REFERENCES
[1] Ajao, K., & Akande, H. (2009). Energy Integration of Crude
Distillation Unit Using Pinch Analysis. Researcher , 54-66.
[2] Ajay, M., & Amiya, K. (2010). A New intensified heat
integration in distillation column. Ind. Eng. Chem. Res. ,
9534-9541.
[3] Akande, H. (2008). Energy Integration of Thermal
Hydro-dealkylation Plant. MEng Thesis. Minna, Niger State, Nigeria.:
Federal University of Technology.
[4] Al-Mutairi, E., & Elkawad, H. (2013). Energy conservation and
optimization in condensate splitter plant . Chemical Engineering
Transactions , 1381-1386.
[5] Al-Riyami, B., Klemes, J., & Perry, S. (2001). Heat integration
retrofit analysis of a heat exchanger network of a fluid catalytic
cracking plant. Applied Thermal Engineering , 1449-1487.
[6] Azeez, O., Isafiade, A., & Fraser, D. (2012). Supply and target
based superstructure synthesis of heat and mass exchanger networks.Chemical Engineering Research and Design , 266-287.
[7] Azeez, O., Isafiade, A., & Fraser, D. (2013). Supply-based
superstructure synthesis of heat and mass exchange networks.Computers & Chemical Engineering , 184-201.
[8] Bonhivers, J.-C., Moussavi, A., Hack, R., Sorin, M., & Stuart,
P. (2018). Improving the network pinch approach for heat exchanger
network retrofit with bridge analysis. The Canadian Journal of
Chemical Engineering .
[9] Cerda, J., Westerberg, A., Mason, D., & Linnhoff, B. (1983).
Minimum utility usage in heat exchanger network synthesis: a
transportation problem. Chemical Engineering Science , 373.
[10] Colberg, R., & Morari, M. (1990). Area and capital cost
targets for heat exchanger network synthesis with constrained matches
and unequal heat transfer coefficients. Computers and Chemical
Engineering , 1 - 22.
[11] Furman, K., & Sahinidis, N. (2001). Computational complexity
of heat exchanger network synthesis. Computers and Chemical
Engineering , 1371-1390.
[12] Furman, K., & Sahinidis, N. (2002). A Critical Review and
Annotated Bibliography for Heat Exchanger Network Synthesis in the 20th
Century. Industrial and Engineering Chemistry Research ,
2335-2370.
[13] Hohmann, E. (1971). Optimum networks for heat exchange.
Ph.D. Thesis. Los Angeles: University of Southern California.
[14] Huang, K., & Karimi, I. (2013). Heat exchanger network
synthesis with multiple utilities using a generalized stagewise
superstructure with cross flows. Proceedings of the 6th
International Conference on Process Systems Engineering (PSE ASIA), 25 -
27 June 2013 , (pp. 44-49). Kuala Lumpur.
[15] Klemeš, J., & Kravanja, Z. (2013). Forty years of Heat
Integration: Pinch Analysis (PA) and Mathematical Programming (MP).Current Opinion in Chemical Engineering , 461–474.
[16] Klemeš, J., Varbanov, P., & Kravanja, Z. (2013). Recent
developments in Process Integration. Chemical Engineering Research
and Design , 2037-2053.
[17] Liebmann, K., & Dhole, V. (1995). Integrated crude
distillation design. Computer in Chemical Engineering ,
S119–S124.
[18] Linhoff, B., & Ahmad, S. (1990). Cost optimum heat exchanger
networks,minimum energy and capital using simple model for capital cost.Computers and Chemical Engineering , 729-750.
[19] Linnhoff, B., & Flower, J. (1978). Synthesis of heat exchanger
networks: I. Systematic generation of energy optimal networks.AIChE Journal , 633.
[20] Martin, A., & Mato, F. (2008). Hint: an educational software
for heat exchanger network design with the pinch method. Education
for chemical engineers , e6 – e14.
[21] Masso, A., & Rudd, D. (1969). The synthesis of system designs.
II. Heuristic structuring. AIChE Journal , 10–17.
[22] Morar, M., & Agachi, P. (2010). Review: Important
contributions in development and improvement of the heat integration
techniques. Computers and Chemical Engineering , 1171-1179.
[23] Nakaiwa, M., Huang, K., Endo, T., Ohmori, T., Akiya, T., &
Takamatsu, T. (2003). Internally heat integrated distillation columns: A
review. . Chemical Engineering Research and Design , 162–177.
[24] Nishida, N., Kobayashi, S., & Ichikawa, A. (1971). Optimal
synthesis of heat exchange systems: necessary conditions for minimum
heat transfer area and their application to systems synthesis.Chemical Engineering Science , 1841.
[25] O’Young, D., Jenkins, D., & Linnhoff, B. (1988). The
constrained problem table for heat exchanger networks. Understanding
Process Integration II. IChemE Symp. Ser. , 75.
[26] Papoulias, S., & Grossmann, I. (1983). A structural
optimization approach in process synthesis – II. Heat recovery
networks. Computers and Chemical Engineering , 707.
[27] Papoulias, S., & Grossmann, I. (1983). A structural
optimization approach in process synthesis—II: Heat recovery networks.Computers & Chemical Engineering , 707-721.
[28] Promptak, P., Siemanond, K., Bunluesriruang, S., &
Raghareutai, V. (2009). Retrofit Design of Heat Exchanger Networks of
Crude Oil Distillation Unit. Chemical Engineering Transactions ,
99-104.
[29] Raghavan, S. (1977). Heat exchanger network synthesis: a
thermodynamic approach. Ph.D. Thesis. Lafayette: Purdue University.
[30] Salomeh, C., Reza, D., & Afshin, M. (2008). Modification of
Preheating Heat Exchanger Network in Crude Distillation Unit of Arak
Refinery Based on Pinch Technology. WCECS 2008 , (pp. 123-127).
San Francisco, USA.
[31] Yee, T., & Grossmann, I. (1990). Simultaneous optimization
models for heat integration – II. Heat exchanger network synthesis.Computers & Chemical Engineering , 1165-1184.
[32] Yee, T., Grossmann, I., & Kravanja, Z. (1990). Simultaneous
optimization models for heat integration – I. Area and energy targeting
and modeling of multi-stream exchangers. Computers and Chemical
Engineering , 1151-1164.
[33] Yoro, K., Sekoai, P., Isafiade, A., & Daramola, M. (2019). A
review on heat and mass integration techniques for energy and material
minimization during CO2 capture. International Journal of Energy
and Environmental Engineering , 367–387.