References
[1] Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of
mortality due to COVID-19 based on an analysis of data of 150 patients
from Wuhan, China. Intensive Care Med 2020:1–3.
doi:10.1007/s00134-020-05991-x.
[2] Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of
Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl
J Med 2020:NEJMoa2001282. doi:10.1056/NEJMoa2001282.
[3] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course
and risk factors for mortality of adult inpatients with COVID-19 in
Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.
doi:10.1016/S0140-6736(20)30566-3.
[4] Li N, Ma W-T, Pang M, Fan Q-L, Hua J-L. The Commensal Microbiota
and Viral Infection: A Comprehensive Review. Front Immunol 2019;10:1551.
doi:10.3389/fimmu.2019.01551.
[5] Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung
axis. Mucosal Immunol 2019;12:843–50. doi:10.1038/s41385-019-0160-6.
[6] Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered?
Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell
2016;164:337–40. doi:10.1016/j.cell.2016.01.013.
[7] Brown JM, Hazen SL. Targeting of microbe-derived metabolites to
improve human health: The next frontier for drug discovery. J Biol Chem
2017:8560–8. doi:10.1074/jbc.R116.765388.
[8] Grice EA, Segre JA. The Human Microbiome: Our Second Genome.
Annu Rev Genomics Hum Genet 2012;13:151–70.
doi:10.1146/annurev-genom-090711-163814.
[9] Shogbesan O, Poudel DR, Victor S, Jehangir A, Fadahunsi O,
Shogbesan G, et al. A Systematic Review of the Efficacy and Safety of
Fecal Microbiota Transplant for Clostridium difficile Infection in
Immunocompromised Patients. Can J Gastroenterol Hepatol
2018;2018:1394379. doi:10.1155/2018/1394379.
[10] Strachan DP. Hay fever, hygiene, and household size. BMJ
1989;299:1259–60. doi:10.1136/bmj.299.6710.1259.
[11] Shreiner A, Huffnagle GB, Noverr MC. The “Microflora
Hypothesis” of Allergic Disease. Adv Exp Med Biol 2008;635:113–34.
[12] Waterhouse J. Post-hunter-gatherer era microbes’ role in
allergic/autoimmune disease. Authorea Prepr 2020.
doi:10.22541/AU.158035512.24828861.
[13] Preliminary Estimates of the Prevalence of Selected Underlying
Health Conditions Among Patients with Coronavirus Disease 2019 —
United States, February 12–March 28, 2020. MMWR Morb Mortal Wkly Rep
2020;69:382–386. doi:10.15585/mmwr.mm6913e2external icon.
[14] Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et
al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin:
Friends or Foes? Front Immunol 2018;8:1960.
doi:10.3389/fimmu.2017.01960.
[15] Du Y, Li X, Su C, Wang L, Jiang J, Hong B. The human gut
microbiome – a new and exciting avenue in cardiovascular drug
discovery. Expert Opin Drug Discov 2019;14:1037–52.
doi:10.1080/17460441.2019.1638909.
[16] Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the
gut-lung axis: the therapeutic potential of fibre. J Thorac Dis
2019;11:S2173–80. doi:10.21037/jtd.2019.10.40.
[17] Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood
microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev
2015;39:567–91. doi:10.1093/femsre/fuv013.
[18] Dickson RP, Martinez FJ, Huffnagle GB. The Role of the
Microbiome in Exacerbations of Chronic Lung Diseases. Lancet
2014;384:691–702. doi:10.1016/s0140-6736(14)61136-3.
[19] Yitbarek A, Taha-Abdelaziz K, Hodgins DC, Read L, Nagy É, Weese
JS, et al. Gut microbiota-mediated protection against influenza virus
subtype H9N2 in chickens is associated with modulation of the innate
responses. Sci Rep 2018;8:1–12. doi:10.1038/s41598-018-31613-0.
[20] Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U,
et al. The microbial metabolite desaminotyrosine protects from influenza
through type I interferon. Science (80- ) 2017;357:498–502.
doi:10.1126/science.aam5336.
[21] Ji J, Sun Q, Wang Q, Zhang H, Qin F, Wang Q, et al. Probiotics
Confers Protection Against RSV Infections by Regulating Gut and Lung
Microbiotas to Activate Antiviral Responses of Alveolar Macrophage. SSRN
Prepr 2019. doi:10.2139/ssrn.3471990.
[22] Liu X-R, Xu Q, Xiao J, Deng Y-M, Tang Z-H, Tang Y-L, et al.
Role of oral microbiota in atherosclerosis. Clin Chim Acta
2020;506:191–5. doi:10.1016/j.cca.2020.03.033.
[23] Joshi R, Khandelwal B, Joshi D, Gupta OP. Chlamydophila
Pneumoniae Infection and Cardiovascular Disease. N Am J Med Sci
2013;5:169–81. doi:10.4103/1947-2714.109178.
[24] Zhang D, Li S, Wang N, Tan H-Y, Zhang Z, Feng Y. The Cross-Talk
Between Gut Microbiota and Lungs in Common Lung Diseases. Front
Microbiol 2020;11:301. doi:10.3389/fmicb.2020.00301.
[25] Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in
treatment of type 2 diabetes mellitus. Gut Microbes 2020;2020:1–12.
doi:10.1080/19490976.2020.1717719.
[26] Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T,
Koyasu S, et al. Inflammation, But Not Telomere Length, Predicts
Successful Ageing at Extreme Old Age: A Longitudinal Study of
Semi-supercentenarians. EBioMedicine 2015;2:1549–58.
doi:10.1016/j.ebiom.2015.07.029.
[27] Beharka AA, Meydani M, Wu D, Leka LS, Meydani A, Meydani SN.
Interleukin-6 Production Does Not Increase With Age. J Gerontol A Biol
Sci Med Sci 2001;56:B81–8. doi:10.1093/gerona/56.2.B81.
[28] Ward-Caviness CK, Weaver AM, Buranosky M, Pfaff ER, Neas LM,
Devlin RB, et al. Associations Between Long-Term Fine Particulate Matter
Exposure and Mortality in Heart Failure Patients. J Am Hear Assoc
2020;9:e012517. doi:10.1161/JAHA.119.012517.
[29] Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL,
Donaldson K, et al. Global association of air pollution and heart
failure: a systematic review and meta-analysis. Lancet
2013;382:1039–48. doi:10.1016/S0140-6736(13)60898-3.
[30] Requia WJ, Adams MD, Arain A, Papatheodorou S, Koutrakis P,
Mahmoud M. Global Association of Air Pollution and Cardiorespiratory
Diseases: A Systematic Review, Meta-Analysis, and Investigation of
Modifier Variables. Am J Public Health 2018;108:S123-s130.
doi:10.2105/AJPH.2017.303839.
[31] Qin T, Zhang F, Zhou H, Ren H, Du Y, Liang S, et al. High-Level
PM2.5/PM10 Exposure Is Associated With Alterations in the Human
Pharyngeal Microbiota Composition. Front Microbiol 2019;10:54.
doi:10.3389/fmicb.2019.00054.
[32] Su Y-C, Jalalvand F, Thegerström J, Riesbeck K. The Interplay
Between Immune Response and Bacterial Infection in COPD: Focus Upon
Non-typeable Haemophilus influenzae. Front Immunol 2018;9:2530.
doi:10.3389/fimmu.2018.02530.
[33] Samek L. Overall human mortality and morbidity due to exposure
to air pollution. Int J Occup Med Environ Health 2016;29:417–26.
doi:10.13075/ijomeh.1896.00560.
[34] Croft DP, Zhang W, Lin S, Thurston SW, Hopke PK, Masiol M, et
al. The Association between Respiratory Infection and Air Pollution in
the Setting of Air Quality Policy and Economic Change. Ann Am Thorac Soc
2019;16:321–30. doi:10.1513/AnnalsATS.201810-691OC.
[35] Babatola SS. Global burden of diseases attributable to air
pollution. J Public Health Africa 2018;9:813.
doi:10.4081/jphia.2018.813.
[36] Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to
air pollution and COVID-19 mortality in the United States. MedRxiv Prepr
2020. doi:10.1101/2020.04.05.20054502.
[37] Conticini E, Frediani B, Caro D. Can atmospheric pollution be
considered a co-factor in extremely high level of SARS-CoV-2 lethality
in Northern Italy? Environ Pollut 2020;2020:114465.
doi:10.1016/j.envpol.2020.114465.
[38] Rossati A. Global Warming and Its Health Impact. Int J Occup
Environ Med 2017;8:7–20. doi:10.15171/ijoem.2017.963.
[39] Zinöcker MK, Lindseth IA. The Western Diet-Microbiome-Host
Interaction and Its Role in Metabolic Disease. Nutrients 2018;10:365.
doi:10.3390/nu10030365.
[40] Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of
Obesity And Civilization Diseases. Diabetes Metab Syndr Obes
2019;12:2221–36. doi:10.2147/DMSO.S216791.
[41] Keller KB, Lemberg L. Obesity and the metabolic syndrome. Am J
Crit Care 2003;12:167–70.
[42] Guilleminault L, Williams EJ, Scott HA, Berthon BS, Jensen M,
Wood LG. Diet and Asthma: Is It Time to Adapt Our Message? Nutrients
2017;9:1227. doi:10.3390/nu9111227.
[43] Hallberg SJ, Gershuni VM, Hazbun TL, Athinarayanan SJ.
Reversing Type 2 Diabetes: A Narrative Review of the Evidence. Nutrients
2019;11:766. doi:10.3390/nu11040766.
[44] Ornish D, Brown SE, Scherwitz LW, Billings JH, Armstrong WT,
Ports TA, et al. Can lifestyle changes reverse coronary heart disease?
The Lifestyle Heart Trial. Lancet 1990;336:129–33.
doi:10.1016/0140-6736(90)91656-u.
[45] Scoditti E, Massaro M, Garbarino S, Toraldo DM. Role of Diet in
Chronic Obstructive Pulmonary Disease Prevention and Treatment.
Nutrients 2019;11:1357. doi:10.3390/nu11061357.
[46] Khaodhiar L, Ling P, Blackburn G, Bistrian B. Serum Levels of
interleukin-6 and C-reactive Protein Correlate With Body Mass Index
Across the Broad Range of Obesity. JPEN J Parenter Enteral Nutr
2004;28:410–5. doi:10.1177/0148607104028006410.
[47] Selvin E, Paynter NP, Erlinger TP. The Effect of Weight Loss on
C-Reactive Protein: A Systematic Review. Arch Intern Med 2007;167:31–9.
doi:10.1001/archinte.167.1.31.
[48] Smidowicz A, Regula J. Effect of Nutritional Status and Dietary
Patterns on Human Serum C-Reactive Protein and Interleukin-6
Concentrations. Adv Nutr 2015;6:738–47. doi:10.3945/an.115.009415.
[49] Ornish D. Avoiding revascularization with lifestyle changes:
The Multicenter Lifestyle Demonstration Project. Am J Cardiol
1998;82:72T-76T. doi:10.1016/s0002-9149(98)00744-9.
[50] Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H,
Ilanne-Parikka P, et al. Prevention of Type 2 Diabetes Mellitus by
Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N
Engl J Med 2001;344:1343–50. doi:10.1056/NEJM200105033441801.
[51] Chiba M, Ishii H, Komatsu M. Recommendation of plant-based
diets for inflammatory bowel disease. Transl Pediatr 2019;8:23–7.
doi:10.21037/tp.2018.12.02.
[52] Jethwa H, Prince M, Bukhari M, Abraham S. The evidence for
dietary manipulation in inflammatory arthritis. Int J Clin Rheumtol
2019;14:190–9.
[53] Sebastiani G, Barbero AH, Borrás-Novell C, Casanova MA,
Aldecoa-Bilbao V, Andreu-Fernández V, et al. The Effects of Vegetarian
and Vegan Diet during Pregnancy on the Health of Mothers and Offspring.
Nutrients 2019;11:557. doi:10.3390/nu11030557.
[54] De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo
N, Siragusa S, et al. Diet influences the functions of the human
intestinal microbiome. Sci Rep 2020;10:4247.
doi:10.1038/s41598-020-61192-y.
[55] Morrison KE, Jašarević E, Howard CD, Bale TL. It’s the fiber,
not the fat: significant effects of dietary challenge on the gut
microbiome. Microbiome 2020;8:15. doi:10.1186/s40168-020-0791-6.
[56] Vereecke L, Elewaut D. Spondyloarthropathies: Ruminococcus on
the horizon in arthritic disease. Nat Rev Rheumatol 2017;13:574–6.
doi:10.1038/nrrheum.2017.130.
[57] Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes
and pathways in inflammatory bowel disease. Nat Rev Microbiol
2019;17:497–511. doi:10.1038/s41579-019-0213-6.
[58] Toya T, Corban MT, Marrietta E, Horwath IE, Lerman LO, Murray
JA, et al. Coronary artery disease is associated with an altered gut
microbiome composition. PLoS One 2020;15:e0227147.
doi:10.1371/journal.pone.0227147.
[59] Meslier V, Laiola M, Roager HM, De Filippis F, Roume H,
Quinquis B, et al. Mediterranean diet intervention in overweight and
obese subjects lowers plasma cholesterol and causes changes in the gut
microbiome and metabolome independently of energy intake. Gut
2020;2020:gutjnl-2019-320438. doi:10.1136/gutjnl-2019-320438.
[60] Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, et al.
A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease
patients. Genome Med 2017;9:103. doi:10.1186/s13073-017-0490-5.
[61] Vieira SM, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C,
Khan N, et al. Translocation of a gut pathobiont drives autoimmunity in
mice and humans. Science 2018;359:1156–61. doi:10.1126/science.aar7201.
[62] Fine RL, Manfredo Vieira S, Gilmore MS, Kriegel MA. Mechanisms
and consequences of gut commensal translocation in chronic diseases. Gut
Microbes 2020;11:217–30. doi:10.1080/19490976.2019.1629236.
[63] Wypych TP, Marsland BJ, Ubags NDJ. The Impact of Diet on
Immunity and Respiratory Diseases. Ann Am Thorac Soc
2017;14(S_5):S339–47. doi:10.1513/AnnalsATS.201703-255AW.
[64] Bailey MA, Holscher HD. Microbiome-Mediated Effects of the
Mediterranean Diet on Inflammation. Adv Nutr 2018;9:193–206.
doi:10.1093/advances/nmy013.
[65] Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG,
Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on
Cross-Reactivity against Candida albicans. Cell 2019;176:1340-1355.e15.
doi:10.1016/j.cell.2019.01.041.
[66] Hills RD, Jr., Pontefract BA, Mishcon HR, Black CA, Sutton SC,
et al. Gut Microbiome: Profound Implications for Diet and Disease.
Nutrients 2019;11:1613. doi:10.3390/nu11071613.
[67] Kumamoto CA. Inflammation and gastrointestinal Candida
colonization. Curr Opin Microbiol 2011;14:386–391.
doi:10.1016/j.mib.2011.07.015.
[68] Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome
and epithelial interactions shape immunity in the lungs. Immunology
2020:10.1111/imm.13195. doi:10.1111/IMM.13195.
[69] Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY,
et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight
Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food
Intake. Cell Metab 2019;30:67-77.e3. doi:10.1016/j.cmet.2019.05.008.
[70] Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J,
Ioannidis JPA, et al. Effect of Low-Fat vs Low-Carbohydrate Diet on
12-Month Weight Loss in Overweight Adults and the Association With
Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical
Trial. JAMA 2018;319:667–79. doi:10.1001/jama.2018.0245.
[71] Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger
A, et al. Personalized Nutrition by Prediction of Glycemic Responses.
Cell 2015;163:1079–94. doi:10.1016/j.cell.2015.11.001.
[72] Elinav E, Segal E, Adamson E. The personalized diet : the
pioneering program to lose weight and prevent disease. 1st ed. NY, NY:
Grand Central Publishing,; 2017.
[73] Lee SA, Sypniewski C, Bensadon BA, McLaren C, Donahoo WT,
Sibille KT, et al. Determinants of Adherence in Time-Restricted Feeding
in Older Adults: Lessons from a Pilot Study. Nutrients 2020;12:E874.
doi:10.3390/nu12030874.
[74] Wei S, Zhao J, Bai M, Li C, Zhang L, Chen Y. Comparison of
glycemic improvement between intermittent calorie restriction and
continuous calorie restriction in diabetic mice. Nutr Metab (Lond)
2019;16:60. doi:10.1186/s12986-019-0388-x.
[75] Longo VD, Juventology S. Programmed longevity, youthspan, and
juventology. Aging Cell 2019;18:e12843. doi:10.1111/acel.12843.
[76] Longo VD, Panda S. Fasting, circadian rhythms, and time
restricted feeding in healthy lifespan. Cell Metab 2016;23:1048–59.
doi:10.1016/j.cmet.2016.06.001.
[77] Longo V. Longevity Diet : slow aging, fight disease, optimize
weight. NY, NY: Avery Pub Group; 2019.
[78] Cheng C-W, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et
al. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to
reverse diabetes. Cell 2017;168:775-788.e12.
doi:10.1016/j.cell.2017.01.040.
[79] Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, et
al. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal
Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep
2019;26:2704-2719.e6. doi:10.1016/j.celrep.2019.02.019.
[80] Buric I, Farias M, Jong J, Mee C, Brazil IA. What Is the
Molecular Signature of Mind–Body Interventions? A Systematic Review of
Gene Expression Changes Induced by Meditation and Related Practices.
Front Immunol 2017;8:670. doi:10.3389/FIMMU.2017.00670.
[81] Pedersen A, Zachariae R, Bovbjerg DH. Influence of
Psychological Stress on Upper Respiratory Infection—A Meta-Analysis of
Prospective Studies. Psychosom Med 2010;72:823–32.
doi:10.1097/PSY.0b013e3181f1d003.
[82] Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of
stress and neuroinflammation. Neurobiol Stress 2016;4:23–33.
doi:10.1016/j.ynstr.2016.03.001.
[83] Dragoş D, Tănăsescu M. The effect of stress on the defense
systems. J Med Life 2010;3:10–8.
[84] Richmond BW, Brucker RM, Han W, Du R-H, Zhang Y, Cheng D-S, et
al. Airway bacteria drive a progressive COPD-like phenotype in mice with
polymeric immunoglobulin receptor deficiency. Nat Commun 2016;7:11240.
doi:10.1038/ncomms11240.
[85] Fessell D, Cherniss C. Coronavirus Disease 2019 (COVID-19) and
Beyond: Micropractices for Burnout Prevention and Emotional Wellness. J
Am Coll Radiol 2020;S1545-1440. doi:10.1016/j.jacr.2020.03.013.
[86] Ma X, Yue Z-Q, Gong Z-Q, Zhang H, Duan N-Y, Shi Y-T, et al. The
Effect of Diaphragmatic Breathing on Attention, Negative Affect and
Stress in Healthy Adults. Front Psychol 2017;8:874.
doi:10.3389/fpsyg.2017.00874.
[87] Lavretsky H, Newhouse PA. Stress, Inflammation and Aging. Am J
Geriatr Psychiatry 2012;20:729–733. doi:10.1097/JGP.0b013e31826573cf.
[88] Yiallouris A, Tsioutis C, Agapidaki E, Zafeiri M, Agouridis AP,
Ntourakis D, et al. Adrenal Aging and Its Implications on Stress
Responsiveness in Humans. Front Endocrinol (Lausanne) 2019;10:54.
doi:10.3389/fendo.2019.00054.
[89] Yan Y-X, Xiao H-B, Wang S-S, Zhao J, He Y, Wang W, et al.
Investigation of the Relationship Between Chronic Stress and Insulin
Resistance in a Chinese Population. J Epidemiol 2016;26:355–360.
doi:10.2188/jea.JE20150183.
[90] Yeager MP, Pioli PA, Guyre PM. Cortisol Exerts Bi-Phasic
Regulation of Inflammation in Humans. Dose-Response 2011;9:332=347.
doi:10.2203/dose-response.10-013.Yeager.
[91] Yeager MP, Guyre CA, Sites BD, Collins JE, Pioli PA, Guyre PM.
The Stress Hormone Cortisol Enhances Interferon-υ–Mediated
Proinflammatory Responses of Human Immune Cells. Anesth Analg
2018;127:556–63. doi:10.1213/ANE.0000000000003481.
[92] Manalai P, Hamilton RG, Langenberg P, Kosisky SE, Lapidus M,
Sleemi A, et al. Pollen-specific immunoglobulin E positivity is
associated with worsening of depression scores in bipolar disorder
patients during high pollen season. Bipolar Disord 2012;14:90–8.
doi:10.1111/j.1399-5618.2012.00983.x.
[93] Kelly K, Ratliff S, Mezuk B. Allergies, asthma, and
psychopathology in a nationally-representative US sample. J Affect
Disord 2019;251:130–5. doi:10.1016/j.jad.2019.03.026.
[94] Costa-Pinto FA, Basso AS, Britto LRG, Malucelli BE, Russo M.
Avoidance behavior and neural correlates of allergen exposure in a
murine model of asthma. Brain Behav Immun 2005;19:52–60.
doi:10.1016/j.bbi.2004.02.005.
[95] Tonelli LH, Katz M, Kovacsics CE, Gould TD, Joppy B, Hoshino A,
et al. Allergic rhinitis induces anxiety-like behavior and altered
social interaction in rodents. Brain Behav Immun 2009;23:784–93.
doi:10.1016/j.bbi.2009.02.017.
[96] Monda V, Villano I, Messina A, Valenzano A, Esposito T,
Moscatelli F, et al. Exercise Modifies the Gut Microbiota with Positive
Health Effects. Oxid Med Cell Longev 2017;2017:3831972.
doi:10.1155/2017/3831972.
[97] de Souto Barreto P, Rolland Y, Vellas B, Maltais M. Association
of Long-term Exercise Training With Risk of Falls, Fractures,
Hospitalizations, and Mortality in Older Adults: A Systematic Review and
Meta-analysis. JAMA Intern Med 2019;179:394–405.
doi:10.1001/jamainternmed.2018.5406.
[98] Kraus W, Powell K, Haskell W, Janz K, Campbell W, Jakicic J, et
al. Physical Activity, All-Cause and Cardiovascular Mortality, and
Cardiovascular Disease. Med Sci Sports Exerc 2019;51:1270–81.
doi:10.1249/MSS.0000000000001939.
[99] Hart PD, Benavidez G, Erickson J. Meeting Recommended Levels of
Physical Activity in Relation to Preventive Health Behavior and Health
Status Among Adults. J Prev Med Public Heal 2017;50:10–7.
doi:10.3961/jpmph.16.080.
[100] Clark A, Mach N. Exercise-induced stress behavior,
gut-microbiota-brain axis and diet: a systematic review for athletes. J
Int Soc Sports Nutr 2016;13:43. doi:10.1186/s12970-016-0155-6.
[101] Felger JC, Treadway MT. Inflammation Effects on Motivation and
Motor Activity: Role of Dopamine. Neuropsychopharmacology
2017;42:216–41. doi:10.1038/npp.2016.143.
[102] Cui H, Kong Y, Zhang H. Oxidative Stress, Mitochondrial
Dysfunction, and Aging. J Signal Transduct 2012;2012:646354.
doi:10.1155/2012/646354.
[103] Cavaliere G, Trinchese G, Penna E, Cimmino F, Pirozzi C, Lama
A, et al. High-Fat Diet Induces Neuroinflammation and Mitochondrial
Impairment in Mice Cerebral Cortex and Synaptic Fraction. Front Cell
Neurosci 2019;13:509. doi:10.3389/fncel.2019.00509.
[104] Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J,
Lapidus J, et al. Gut Microbiome Pattern Reflects Healthy Aging and
Predicts Extended Survival in Humans. BioRxiv Prepr 2020.
doi:10.1101/2020.02.26.966747.
[105] Hermans MAW, Lennep JER van, Daele PLA van, Bot I. Mast Cells
in Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci
2019;20:3395. doi:10.3390/ijms20143395.
[106] Shi MA, Shi G-P. Different Roles of Mast Cells in Obesity and
Diabetes: Lessons from Experimental Animals and Humans. Front Immunol
2012;3:7. doi:10.3389/fimmu.2012.00007.
[107] Andersson CK, Mori M, Bjermer L, Löfdahl C-G, Erjefält JS.
Alterations in Lung Mast Cell Populations in Patients with Chronic
Obstructive Pulmonary Disease. Am J Respir Crit Care Med
2010;181:206–17. doi:10.1164/rccm.200906-0932OC.
[108] Theoharides TC, Sismanopoulos N, Delivanis D-A, Zhang B,
Hatziagelaki EE, Kalogeromitros D. Mast cells squeeze the heart and
stretch the gird: their role in atherosclerosis and obesity. Trends
Pharmacol Sci 2011;32:534–42. doi:10.1016/j.tips.2011.05.005.
[109] Li M, Liu K, Michalicek J, Angus JA, Hunt JE, Dell’Italia LJ,
et al. Involvement of chymase-mediated angiotensin II generation in
blood pressure regulation. J Clin Invest 2004;114:112–20.
doi:10.1172/JCI20805.
[110] Becker BF. All because of the mast cell: blocking the
angiotensin receptor-1 should be better than inhibiting ACE
(theoretically). Cardiovasc Res 2011;92:7–9. doi:10.1093/cvr/cvr214.
[111] Gideon A, Sauter C, Fieres J, Berger T, Renner B, Wirtz PH.
Kinetics and Interrelations of the Renin Aldosterone Response to Acute
Psychosocial Stress: A Neglected Stress System. J Clin Endocrinol Metab
2020;105:e762–73. doi:10.1210/clinem/dgz190.
[112] Ayada C, Toru Ü, Korkut Y. The relationship of stress and
blood pressure effectors. Hippokratia 2015;19:99–108.
[113] Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al.
Clinical and biochemical indexes from 2019-nCoV infected patients linked
to viral loads and lung injury. Sci China Life Sci 2020;63:364–74.
doi:10.1007/s11427-020-1643-8.
[114] Mancini E, Fürst J. View: “Scorched Earth” strategy: The RAS
as possible target for treating COVID-19 patients with a combination of
three approved pharmaceutical agents. Figshare Prepr 2020.
doi:10.13140/RG.2.2.35010.94400.
[115] Satou R, Penrose H, Navar LG. Inflammation as a Regulator of
the Renin-Angiotensin System and Blood Pressure. Curr Hypertens Rep
2018;20:100. doi:10.1007/s11906-018-0900-0.
[116] El-Haggar SM, Farrag WF, Kotkata FA. Effect of ketotifen in
obese patients with type 2 diabetes mellitus. J Diabetes Complications
2015;29:427–32. doi:10.1016/j.jdiacomp.2015.01.013.
[117] Sismanopoulos N, Delivanis D-A, Mavrommati D, Hatziagelaki E,
Conti P, Theoharides TC. Do mast cells link obesity and asthma? Allergy
2013;68:8–15. doi:10.1111/all.12043.
[118] Piliponsky AM, Acharya M, Shubin NJ. Mast Cells in Viral,
Bacterial, and Fungal Infection Immunity. Int J Mol Sci 2019;20:E2851.
doi:10.3390/ijms20122851.
[119] Kritas SK, Ronconi G, Caraffa A, Gallenga CE, Ross R, Conti P.
Mast Cells Contribute to Coronavirus-Induced Inflammation: New
Anti-Inflammatory Strategy. J Biol Regul Homeost Agents
2020;34:10.23812/20-Editorial-Kritas. doi:10.23812/20-Editorial-Kritas.
[120] Corley MJ, Sugai C, Schotsaert M, Schwartz RE, Ndhlovu LC.
Comparative in vitro transcriptomic analyses of COVID-19 candidate
therapy hydroxychloroquine suggest limited immunomodulatory evidence of
SARS-CoV-2 host response genes. BioRxiv Prepr 2020.
doi:10.1101/2020.04.13.039263.
[121] Graham AC, Temple RM, Obar JJ. Mast Cells and Influenza A
Virus: Association with Allergic Responses and Beyond. Front Immunol
2015;6:238. doi:10.3389/fimmu.2015.00238.
[122] Han D, Wei T, Zhang S, Wang M, Tian H, Cheng J, et al. The
therapeutic effects of sodium cromoglycate against influenza A virus
H5N1 in mice. Influ Other Respir Viruses 2016;10:57–66.
doi:10.1111/irv.12334.
[123] Hu Y, Jin Y, Han D, Zhang G, Cao S, Xie J, et al. Mast
Cell-Induced Lung Injury in Mice Infected with H5N1 Influenza Virus. J
Virol 2012;86:3347–56. doi:10.1128/JVI.06053-11.
[124] Liebler JM, Qu Z, Buckner B, Powers MR, Rosenbaum JT.
Fibroproliferation and mast cells in the acute respiratory distress
syndrome. Thorax 1998;53:823–9. doi:10.1136/thx.53.10.823.
[125] Overed-Sayer C, Rapley L, Mustelin T, Clarke DL. Are mast
cells instrumental for fibrotic diseases? Front Pharmacol 2014;4:174.
doi:10.3389/fphar.2013.00174.
[126] Keith P, Day M, Perkins L, Moyer L, Hewitt K, Wells A. A novel
treatment approach to the novel coronavirus: an argument for the use of
therapeutic plasma exchange for fulminant COVID-19. Crit Care
2020;24:128. doi:10.1186/s13054-020-2836-4.
[127] Dahdah A, Gautier G, Attout T, Fiore F, Lebourdais E, Msallam
R, et al. Mast cells aggravate sepsis by inhibiting peritoneal
macrophage phagocytosis. J Clin Invest 2014;124:4577–89.
doi:10.1172/JCI75212.
[128] Ramos L, Peña G, Cai B, Deitch EA, Ulloa L. Mast Cell
Stabilization Improves Survival by Preventing Apoptosis in Sepsis. J
Immunol 2010;185:709–16. doi:10.4049/jimmunol.1000273.
[129] Byrne K, Sielaff TD, Michna B, Carey PD, Blocher CR, Vasquez
A, et al. Increased Survival Time After Delayed Histamine and
Prostaglandin Blockade in a Porcine Model of Severe Sepsis-Induced Lung
Injury. Crit Care Med 1990;18:303–8.
doi:10.1097/00003246-199003000-00012.
[130] Seeley EJ, Sutherland RE, Kim SS, Wolters PJ. Systemic mast
cell degranulation increases mortality during polymicrobial septic
peritonitis in mice. J Leukoc Biol 2011;90:591–7.
doi:10.1189/jlb.0910531.
[131] Seeley EJ, Matthay MA, Wolters PJ. Inflection points in sepsis
biology: from local defense to systemic organ injury. Am J Physiol -
Lung Cell Mol Physiol 2012;303:L355-63. doi:10.1152/ajplung.00069.2012.
[132] Ho T-W, Huang C-T, Ruan S-Y, Tsai Y-J, Lai F, Yu C-J. Diabetes
mellitus in patients with chronic obstructive pulmonary disease-The
impact on mortality. PLoS One 2017;12:e0175794.
doi:10.1371/journal.pone.0175794.
[133] Morgan AD, Zakeri R, Quint JK. Defining the relationship
between COPD and CVD: what are the implications for clinical practice?
Ther Adv Respir Dis 2018;12:1753465817750524.
doi:10.1177/1753465817750524.
[134] Holt JB, Zhang X, Presley-Cantrell L, Croft JB. Geographic
disparities in chronic obstructive pulmonary disease (COPD)
hospitalization among Medicare beneficiaries in the United States. Int J
Chron Obstruct Pulmon Dis 2011;6:321–8. doi:10.2147/COPD.S19945.
[135] Halvorsen T, Martinussen P. The Geography of Chronic
Obstructive Pulmonary Disease: A Population-Based Study of Norway. Soc
Sci Med 2014;111:25–34. doi:10.1016/j.socscimed.2014.03.018.
[136] Huang X, Mu X, Deng L, Fu A, Pu E, Tang T, et al. The
etiologic origins for chronic obstructive pulmonary disease. Int J Chron
Obstruct Pulmon Dis 2019;14:1139–58. doi:10.2147/COPD.S203215.
[137] Jaakkola MS, Lajunen TK, Jaakkola JJK. Indoor mold odor in the
workplace increases the risk of Asthma-COPD Overlap Syndrome: a
population-based incident case–control study. Clin Transl Allergy
2020;10:3. doi:10.1186/s13601-019-0307-2.
[138] Tzortzaki EG, Proklou A, Siafakas NM. Asthma in the Elderly:
Can We Distinguish It from COPD? J Allergy 2011;2011:843543.
doi:10.1155/2011/843543.
[139] To T, Zhu J, Larsen K, Simatovic J, Feldman L, Ryckman K, et
al. Progression from Asthma to Chronic Obstructive Pulmonary Disease. Is
Air Pollution a Risk Factor? Am J Respir Crit Care Med 2016;194:429–38.
doi:10.1164/rccm.201510-1932OC.
[140] Veil-Picard M, Soumagne T, Vongthilath R, Annesi-Maesano I,
Guillien A, Laurent L, et al. Is atopy a risk indicator of chronic
obstructive pulmonary disease in dairy farmers? Respir Res 2019;20:124.
doi:10.1186/s12931-019-1082-2.
[141] Eguiluz-Gracia I, Pérez-Sánchez N, Bogas G, Campo P, Rondón C.
How to Diagnose and Treat Local Allergic Rhinitis: A Challenge for
Clinicians. J Clin Med 2019;8:1062. doi:10.3390/jcm8071062.
[142] Baptist AP, Nyenhuis S. Rhinitis in the elderly. Immunol
Allergy Clin North Am 2016;36:343–57. doi:10.1016/j.iac.2015.12.010.
[143] Wright BL, Kulis M, Guo R, Orgel KA, Wolf WA, Burks AW, et al.
Food-specific IgG4 is associated with eosinophilic esophagitis. J
Allergy Clin Immunol 2016;138:1190-1192.e3.
doi:10.1016/j.jaci.2016.02.024.
[144] Trost B, Lucchese G, Stufano A, Bickis M, Kusalik A, Kanduc D.
No human protein is exempt from bacterial motifs, not even one. Self
Nonself 2010;1:328–34. doi:10.4161/self.1.4.13315.
[145] Perelmutter L, Potvin L, Phipps P. lmmunoglobulin E response
during viral infections. J Allergy Clin Immunol 1979;64:127–30.
[146] Yang Y, Shen C, Li J, Yuan J, Yang M, Wang F, et al. Exuberant
elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 1 infection is
associated with disease severity and fatal outcome. MedRxiv Prepr 2020.
doi:10.1101/2020.03.02.20029975.
[147] Saukkonen T, Mutt SJ, Jokelainen J, Saukkonen A-M, Raza GS,
Karhu T, et al. Adipokines and inflammatory markers in elderly subjects
with high risk of type 2 diabetes and cardiovascular disease. Sci Rep
2018;8:1–8. doi:10.1038/s41598-018-31144-8.
[148] Brightling CE, Ammit AJ, Kaur D, Black JL, Wardlaw AJ, Hughes
JM, et al. The CXCL10/CXCR3 Axis Mediates Human Lung Mast Cell Migration
to Asthmatic Airway Smooth Muscle. Am J Respir Crit Care Med
2005;171:1103–8. doi:10.1164/rccm.200409-1220OC.
[149] Jing H, Liu L, Zhou J, Yao H. Inhibition of C-X-C Motif
Chemokine 10 (CXCL10) Protects Mice from Cigarette Smoke-Induced Chronic
Obstructive Pulmonary Disease. Med Sci Monit 2018;24:5748–53.
doi:10.12659/MSM.909864.
[150] Keshavarzi F. Fungistatic effect of hydroxychloroquine,
lessons from a case. Med Mycol Case Rep 2016;13:17–8.
doi:10.1016/j.mmcr.2016.09.003.
[151] Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Sevestre
J, et al. Clinical and microbiological effect of a combination of
hydroxychloroquine and azithromycin in 80 COVID-19 patients with at
least a six-day follow up: an observational study Running title:
Hydroxychloroquine-Azithromycin and COVID-19. Travel Med Infect Dis
2020:101663. doi:10.1016/j.tmaid.2020.101663.
[152] Shamshirian A, Hessami A, Heydari K, Alizadeh-Navaei R,
Ebrahimzadeh MA, Ghasemian R, et al. Hydroxychloroquine Versus COVID-19:
A Rapid Systematic Review and Meta-Analysis. MedRxiv Prepr 2020.
doi:10.1101/2020.04.14.20065276.
[153] Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin JW,
Sutton SS, et al. Outcomes of hydroxychloroquine usage in United States
veterans hospitalized with Covid-19. MedRxiv Prepr 2020.
doi:/10.1101/2020.04.16.20065920.