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Abstract

In this work, the fractional order thermoelasticity theory is used to
investigate the thermoelastic problem of a thin slim strip considering the
thermal conductivity is to be variable. The theory of thermal stresses
based on the heat conduction equation with the Caputo time-fractional
derivative of order � is used. The surface of the strip is subjected to a
thermal shock and assumed to be traction free. By using the Laplace
transform and numerical Laplace inversion, the governing equations are
solved. The inverse of the Laplace transform is done numerically using
a method based on Fourier expansion techniques. Numerical calculations
for the considered variables are performed and the results obtained have
been presented graphically. The e¤ects of fractional order parameter and
the variation of thermal conductivity on temperature, stress, and displace-
ment are investigated.

Keywords:Thermoelasticity, Non-Fourier heat conduction, Fractional deriv-
ative, Variable thermal conductivity.

1 Introduction

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction
of this theory does not contain any elastic terms. Second, the heat equation
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of a parabolic type, predicting in�nite speeds of propagation for heat waves.
Biot [1] introduced the theory of coupled thermoelasticity to overcome the �rst
shortcoming. The governing equations for this theory are coupled, eliminating
the �rst paradox of the classical theory. However, both theories share the second
shortcoming since the heat equation for the coupled theory is also parabolic.
At present, there are di¤erent theories of the generalized thermoelasticity,

the �rst was developed by Lord and Shulman [2], the second was developed by
Green and Lindsay [3] and the third is due to Green and Naghdi [4]. The Lord
and Shulman (LS) theory is based on the modi�ed Fourier�s law of heat con-
duction, and admits one relaxation time. The Green and Lindsay (GL) theory
modi�es both the energy equation and the Duhamel�Neumann relation, and
allows two relaxation times. Green and Naghdi (GN) proposed a new general-
ized theromoelasticity theory by including the �thermal-displacement gradient�
among the independent constitutive variables. An important feature of this the-
ory, which is not present in other thermoelasticity theories, is that this theory
does not accommodate dissipation of thermal energy.
Modern structural elements are often subjected to temperature changes of

such magnitude that their material properties may no longer be regarded as
having constant values even in an approximate sense. It is usual to assume in
thermal stress calculations that material properties are in dependent of tem-
perature. Signi�cant variations do however occur over the working temperature
range of the �engineering ceramics,� particularly in the coe¢ cient of thermal
conductivity "K". Godfrey has reported decreases of up to 45 percent in the
thermal conductivity of various samples of silicon nitride between 1o and 400Co.
At high temperature the material characteristics such as the modulus of elas-
ticity, Poisson�s ratio, the coe¢ cient of thermal expansion and the thermal con-
ductivity are no longer constants [5]. In recent years and due to the progress in
various �elds in science and technology the necessity of taking into consideration
the real behavior of the material characteristics became actual. Temperature-
dependent measurements of Young�s modulus were performed for the �rst time
on black and transparent bulk material of chemical vapor deposited diamond by
a dynamic three point bending method in a temperature range from 150o to 850
Co [8]. The temperature dependencies of shear elasticity of some liquids have
been investigated by Budaev et al. [6]. It was found that the shear modulus
decreases with increasing temperature. This decrease may be explained by the
increase of the �uctuation free volume [6]. The dynamic resonance method was
used by Rishin et al. [7] to determine the temperature dependence of the modu-
lus of elasticity of some plasma-sprayed materials. The rise in test temperature
was found to cause a monotonic decrease in the modulus of elasticity.
Modern structural elements are often subjected to temperature changes of

such magnitude that their material properties may no longer be regarded as
having constant values even in an approximate sense. The thermal and me-
chanical properties of materials vary with temperature, so that the temperature
depends on material properties must be taken into consideration in the thermal
stress analysis of these elements. Especially, in the case of large temperature
di¤erences and variable thermal conductivity has a strong e¤ect on performance
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of such a surface.
The calculus of fractional derivatives and fractional di¤erential equations

has been used recently to solve a range of problems in physics, chemistry, biol-
ogy, mechanical engineering, signal processing, systems identi�cation, electrical
engineering, control theory, �nance, and fractional dynamics [10]. Fractional
calculus which is a calculus of derivatives and integrals of any order is a good can-
didate to describe the dynamics of nonlocal complex systems. Time-fractional
di¤usion equation arises by replacing the standard time partial derivative in
the di¤usion equation with a time-fractional partial derivative. It is usually
used to describe anomalous di¤usion (superdi¤usion, non-Gaussian di¤usion,
subdi¤usion) which is not consistent with the classical Fick (or Fourier) law
[11, 12]. Recently, numerical experiments show that in many one-dimensional
systems with total momentum conservation, the heat conduction does not obey
the Fourier law and the heat conductivity depends on the system size [13].
Di¤erential equations of fractional order have been the focus of many studies

due to their frequent appearance in various applications in �uid mechanics,
viscoelasticity, biology, physics and engineering. The most important advantage
of using fractional di¤erential equations in these and other applications is their
non-local property.
A survey of many emerging applications of the fractional calculus in area of

science and engineering can be found in the recent text by Podlubny [14]. A
brief history of the development of fractional calculus can be found in Ross [15]
and Miller and Ross [16]. Youssef and Al-Lehaibi [17] construct a mathemati-
cal model of an elastic material with constant parameters �lls the half-space in
the context of the fractional order generalized thermoelasticity theory. Sherief
et al. [18] derived a new theory of thermoelasticity using the methodology
of fractional calculus. Povstenko [19] studied a two-dimensional axisymmet-
ric stresses exerted by instantaneous pulses and sources of di¤usion in an in�-
nite space in a case of time-fractional di¤usion equation. Povstenko [20] used
the theory of thermal stresses based on the heat conduction equation with the
Caputo time-fractional derivative to investigate thermal stresses in an in�nite
body with a circular cylindrical hole. Allam et al. [21] applied the model
of generalized thermoelasticity proposed by Green and Naghdi, to study the
electromagneto�thermoelastic interactions in an in�nite perfectly conducting
body with a spherical cavity. The modulus of elasticity are taking as linear
function of temperature. Abouelregal [22] investigate the fractional order gen-
eralized thermo-piezoelectric semi-in�nite medium with temperature-dependent
properties subjected to a ramp-type heating.
In this paper, we used the fractional order thermoelasticity model to deal

with a boundary value problem of one dimension a thin slim strip with its left
boundary subjected to a sudden heat considering the thermal conductivity to
be variable. When this plate is initially at rest and having a uniform temper-
ature, is suddenly heated at the free surfaces, a heat �ow occurs in the plate,
and change in thermal and the mechanical �elds is brought about. Laplace
transform techniques are used. The analytical solutions to stress, displacement
and temperature distributions are obtained. The inverses Laplace transforms
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are obtained numerically and results have been presented graphically.

2 The governing equations

Considering the problem of a thermoelastic isotropic homogeneous thin slim
strip, the generalized thermoelastic governing di¤erential equations in the con-
text of fractional order thermoelasticity consist of:
(i) The equations of motion in the absence of body forces

�
::
ui = (�+ �)uj;ji + �ui;jj � 
Ti: (1)

(ii) The constitutive equations

�ij = �ekk�ij + 2�eij � 
T�ij (2)

where, �ij is the stress tensor, � and � are the Lamé constants, T is the temper-
ature, T0 is the reference temperature, eij are the components of strain tensor,
ui are the components of displacement vector, 
 = �t(3�+2�), �t is the thermal
expansion coe¢ cient, and � is the density of the medium. In the above equa-
tions, a comma followed by a su¢ x denotes material derivative and a superposed
dot denotes the derivative with respect to time.
(iii) The time-nonlocal dependence between the heat �ux vector and the tem-

perature gradient applying the new fractional Taylor�s series of time-fractional
order � [23] can be interpreted in terms of fractional integrals and derivatives

qi +
��0
�!

@�

@t�
qi = �KT;i (3)

where, @�

@t� is the Caputo fractional derivative, � (0 < � � 1) is the fractional
order parameter, K is the thermal conductivity and qi is the heat �ux vector.
(iv) Then the time-fractional heat conduction equation take the form [23]

(KT;i) ;i=

�
� +

��0
�!

@�

@t�

��
�CE

@T

@t
+ 
T0

@ekk
@t

�
(4)

where, CE is the speci�c heat per unit mass at constant strain.
Equation (4) is the generalized energy equation with fractional derivatives

and taking into account the relaxation time �0. Some theories of heat conduc-
tion law follow as limit cases for di¤erent values of the parameters � and �0.
The theories of coupled thermoelasticity, generalized thermoelasticity with one
relaxation time and the generalized theory without energy dissipation follow as
limited cases depending on the value of �, �0 and �.
The heat conduction Eq. (4), in the limiting case �! 0 and � = 1 transforms

to:

(KT;i) ;i=

�
@

@t
+ �0

@2

@t2

�
(�CET+
T0e) (5)

which is the same equation obtained by the generalized theory with one relax-
ation time.
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In the limiting case, when � ! 0; �0 = 1 and � = 0; the heat conduction
Eq. (4), transforms to

(KT;i) ;i= �CE
@2T

@t2
+
T0

@2e

@t2
(6)

which is the same equation of the generalized theory without energy dissipation
introduced by Green and Naghdi.
The coupled theory of thermoelasticity can be obtained from Eq. (4) in the

limiting case �! 0; � = 1 and �0 ! 0 as

(KT;i) ;i= �cE
@T

@t
+
T0

@e

@t
: (7)

Equation (4) describes the whole spectrum from local heat conduction through
the standard heat conduction to the ballistic heat conduction.
Variations in mechanical properties due to an imposed temperature �eld

are not the only ones that accompany heating. Similar variations are observed
in thermal properties characterized by such coe¢ cients as the coe¢ cients of
thermal linear expansion �, thermal conductivity K and others. An acceptable
approximation in limited temperature interval obtained by considering the ther-
mal conductivity to depend linearly on the change of temperature. If thermal
conductivity is assumed to be a linear function of temperature, it becomes as
follows:

K = K(T ) = K0(1 +K1T );
K

k
= �CE ; (8)

where K(T ) is temperature-dependent thermal conductivity, K1 a parameter
de�ning the variation of thermal conductivity (usually negative experimental
coe¢ cient), K0 is the thermal conductivity when it depends on the temperature,
k is the di¤usivity (assumed to be constant), 
 is equal to (3�+2�)�t, �t is the
thermal expansion coe¢ cient, CE is the speci�c heat per unit mass at constant
strain, t is the time, and � is the density of the medium.
Using Eq. (4) with Eq. (8), we get

(KT;i) ;i=

�
� +

��0
�!

@�

@t�

��
K

k

@T

@t
+ 
T0

@2e

@t

�
: (9)

We will use the mapping

� =
1

K0

TZ
0

K(�)d� (10)

where, � is a new function expressing the heat conduction.
Di¤erentiating (10) with respect to the coordinates, we get

�;i = (1 +K1T )T;i: (11)
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Di¤erentiating again the above equation with respect to the coordinates, we
obtain

�;ii = [(1 +K1T )T;i];i : (12)

With the same manner, by di¤erentiating the mapping with respect to time,
we have :

� = (1 +K1T ) _T : (13)

Substituting from Eqs. (12) and (13) in the heat equation (9), we obtain

�;ii =
@

@t

�
� +

��0
�!

@�

@t�

��
�

k
+

T0
K0

e

�
: (14)

From Eqs. (10) and (11), we have

� = T +
K1

2
T 2: (15)

Substituting from Eq. (11) into Eq. (1); we get

�
@2ui
@t2

= (�+ �)uj;ij + �ui;jj �



(1 +K1T )
�;i; (16)

For linearity of the governing partial di¤erential equations of the problem,
we have to take into account the condition jT�T0j

T0
<< 1, which give us the

approximating function of the thermal conductivity K(T ).
Then equation (16) takes the form

�
@2ui
@t2

= (�+ �)uj;ij + �ui;jj � 
�;i: (17)

Using Eq. (15) and neglecting the small values of temperature, the consti-
tutive relation reduces to

�ij = �ekk�ij + 2�eij � 
��ij : (18)

3 Formulation of the problem

We shall consider a thin semi-in�nite rod occupying the region x � 0. The
coordinate system is so chosen that the x�axis is taken perpendicularly to the
layer, and the y� and z�axes in parallel. We consider that the displacement
vector for one-dimensional problem has the components

ux = u(x; t); uy = uz = 0:

The strain components are

e = exx =
@u

@x
:
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The heat equation is

@2�

@x2
=
@

@t

�
� +

��0
�!

@�

@t�

��
1

k
�+


T0
K0

e

�
: (19)

The equation of motion is

@2u

@t2
= (�+ 2�)

@2u

@x2
� 
 @�

@x
: (20)

The constitutive relation takes the form

�xx = � = (�+ 2�)
@u

@x
� 
�: (21)

4 Boundary conditions

For this problem the half-space x � 0 is assumed to be initially at rest and has
reference temperature T0 and zero temperature velocity such that the initial
conditions are assumed to be

u(x; 0) =
@u(x; 0)

@t
= 0;

T (x; 0) =
@T (x; 0)

@t
= 0 (22)

We consider the half-space x � 0 at a uniform temperature T0 with its
boundary x = 0, free of stress and subjected to sudden heating so that the
boundary conditions are

1 The thermal boundary conditions:

T = T0H(t); for x = 0; (23)

� = �0H(t); for x = 0; (24)

where H(t) is Heaviside unit step function and

�0 = T0

�
1 +

K1

2
T0

�
2 The mechanical boundary conditions.

�xx = 0; for x = 0 (25)

and that

fu(x; t); T (x; t);�(x; t)g ! 0; as x!1; t > 0:
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5 Solution of the problem

For simplicity, we will use the following non-dimensional variables

x0 =
c1
k
x; u0 =

c1
k
u; t0 =

c21
k
t;

�0xx =
�xx
�c21

; � 00 =
c21
k
�0; (26)

�0 =



�c21
�; c21 =

(�+ 2�)

�
:

Using these non-dimensional variables, the governing equations take the
forms (dropping the primes for convenience)

� =
@u

@x
�� = e��; (27)

@2u

@t2
=
@2u

@x2
� @�
@x

= De�D� = D�; (28)

@2e

@t2
= D2e�D2� = D2�; (29)

D2� =
@

@t

�
� +

��0
�!

@

@t

�
(� + "e) (30)

where, D = @=@x and " = 
2T0k=
�
�c21K0

�
.

6 Solution in the Laplace transform domain

If we apply the Laplace transform de�ned by the formula

f(s) =

Z 1

0

e�stf(t)dt

to Eqs. (27)-(30), and using the initial conditions (22), we obtain

� = e��; (31)

D2� = s2e; (32)

(D2 � g)� = g"e; g = s

�
� +

��0
�!
s�
�
: (33)

The boundary conditions (24) and (25) and the regularity condition in the
Laplace transform domain may be transformed to
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� =
�0
s

for x = 0; (34)

� = 0 for x = 0; (35)

fu(x; s); T (x; s)g ! 0; as x!1:

By eliminating e, we get

(D2 � s2)� = s2�; (36)

(D2 � g(1 + "))� = g"�: (37)

Eliminating �, we get

[D4 � (s2 + g(1 + "))D2 + g"s2]� = 0: (38)

In a similar manner, we can show that � satis�es the equation

[D4 � LD2 +M ]� = 0 (39)

where

L = (s2 + g(1 + ")); M = "s2g:

The solution of Eqs. (38) and (39) takes the form

� = A1s
2 exp(�m1x) +A2s

2 exp(�m2x); (40)

� = A1
�
m2
1 � s2

�
exp(m1x) +A2

�
m2
2 � s2

�
exp(m2x) (41)

where, the parameters m1 and m2 satisfy the equation

m4 � Lm2 +M = 0:

We can get the displacement by using Eq. (28), such that

u =
1

s2
D�

so, we obtain

u = A1m1 exp(m1x) +A2m2 exp(m2x): (42)

The temperature increment T can be obtained by solving (15) to give

T =
�1 +

p
1 + 2K1�

K1
: (43)
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We shall now use the boundary conditions of the problem to evaluate the
unknown parameters of the problem, namely A1 and A2. Equations (34) and
(35) together with Eqs. (40) and (41) immediately give

A1 +A2 = 0; (44)

A1
�
m2
1 � s2

�
+A2

�
m2
2 � s2

�
exp(m2x) =

�0
s
: (45)

Solution of the above system of linear equations gives the unknown parame-
ters A1 and A2 in the form

A1 = �
�0

s (m2
2 �m2

1)
; A1 =

�0
s (m2

2 �m2
1)
: (46)

Hence

� = � �0s

(m2
2 �m2

1)
exp(�m1x) +

�0s

(m2
2 �m2

1)
exp(�m2x); (47)

� = �
�0
�
m2
1 � s2

�
s (m2

2 �m2
1)
exp(m1x) +

�0
�
m2
2 � s2

�
s (m2

2 �m2
1)
exp(m2x); (48)

u = � �0m1

s (m2
2 �m2

1)
exp(m1x) +

�0m2

s (m2
2 �m2

1)
exp(m2x): (49)

This completes the solution of the problem in the transformed domain.

7 Inversion of the Laplace transform

It is di¢ cult to �nd the analytical inverse Laplace transform of the complicated
solutions for the displacement, temperature, stress and strain in Laplace trans-
form domain. We will now outline the numerical inversion method to obtain
the solution of the problem in the physical domain. Durbin [24] derived the
approximation formula

f(t) =
2est

t1

0@�1
2
Re[F (s)] + Re

NX
n=0

24 Re
�
F
�
s+ 2in�

t1

��
cos

�
2n�
t1

�
� Im

�
F
�
s+ 2in�

t1

��
sin
�
2n�
t1

� 351A
(50)

It should be noted that a good choice of the free parameters N and st1 is
not only important for the accuracy of the results, but also for the application
of the Korrecktur method and the methods for the acceleration of convergence.
The values of all parameters in Eq. (50) are de�ned as t1 = 20, s = 0:25 and
N = 1000 in this paper.
It should be noted that a good choice of the free parameters N and st1 is

not only important for the accuracy of the results, but also for the application
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of the Korrecktur method and the methods for the acceleration of convergence.
The values of all parameters in Eq. (50) are de�ned as t1 = 20, s = 0:25 and
N = 1000 in this paper.

8 Numerical results

For the sake of illustrating the analytical procedure presented, we consider a nu-
merical example. The results depicts the variations of the dimensionless values
of displacement, temperature and thermal stresses. For this purpose, we take
the following values material constants (Copper material and the type 316):

�t = 17:8� 10�6k�1; � = 8954kgm�3; CE = 383:1m2k
�1s�2;

K0 = 386kgmk
�1s�3; T0 = 293k, � = 0:497425�;

� = �2654:53; K1 = �0:1; " = 0:0150

The computations were carried out for a value of time t = 0:15. The nu-
merical technique outlined previously was used to obtain the temperature T ,
displacement u, and stress �xx distributions. The computations were carried
out for wide range of x(0 � x � 5), for di¤erent values of the parameter �
with wide range (0 < � � 1) which cover the two cases of the conductivity;
(0 < � < 1) for weak conductivity, � = 1 for normal conductivity. Here the
numerical results are not listed while the results are displayed graphically in
Figs. 1� 3.
It should be pointed that, the increasing of the value of the parameter �

causes decreasing in the speed of the waves propagation of the stress and the
temperature distributions, whereas the distribution of the displacement increas-
ing. We have noticed that, the value of � has a signi�cant e¤ect on all distri-
butions. From these �gures, the stress at the surface is zero as shown, which
agrees with the boundary condition prescribed.
In Figures 4�6, we display the stress, the temperature and the displacement

respectively with the di¤erent values of K1, and we notice that the parameter
has a signi�cant e¤ect on all �elds. Physically, we can say that, when K is
variable with linear function of temperature with negative values of K1, the
values of the thermal conductivity decreasing with increasing temperature and
then the distance between the particles will increase which makes the speed of
waves progress of all the �elds will be more slow and hence the values of all that
�elds will be decreasing.
The numerical values of the physical �eld variables are computed and are

plotted in �gures 7 � 9 against x in order to observe the nature of variations
of the �eld for di¤erent thermoelastic models. From the di¤erent �gures it is
observed that the nature of variations of all the �eld variables is nearly the
same for L-S model and G-N model however for C-D model their behaviors
are signi�cantly di¤erent. The phenomenon of �nite speeds of propagation is
manifested in all these �gures for L-S and G-N models. This is not the case
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when using the coupled equation of heat conduction (C-D model), where the
thermal and mechanical e¤ects extend to �ll the whole space.

9 Conclusions

The main observations from these �gures are organized as:

1. The Laplace transform technique is used to derive displacement, stress
and temperature distribution due to mechanical and thermal shock tem-
perature.

2. We found that, the parameter � has a signi�cant e¤ects on all the �elds.

3. According to this new theory, we have to construct a new classi�cation
for materials according to their fractional parameter � where this parame-
ter becomes a new indicator of its ability to conduct heat in conducting
medium.

4. The result provides a motivation to investigate conducting thermoelastic
materials as a new class of applicable thermoelectric materials.

5. The curves, demonstrate that the e¤ect of the thermal conductivity on
all the �elds and in di¤erent materials is clear and we have to take it
into account in any analysis of heat conduction. The �eld quantities,
temperature, stresses and displacement depend not only on the state and
space variables t and x but also depend on the value of K1. It has been
observed that, K1 plays a vital role on the development of all the �elds.

6. The comparison of di¤erent theories of thermoelasticity, i.e. Lord and
Shulman, Green and Naghdi and classical dynamical coupled theories is
carried out.

7. The fact that in generalized thermoelasticity, the waves propagate with
�nite speeds is evident in all these �gures. This is not the case in coupled
thermoelasticity, where the considered function have non-vanishing values
for all values of x due to the in�nite speed of propagation of heat waves.
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