k + 1)Γ (m+ 1)

Γ (k + 1 + α/2)Γ (m+ 1− α/2)

(
(1+x)J

α
2 ,−

α
2

k (x), J
−α2 ,

α
2

m (x)
)
.

Therefore, the matrix formulation of (27) is

−p̄ ·ML
1 uL1 − q̄ ·MR

1 uR1 + d̄ · MC
1 uL1 = f1, (50)

where

(ML
1 )k+1,n+1

=
(
Ln(x), (1 + x)Lk(x) + α

2(2k+1) (Lk+1(x)− Lk−1(x))
)

= (Ln(x), xLk(x)) + γkδn,k + α
2(2k+1) (γk+1δn,k+1 − γk−1δn,k−1) , k ≥ 1;

(ML
1 )1,n+1

=
(
Ln(x), (1 + x)L0(x) + α

2 (L1(x)− 1)
)

= (2− α)δn,0 + 2+α
3 δn,1;

(MR
1 )k+1,n+1

= (Ln(x),
∑∞
m=0(v1,k)mLm(x)) = (v1,k)n · γn,
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(MC
1 )k+1,n+1

=
(
D

1
2φL1,n(x),D

1
2∗v1,k(x)

)
= Γ (n+1)Γ (k+1)

Γ (n+β+1)Γ (k+β+1) ·(
(1− x2)β · J−β,βn (x), (1 + x)Jβ,−βk (x)− 1−x

2(k+β+1)J
1+β,−1−β
k (x)

)
,

and

(f1)k =
Γ (k + 1)

Γ (k + 1 + α
2 )

∫ 1

−1
(1− x)

α
2 (1 + x)h(x)J

α
2 ,−

α
2

k (x) dx,

with β = α
2 , and MC

1 is calculated by using Leibniz rule for fractional deriva-
tive [25].

It should be noted that all of these integrals in above formulations can be
computed exactly by Gauss quadrature or weighted Gauss quadrature.

Combined (46) with (50), we can get the final Galerkin spectral scheme of
(27): (

− p̄ ·ML
1 − q̄ ·MR

1 (AR1 )−1AL1 + d̄ ·MC
1

)
uL1 = f1. (51)

4.2.2 Petrov-Galerkin spectral scheme of Variational Formulation-II

For the discrete variational formulation (32), we construct the corresponding
two kinds of trial functions as

φL2,n(x) := −1I
α−1
2

x Ln(x), 0 ≤ n ≤ N − 1, (52)

and

φR2,n(x) := xI
α−1
2

1 Ln(x), 0 ≤ n ≤ N − 1, (53)

and take the corresponding test functions as

v2,k(x) := (1 + x)xI
α+1
2

1 Lk(x), 0 ≤ k ≤ N − 1. (54)

Denote

u2,N (x) :=

N−1∑
n=0

uL2,nφ
L
2,n(x)

as the approximation of the exact solution u, and let

u2,N (xi) =

N−1∑
n=0

uL2,nφ
L
2,n(xi) =

N−1∑
m=0

uR2,mφ
R
2,m(xi), i = 1, · · · , N, (55)

for some given nodes {xi}Ni=1, and denote

uL2 = [uL2,0, u
L
2,1, · · · , uL2,N−1]T , uR2 = [uR2,0, u

R
2,1, · · · , uR2,N−1]T .

Similarly, there is
AL2 uL2 = AR2 uR2 , (56)
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where AL2 and AR2 are two N ×N matrices with

(AL2 )i,j = φL2,j−1(xi), (AR2 )i,j = φR2,j−1(xi).

Denote

v2,k(x) =

∞∑
n=0

(v2,k)n −1I
α+1
2

x Ln(x). (57)

Again, by using Leibniz rule for fractional derivative [25], we can get

(v2,k)m =

(
m+

1

2

)
Γ (k + 1)Γ (m+ 1)

Γ (k + α+3
2 )Γ (m− α−1

2 )

(
(1+x)J

α+1
2 ,−α+1

2

k (x), J
−α+1

2 ,α+1
2

m (x)
)
,

and

D
α+1
2 ∗v2,k(x) =

{
(1 + x)Lk(x) + α+1

2(2k+1) (Lk+1(x)− Lk−1(x)), k ≥ 1,

(1 + x)Lk(x) + α+1
2(2k+1) (Lk+1(x)− 1), k = 0.

Thus, the Petrov-Galerkin spectral scheme of (32) is(
−p̄ ·ML

2 − q̄ ·MR
2 (AR2 )−1 (AL2 ) + d̄ · MC

2

)
uL2 = f2, (58)

where

(ML
2 )k+1,n+1

=


(
Ln(x), (1 + x)Lk(x) + α+1

2(2k+1) (Lk+1(x)− Lk−1(x))
)
, k ≥ 1,

(1− α)δn,0 + α+3
3 δn,1, k = 0;

(MR
2 )k+1,n+1

= (Ln(x),
∑∞
m=0(v2,k)mLm(x)) = (v2,k)n · γn,

(MC
2 )k+1,n+1

=
(
φL2,n(x),−Dv2,k(x)

)
= Γ (n+1)Γ (k+1)

Γ (n+β+1)Γ (k+β+1) ·(
(1− x2)βJ−β,βn (x), (1 + x)Jβ,−βk (x)− 1−x

(k+β+1)J
1+β,−1−β
k (x)

)
,

with β = α−1
2 , and

(f2)k =
Γ (k + 1)

Γ (k + α+3
2 )

∫ 1

−1
(1− x)

α+1
2 (1 + x)h(x)J

α+1
2 ,−α+1

2

k (x) dx.

During the computation, it is found that the condition numbers of the
stiffness matrix in the above two schemes (51) and (58) are increasing as
O(N2α). When α is close to 2, the condition numbers increase fast, making
the numerical solution sensitive to a small disturbance. The usual method to
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deal with ill-conditioned system is precondition. However, the stiffness matrices
here are full, which makes it difficult to find an appropriate preconditioning
matrix for them. While, at the cost of losing a bit of regularity for the solution,
the mixed Galerkin spectral system introduced below, instead, shows to be
well-conditioned.

4.2.3 Mixed Galerkin spectral scheme of Variational Formulation-III

For the discrete variational formulation (37), we obtain the matrix form by
four steps.

Step 1: Similar to the previous two schemes, we construct two kinds of trial
functions with left and right fractional integrals with β = α−1

2 :

φL3,n(x) := −1I
β
xLn(x) 0 ≤ n ≤ N − 1,

φR3,n(x) := xI
β
1 Ln(x) 0 ≤ n ≤ N − 1.

Denote

u3,N (x) :=

N−1∑
n=0

uL3,nφ
L
3,n(x) (59)

as the approximation of the exact solution u, and let

u3,N (xi) =

N−1∑
n=0

uL3,nφ
L
3,n(xi) =

N−1∑
m=0

uR3,mφ
R
3,m(xi), i = 1, · · · , N,

for some given nodes {xi}Ni=1, and denote

uL3 = [uL3,0, u
L
3,1, · · · , uL3,N−1]T , uR3 = [uR3,0, u

R
3,1, · · · , uR3,N−1]T . (60)

Similarly, there is
AL3 uL3 = AR3 uR3 , (61)

where AL3 = AL2 and AR3 = AR2 .
Step 2: We deal with the first equation of (37). Take the trial functions of

lN (x) to be Ln(x) + Ln+1(x), and denote

lN (x) =

N−1∑
n=0

ln(Ln(x) + Ln+1(x)).

Take the test function ψ1,N (x) to be xI
β
1 Lk(x), 0 ≤ k ≤ N − 1. Substituting

them into (37), we have

N−1∑
n=0

ln(Ln(x) + Ln+1(x), xI
β
1 Lk(x)) = p̄

N−1∑
n=0

uL3,n(Ln(x), Lk(x)),

i.e.,
L(β) · l = p̄ B · uL3 , (62)
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where

L
(β)
k+1,n+1 = (Ln(x)+Ln+1(x), xI

β
1 Lk(x)), l = [l0, l1, · · · , lN−1]T , B = diag(γk).

Step 3: We deal with the second equation of (37). Take the trial functions
of rN (x) to be (Ln(x)− Ln+1(x)), and denote

rN (x) =

N−1∑
n=0

rn(Ln(x)− Ln+1(x)).

Take the test function ψ2,N (x) to be −1I
β
xLk(x), 0 ≤ k ≤ N − 1. Substituting

them into (37), we have

N−1∑
n=0

rn(Ln(x)− Ln+1(x),−1I
β
xLk(x)) = q̄

N−1∑
n=0

uR3,n(Ln(x), Lk(x)),

i.e.,
R(β) · r = q̄ B · uR3 , (63)

where

R
(β)
k+1,n+1 = (Ln(x)− Ln+1(x),−1I

β
xLk(x)), r = [r0, r1, · · · , rN−1]T .

Step 4: Finally we deal with the third equation of (37). Considering the con-
dition ψ3,N (x) ∈ H1

0 (Ω), we take the test function to be Lk−1(x)−Lk+1(x), 1 ≤
k ≤ N . Substituting them into (37), we have

−CL · l− CR · r + dMC
3 uL = f3, (64)

where

CLk,n+1 =
(

(Ln(x) + Ln+1(x)), (2k + 1)Lk(x)
)

= 2(δk,n + δk,n+1),

CRk,n+1 =
(

(Ln(x)− Ln+1(x)), (2k + 1)Lk(x)
)

= 2(δk,n − δk,n+1),

(MC
3 )k,n+1 = (φLn(x), (2k + 1)Lk(x)),

(f3)k = (h(x), Lk−1(x)− Lk+1(x)).

Combining (61), (62), (63), and (64), we obtain the mixed Galerkin spectral
scheme of (35) as

(−p̄ML
3 − q̄MR

3 (AR)−1AL + d̄MC
3 )uL = f3 (65)

with
ML

3 := CL(L(β))−1B, MR
3 := CR(R(β))−1B.

Remark 3 Although we use four steps in the mixed Galerkin spectral scheme
which seems a bit more complicated, many matrices in this scheme are sparse
and the elements are more convenient to be calculated than those in the pre-
vious two schemes.
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Remark 4 Here we make an rough explanation about the reason why we choose
the basis functions of lN (x) as Ln(x) + Ln+1(x) which vanishing at x = −1.
Based on the first equation of (37), we find the left-hand side can be reformed
as

(lN , ψ1,N ) = (lN , xI
α−1
2

b D
α−1
2 ∗ψ1,N ) = (aI

α−1
2

x lN ,D
α−1
2 ∗ψ1,N ), (66)

which means

aI
α−1
2

x lN = D
α−1
2 u3,N , (67)

in the L2 sense. If lN (x) does not tend to zero as x→ −1, then

D
α−1
2 u3,N → O(1 + x)

α−1
2 , x→ −1;

On the contrary, the basis functions of u3,N in (59) implies

D
α−1
2 u3,N → O(1 + x)

3−α
2 , x→ −1;

which is contradict to each other. Therefore, we restrict lN (x) to be zero at
x = −1. Similarly, the basis functions of rN (x) are chosen as Ln(x)−Ln+1(x)
that vanishing at x = 1.

5 Numerical tests

In what follows, we provide some numerical results to verify the validity of
our proposed three kinds of numerical schemes—Galerkin spectral scheme,
Petrov-Galerkin spectral scheme and, most impotently, mixed Galerkin spec-
tral scheme. For convenience, we denote them as Scheme 1, Scheme 2 and
Scheme 3, respectively, in this section.

Example 1 We firstly consider a one-sided problem to verify the effectiveness
of our numerical schemes. More precisely, let p̄ = 1 and q̄ = d̄ = 0 in (1), i.e.,

−1D
α
xu(x) = h(x). (68)

We choose the exact solution to be

u(x) =

−
(x+1)3+

α
2

Γ (4+α
2 ) [−1, 0],

2x3+α
2 −(x+1)3+

α
2

Γ (4+α
2 ) (0, 1],

(69)

so that the source term is

h(x) =

−
(x+1)3−

α
2

Γ (4−α2 ) [−1, 0],

2x3−α
2 −(x+1)3−

α
2

Γ (4−α2 ) (0, 1].
(70)
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After applying α
2 -order fractional derivative, the solution has a finite regularity

at the point x = 0, i.e.,

v(x) = −1D
α
2
x u(x) =

−
(x+1)3

Γ (4) [−1, 0],

2x3−(x+1)3

Γ (4) (0, 1].
(71)

In fact, v(x) ∈ H3+ 1
2−ε[−1, 1], for ε > 0, since

D3v(x) =

{
−1 [−1, 0],

1 (0, 1].
(72)

We plot the L2 error vs the polynomial degree N for α = 1.3 and α = 1.6
in Figure 1, and find that the convergence order is around N−3.5. Although
the convergence orders of the three schemes look similar, the magnitude of the
error of Scheme 3 is smaller than the other ones.
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Fig. 1 The numerical L2 errors of Example 1 vs the polynomial degree N for three different
schemes with α = 1.3 in (a) and α = 1.6 in (b).

Example 2 In this example, we apply the three schemes to the fractional Lapla-
cian equation in one dimension case, i.e.,{

(−∆)α/2u(x) = h(x), x ∈ (−1, 1)

u(x) = 0, x ∈ R\(−1, 1).
(73)

For the source term h(x) = 1 in (−1, 1), the exact solution is [12]

u(x) =
2−αΓ ( 1

2 )

Γ ( 1+α
2 )Γ (1 + α

2 )
(1− x2)α/2 in (−1, 1). (74)
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The numerical tests for this fractional Laplacian equation are presented in
Figure 2. We find that the errors all decay algebraically (about O(N−2)),
which implies our proposed three schemes are all valid not only for α ∈ (1, 2),
but also for the whole range of α ∈ (0, 2). In addition, we can see that even for
the solution u(x) with low regularity such as in (74), all of the three schemes
show a good convergence result.
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Fig. 2 The numerical L2 errors of Example 2 vs the polynomial degree N with three different
schemes in (a), (b) and (c), respectively.

Example 3 In this example, we verify the spectral convergence of Scheme 1 and
Scheme 2 for the two-sided fractional diffusion equation with drift. Consider
(1) with p̄ = q̄ = 1

2 and d̄ = 1, i.e.,

−1

2
(−1D

α
xu(x) + xD

α
1 u(x)) + u′(x) = h(x). (75)

For a given α, the exact solutions for Scheme 1 and Scheme 2 are assumed to
be with different forms, which are

u1(x) = (1 + x)5+
α
2 (1− x)5,

u2(x) = (1 + x)5+
α−1
2 (1− x)5,

(76)

respectively.

The numerical results for different α are shown in Figure 3, where spectral
convergence can be observed when N > 10 for both Scheme 1 and Scheme 2.
We do not observe spectral convergence for Scheme 3. This might due to the
three sub-equations with their individual trail functions we choose in Scheme
3. On the other hand, the advantage of Scheme 3 comes from its low condition
number for all α ∈ (0, 2), which will be illustrated in detail in the next example.

Example 4 Considering the same problem as Eq. (75), we illustrate the condi-
tion number of the coefficient matrix for three schemes when solving problem
(75) with α = 0.5, 1.5, 1.9.
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Fig. 3 The numerical L2 errors Example 3 vs the polynomial degree N with α = 1.2, 1.4, 1.6
for Scheme 1 in (a) and Scheme 2 in (b).

As shown in Figure 4, the condition numbers of Scheme 1 and Scheme 2
grow as fast as O(N2α), and even faster when α = 0.5. But the condition
numbers of Scheme 3 grow as O(Nα), which is much more moderate than the
other two schemes.
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Fig. 4 The condition number versus polynomial degree N of three schemes when solving
Example 4 with α = 0.5, 1.5, 1.9.

Example 5 Besides the previous examples with special solutions, now we take
some numerical tests with high regularities. We use Scheme 1 to solve the same
problem as Eq. (75). Three different exact solution with different regularities
are assumed to be

u1(x) = (1 + x)4(1− x)3,

u2(x) = (1 + x)2(1− x)4,

u3(x) = (1 + x)4(1− x)4.

(77)

The associated forcing term h(x) cannot be given analytically. Instead, we
compute h(x) numerically at each Gauss quadrature nodes xi. We plot the L2
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error vs the polynomial degree N for different values of α ∈ (0, 2) in Figure 5,
where α is taken to be 0.2, 0.7, 1.3, 1.8 and N is from 4 to 60. The errors show
an algebraical decay and they are independent of the value of α, only depend
on the regularity of the exact solution u.

100 101 102

polynomial degree N

10-12

10-10

10-8

10-6

10-4

10-2

100

102

L
2
 e

rr
or

alpha=0.2
alpha=0.7
alpha=1.3
alpha=1.8
slope=-6

(a) u1 = (1 + x)4(1− x)3

100 101 102

polynomial degree N

10-8

10-6

10-4

10-2

100

102

L
2
 e

rr
or

alpha=0.2
alpha=0.7
alpha=1.3
alpha=1.8
slope=-4

(b) u2 = (1 + x)2(1− x)4

100 101 102

polynomial degree N

10-15

10-10

10-5

100

105

L
2
 e

rr
or

alpha=0.2
alpha=0.7
alpha=1.3
alpha=1.8
slope=-8

(c) u3 = (1 + x)4(1− x)4

Fig. 5 The numerical L2 errors of Example 5 vs the polynomial degree N with Scheme
1. (a), (b) and (c) show the errors decay algebraically when α = 0.2, 0.7, 1.3, 1.8, with the
exact solution being u1, u2, u3 in (77), respectively.

Example 6 We consider the same problem as Eq. (75), but using Scheme 2.
The numerical results are shown in Figure 6.
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Fig. 6 The numerical L2 errors of Example 6 vs the polynomial degree N with Scheme
2. (a), (b) and (c) show the errors decay algebraically when α = 0.2, 0.7, 1.3, 1.8, with the
exact solution being u1, u2, u3 in (77), respectively.

Example 7 We consider the same problem as Eq. (75), but using Scheme 3.
The numerical results are shown in Figure 7.

Comparing the three Figures with three different schemes, we find that
they are all effective to any α ∈ (0, 2). For a general exact solution, their rates
of convergence depend on the regularity of the solution on both sides.

Example 8 Since the solution of the Eq. (1) can be solved numerically with
the three schemes we proposed in this paper, some interesting phenomena can
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Fig. 7 The numerical L2 errors of Example 7 vs the polynomial degree N with Scheme
3. (a), (b) and (c) show the errors decay algebraically when α = 0.2, 0.7, 1.3, 1.8, with the
exact solution being u1, u2, u3 in (77), respectively.

be observed by analysing the numerical solution. One typical example is that
if the source term h(x) in Eq. (1) taken to be −1, the solution u(x) represents
the mean first exit time of the particle starting at position x ∈ (−1, 1) when
leaving the domain [−1, 1] [8].

Now, we firstly consider the mean first exit time of free diffusive particles
at any given position x ∈ (−1, 1). By taking p = q = 1/2 and the source term
h(x) = cos(πα/2), we obtain the equivalent equation

(−∆)α/2u(x) = −1. (78)

The numerical results for different α are shown in the left graph of Figure
8. One can observe that: the mean first exit time increases as α decreases;
for each fixed α, it costs more time for the particles in the middle part than
those at near the boundary—all of these phenomenons are compatible with
expectation. Next, we consider the effect of the drift term on the mean first
exist time, by taking d = cos(πα/2) which yields a drift to the left. Then the
equation becomes

(−∆)α/2u(x)− u′(x) = −1. (79)

The corresponding results are demonstrated in the right graph of Figure 8. In
this case, under the effect of the drift, the particles are more likely to leave the
domain from the left side. In other words, it takes more time for the particles
at the right part to leave the domain. If one particle starts at the very right
part (near the right boundary), however, the diffusion behavior works and
makes the particle leave the right boundary in a moment time.

6 Conclusion

In this paper, we discuss spectral approximations in the weak sense for solving
a two-sided fractional differential equation with drift, in which the fractional
operators are physically well-defined [11]. Three kinds of spectral formulae,
namely Galerkin spectral formulation, Petrov-Galerkin spectral formulation,
and mixed Galerkin spectral formulation, are proposed step by step. Then
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Fig. 8 The graph of solution u(x) of Example 4 with α = 0.2, 0.7, 1.3, 1.8. Here, u(x)
represents the mean first exit time of the particle starting at position x ∈ (−1, 1) when
leaving this domain.

their corresponding spectral Galerkin schemes are derived. The significant ad-
vantage of the mixed Galerkin spectral scheme is that its condition number
grows as O(Nα), compared with the other two schemes, whose condition num-
bers grow as fast as O(N2α). We compare these three kinds of schemes through
several numerical experiments. All of them turn out to be effective for different
problems, especially also for the fractional Laplacian with generalized Dirich-
let boundary conditions, the fractional order of which is α ∈ (0, 2), not only
having to be limited in (1, 2). What is more, considering the physical mean-
ings of the fractional differential equation with drift, one interesting physical
quantity, mean first exit time, is computed and discussed in this paper. More
related theoretical analysis will be discussed in our future work.
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