References
1.
Aronson, E.L. & Helliker, B.R. (2010). Methane flux in non-wetland
soils in response to nitrogen addition: a meta-analysis. Ecology ,
91, 3242-3251.
2.
Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. (2004). Ecosystem stability
and compensatory effects in the Inner Mongolia grassland. Nature ,
431, 181-184.
3.
Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J. et
al. (2010). Tradeoffs and thresholds in the effects of nitrogen
addition on biodiversity and ecosystem functioning: evidence from inner
Mongolia Grasslands. Global Change Biology , 16, 358-372.
4.
Baldocchi, D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running,
S. et al. (2001). FLUXNET: A new tool to study the temporal and
spatial variability of ecosystem-scale carbon dioxide, water vapor, and
energy flux densities. Bulletin of the American Meteorological
Society , 82, 2415-2434.
5.
Bédard, C. & Knowles, R. (1989). Physiology, biochemistry, and specific
inhibitors of CH4,
NH4+, and CO oxidation by
methanotrophs and nitrifiers. Microbiological Reviews , 53, 68-84.
6.
Blankinship, J.C., Brown, J.R., Dijkstra, P. & Hungate, B.A. (2010).
Effects of interactive global changes on methane uptake in an annual
grassland. Journal of Geophysical Research , 115.
7.
Bodelier, P.L.E. & Laanbroek, H.J. (2004). Nitrogen as a regulatory
factor of methane oxidation in soils and sediments. FEMS
Microbiology Ecology , 47, 265-277.
8.
Bollag, J.-M. & Czlonkowski, S. (1973). Inhibition of methane formation
in soil by various nitrogen-containing compounds. Soil biology and
Biochemistry , 5, 673-678.
9.
Brahney, J., Mahowald, N., Ward, D.S., Ballantyne, A.P. & Neff, J.C.
(2015). Is atmospheric phosphorus pollution altering global alpine Lake
stoichiometry? Global Biogeochemical Cycles , 29, 1369-1383.
10.
Carlsen, H.N., Joergensen, L. & Degn, H. (1991). Inhibition by ammonia
of methane utilization in Methylococcus capsulatus (Bath). Applied
Microbiology and Biotechnology , 35, 124-127.
11.
Chen, W., Wolf, B., Zheng, X., Yao, Z., BUTTERBACH‐BAHL, K., Brüggemann,
N. et al. (2011). Annual methane uptake by temperate semiarid
steppes as regulated by stocking rates, aboveground plant biomass and
topsoil air permeability. Global Change Biology , 17, 2803-2816.
12.
Chen, W., Zheng, X., Chen, Q., Wolf, B., Butterbach-Bahl, K.,
Brüggemann, N. et al. (2013). Effects of increasing precipitation
and nitrogen deposition on CH4 and N2O
fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia,
China. Geoderma , 192, 335-340.
13.
Curry, C.L. (2007). Modeling the soil consumption of atmospheric methane
at the global scale. Global Biogeochemical Cycles , 21,
doi:10.1029/2006GB002818.
14.
Davidson, E.A. & Schimel, J.P. (1995). Microbial processes
production and consumption of nitrix oxide and methane . Blackwell,
Oxford, U.K.
15.
Dijkstra, F.A., Morgan, J.A., Follett, R.F. & Lecain, D.R. (2013).
Climate change reduces the net sink of CH4 and
N2O in a semiarid grassland. Global Change
Biology , 19, 1816-1826.
16.
Dunfield, P. & Knowles, R. (1995). Kinetics of inhibition of methane
oxidation by nitrate, nitrite, and ammonium in a humisol. Applied
and Environmental Microbiology , 61, 3129-3135.
17.
Fan, G.Z., Zhang, T.J., Ji, J.J., Li, K.R. & Liu, J.Y. (2007).
Numerical simulation of the carbon cycle over the Tibetan plateau,
China. Arctic Antarctic and Alpine Research , 39, 723-731.
18.
Fay, P.A., Prober, S.M., Harpole, W.S., Knops, J.M., Bakker, J.D.,
Borer, E.T. et al. (2015). Grassland productivity limited by
multiple nutrients. Nature Plants , 1, 15080.
19.
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.,
Freney, J.R. et al. (2008). Transformation of the nitrogen cycle:
recent trends, questions, and potential solutions. Science , 320,
889-892.
20.
Giese, M., Brueck, H., Gao, Y., Lin, S., Steffens, M., Kögel-Knabner, I.et al. (2013). N balance and cycling of Inner Mongolia typical
steppe: a comprehensive case study of grazing effects. Ecological
Monographs , 83, 195-219.
21.
Gulledge, J., Hrywna, Y., Cavanaugh, C. & Steudler, P.A. (2004).
Effects of long-term nitrogen fertilization on the uptake kinetics of
atmospheric methane in temperate forest soils. FEMS Microbiology
Ecology , 49, 389-400.
22.
Gulledge, J. & Schimel, J.P. (1998). Low-concentration kinetics of
atmospheric CH4 oxidation in soil and mechanism of NH4+ inhibition.Applied and Environmental Microbiology , 64, 4291-4298.
23.
Holst, J., Liu, C., Brüggemann, N., Butterbach-Bahl, K., Zheng, X.,
Wang, Y. et al. (2007). Microbial N turnover and N-oxide
(N2O/NO/NO2) fluxes in semi-arid
grassland of Inner Mongolia. Ecosystems , 10, 623-634.
24.
Hooper, D., Coughlan, J. & Mullen, M. (2008). Structural equation
modelling: Guidelines for determining model fit. The Electronic
Journal of Business Research Methods , 6, 53-60.
25.
IPCC (2013). Summary for policymakers. In: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group 1 to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change(eds. Stocker, TF, Qin, D, Plattner, GK, Tignor, M, Allen, SK, Boschung,
J et al. ) Cambridge, United Kingdom and New York, NY, USA.
26.
Kattge, J., Diaz, S., Lavorel, S., Prentice, C., Leadley, P., Bonisch,
G. et al. (2011). TRY - a global database of plant traits.Global Change Biology , 17, 2905-2935.
27.
Ladwig, L.M., Collins, S.L., Swann, A.L., Xia, Y., Allen, M.F. & Allen,
E.B. (2012). Above-and belowground responses to nitrogen addition in a
Chihuahuan Desert grassland. Oecologia , 169, 177-185.
28.
Latham, J., Cumani, R., Rosati, I. & Bloise, M. (2014). Global land
cover share (GLC-SHARE) database beta-release version 1.0-2014.FAO: Rome, Italy .
29.
Li, K., Gong, Y., Song, W., He, G., Hu, Y., Tian, C. et al.(2012). Responses of CH4, CO2 and
N2O fluxes to increasing nitrogen deposition in alpine
grassland of the Tianshan Mountains. Chemosphere , 88, 140-143.
30.
Liebig, M.A., Kronberg, S.L. & Gross, J.R. (2008). Effects of normal
and altered cattle urine on short-term greenhouse gas flux from
mixed-grass prairie in the Northern Great Plain. Agriculture
Ecosystems & Environment , 125, 57-64.
31.
Liu, L. & Greaver, T. (2009). A review of nitrogen enrichment effects
on three biogenic GHGs: the CO2 sink may be largely
offset by stimulated N2O and CH4emission. Ecology Letters , 12, 1103-1117.
32.
Liu, X., Zhang, Q., Li, S., Zhang, L. & Ren, J. (2017). Simulated
NH4+-N Deposition Inhibits
CH4 Uptake and Promotes N2O Emission in
the Meadow Steppe of Inner Mongolia, China. Pedosphere , 27,
306-317.
33.
Lund, M., Christensen, T.R., Mastepanov, M., Lindroth, A. & Ström, L.
(2009). Effects of N and P fertilization on the greenhouse gas exchange
in two northern peatlands with contrasting N deposition rates.Biogeosciences , 6, 2135-2144.
34.
Mahowald, N., Jickells, T.D., Baker, A.R., Artaxo, P., Benitez‐Nelson,
C.R., Bergametti, G. et al. (2008). Global distribution of
atmospheric phosphorus sources, concentrations and deposition rates, and
anthropogenic impacts. Global biogeochemical cycles , 22, GB4026.
35.
Mosier, A.R., Pendall, E. & Morgan, J.A. (2003). Effect of water
addition and nitrogen fertilization on the fluxes of
CH4, CO2, NOx, and N2O
following five years of elevated CO2 in the Colorado
Shortgrass Steppe. Atmospheric Chemistry and Physics , 3,
1703-1708.
36.
Nikiema, P., Rothstein, D.E., Min, D.-H. & Kapp, C.J. (2011). Nitrogen
fertilization of switchgrass increases biomass yield and improves net
greenhouse gas balance in northern Michigan, USA. Biomass and
Bioenergy , 35, 4356-4367.
37.
Penuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M.,
Bopp, L. et al. (2013). Human-induced nitrogen–phosphorus
imbalances alter natural and managed ecosystems across the globe.Nature Communications , 4, 2934.
38.
Penuelas, J., Sardans, J., Rivas-ubach, A. & Janssens, I.A. (2012). The
human-induced imbalance between C, N and P in Earth’s life system.Global Change Biology , 18, DOI: 10.1111/j.1365-2486.2011.02568.x.
39.
Phoenix, G.K., Booth, R.E., Leake, J.R., Read, D.J., Grime, J.P. & Lee,
J.A. (2003). Effects of enhanced nitrogen deposition and phosphorus
limitation on nitrogen budgets of semi‐natural grasslands. Global
Change Biology , 9, 1309-1321.
40.
Potter, C.S., Davidson, E.A. & Verchot, L.V. (1996). Estimation of
global biogeochemical controls and seasonality in soil methane
consumption. Chemosphere , 32, 2219-2246.
41.
Ridgwell, A.J., Marshall, S.J. & Gregson, K. (1999). Consumption of
atmospheric methane by soils: a process-based model. Global
Biogeochemical Cycles , 13, 59-70.
42.
Schnell, S. & King, G.M. (1994). Mechanistic analysis of ammonium
inhibition of atmospheric methane consumption in forest soils.Applied and Environmental Microbiology , 60, 3514-3521.
43.
Singh, J.S. & Strong, P. (2016). Biologically derived fertilizer: a
multifaceted bio-tool in methane mitigation. Ecotoxicology and
environmental safety , 124, 267-276.
44.
Song, C., Xu, X., Tian, H. & Wang, Y. (2009). Ecosystem-atmosphere
exchange of CH4 and N2O and ecosystem
respiration in wetlands in the Sanjiang Plain, Northeastern China.Global Change Biology , 15, 692-705.
45.
Templer, P.H., Pinder, R.W. & Goodale, C.L. (2012). Effects of nitrogen
deposition on greenhouse-gas fluxes for forests and grasslands of North
America. Frontiers in Ecology and the Environment , 10, 547-553.
46.
Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B. et al.(2015). Global methane and nitrous oxide emissions from terrestrial
ecosystems due to multiple environmental changes. Ecosystem Health
and Sustainability , 1, art4.
47.
Veraart, A.J., Steenbergh, A.K., Ho, A., Kim, S.Y. & Bodelier, P.L.
(2015). Beyond nitrogen: the importance of phosphorus for
CH4 oxidation in soils and sediments. Geoderma ,
259, 337-346.
48.
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D., Boucher, O., Ciais,
P. et al. (2017). Global forest carbon uptake due to nitrogen and
phosphorus deposition from 1850 to 2100. Global change biology ,
23, 4854-4872.
49.
Wang, Y., Cheng, S., Fang, H., Yu, G., Xu, X., Xu, M. et al.(2015). Contrasting effects of ammonium and nitrate inputs on soil
CO2 emission in a subtropical coniferous plantation of
southern China. Biology and Fertility of Soils , 51, 815-825.
50.
Wu, M.-Y., Niu, S.-L. & Wan, S.-Q. (2010). Contrasting effects of
clipping and nutrient addition on reproductive traits of Heteropappus
altaicus at the individual and population levels. Ecological
research , 25, 867-874.
51.
Xu, X. (2010). Modeling methane and nitrous oxide exchanges between the
atmosphere and terrestrial ecosystems over North America in the context
of multifactor global change. In: School of Forestry and Wildlife
Sciences . Auburn University Auburn, p. 199.
52.
Xu, X., Thornton, P.E. & Post, W.M. (2013). A global analysis of soil
microbial biomass carbon, nitrogen and phosphorus in terrestrial
ecosystems. Global Ecology and Biogeography , 22, 737-749.
53.
Xu, X., Yuan, F., Hanson, P.J., Wullschleger, S.D., Thornton, P.E.,
Riley, W.J. et al. (2016). Review and Synthesis: Four decades of
modeling methane cycling within terrestrial ecosystems.Biogeosciences , 13, 3735-3755.
54.
Xu, X.F., Tian, H.Q., Zhang, C., Liu, M.L., Ren, W., Chen, G.S. et
al. (2010). Attribution of spatial and temporal variations in
terrestrial methane flux over North America. Biogeosciences , 7,
3637-3655.
55.
Yu, L., Huang, Y., Zhang, W., Li, T. & Sun, W. (2017). Methane uptake
in global forest and grassland soils from 1981 to 2010. Science of
The Total Environment , 607, 1163-1172.
56.
Yue, P., Li, K., Gong, Y., Hu, Y., Mohammat, A., Christie, P. et
al. (2016). A five-year study of the impact of nitrogen addition on
methane uptake in alpine grassland. Scientific Reports , 6, 32064.
57.
Zhang, L., Hou, L., Guo, D., Li, L. & Xu, X. (2017). Interactive
impacts of nitrogen input and water amendment on growing season fluxes
of CO2, CH4, and N2O in
a semiarid grassland, Northern China. Science of The Total
Environment , 578, 523-534.
58.
Zhang, L., Huo, Y., Guo, D., Wang, Q., Bao, Y. & Li, L. (2014). Effects
of Multi-nutrient Additions on GHG Fluxes in a Temperate Grassland of
Northern China. Ecosystems , 17, 657-672.
59.
Zhang, T., Zhu, W., Mo, J., Liu, L. & Dong, S. (2011). Increased
phosphorus availability mitigates the inhibition of nitrogen deposition
on CH4 uptake in an old-growth tropical forest, southern
China. Biogeosciences , 8, 2805-2813.
60.
Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y. et
al. (2013). Response of global soil consumption of atmospheric methane
to changes in atmospheric climate and nitrogen deposition. Global
Biogeochemical Cycles , 27, 650-663.