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Introduction  

Figures and tables are related to the electron densities in curve and color maps, statistical 
errors. 
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Figure S1. The ISR records of Ne in the logarithmic scale around 350 km altitude in 2012. 
Horizontal axis: day of year (DOY); vertical axis: solar local time (SLT); the intensity represents 
logarithmic electron density (𝑙𝑜𝑔10𝑁𝑒), while the blank space represents missing records. Most of 
the region is in blank, indicating the irregularity of ISR’s operation. 

 

 

Figure S2. Flow chart of Neural Architecture Search (NAS). 
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Figure S3. The training (red) and validation (blue) loss curves of four NN models (the optimal 
number of epochs marked as the black dot). The two DNN models take more epochs to evolve the 
optimal results due to more complexity than SLNNs, while the NAS guided models lead to better 
model generality (lower possible validation loss). 

 

 

Figure S4. BA-plots of the four optimal models (SLNN, DNN, SLNN-NAS, and DNN-NAS), in 
which the calculations are based on the test set. DNN tends to have the lowest averaged difference 
(green line in the upper right subplot) and the DNN-NAS owns the narrowest limits of agreements 
(distance between two red lines in the lower right subplot). The Y-axis is the Ne difference between 
the model prediction and the observation. The X-axis is the average of the model prediction and 
the observation. 
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(a) ISRIM climatological pattern of medium solar activity. 

 

(b) semi-annual patterns of climatological study. 

 

(c) semi-annual patterns based on external geophysical indices. 

 

Figure S5. Annual electron density patterns of year 2012 from different sources: (a) ISR empirical 
model (ISRIM), (b) four model predictions based on the fixed F10.7 and Ap3, (c) four model 
predictions based on the real-time F10.7 and Ap3. Based on the nature of neural network models, 
the input can be arbitrary values. We set the evenly distributed temporal information to get the time 
related drivers (year, DOY, and SLT), while comparison between (a) and (b) serves as the 
comparison on the climatological study, while (c) demonstrates a more realistic case of Ne annual 
pattern with real-time F10.7 and Ap3 inputs. 
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(a) 2007-07-06 

 

(b) 2012-01-15 

 

(c) 2012-08-01 

 

Figure S6. Daily Ne pattern prediction on three different days: (a) 2007-07-06, (b) 2012-01-15, 
and (c) 2012-08-01. Gray cross: the ISR observation; red triangle: SLNN; cyan star: SLNN-NAS; 
blue circle: DNN; green square: DNN-NAS. The two parameters (Pearson correlation coefficients 
and MAE) help evaluate how well model outputs predict the observed diurnal Ne pattern. 
Generally, all model outputs follow the observed diurnal pattern well, while DNN-NAS predicts 
the best. 
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Figure S7. Ne patterns during 2012-09-02 to 2012-09-09. The two geophysical drivers are drawn 
in the upper panel. Four model outputs are of different markers followed with CCs and MAEs 
(based on observational values) in parentheses. Clearly, we see the Ap3 serves as the major driver 
effect to the model outputs as the predictions dip down when Ap3 reaches its peak at early time of 
September 5th. 

 

 

Figure S8. DNN-NAS trained with Ap3≤80 and DNN-NAS* trained without the restriction on 
Ap3., the DNN-NAS models trained with and without filter on Ap3 have the prediction results in 
green and purple color. The CC and MAE calculated on the observational data are in the 
parentheses (the whole curve after the model name and the shade region after “shade”). 
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Figure S9. Prediction performance changes along with the model complexity. The complexity is 
defined as the total number of trainable weights of the NN model. The mean absolute error of the 
validation set serves as the loss function, where the less loss indicates the better performance. 

 

 

(a)        (b) 

Figure S10. Overfitting of DNN (architecture: [512, 512, 512, 512, 32], green) (a) fitting and (b) 
prediction. SLNN (18 hidden neuron, blue) is served as a benchmark. DNN can fit the ISR data 
more closely than SLNN as shown in (a). However, DNN leads to an unrealistic wavy pattern for 
prediction as shown in (b). 
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Hyperparameter Range 

Number of layers 

SLNN: [1] 

DNN: [2, 3, 4] 

Neuron number [16, 18, 20, …, 64] 

Learning rate 
SLNN: 9e-04, 8e-04, …, 1e-04 

DNN: 5e-04, 4e-04, …, 5e-05 

Table S1. Hyperparameter space of AutoKeras. The candidates in each hyperparameter poll are 
the optimal results of multiple trials. For instance, the single layered architecture prefers a larger 
learning rate than the deep neural architecture. 

 

Parameter Values  

Years  
Training 2003 to 2018 except 

the val&test sets 
Validation [2010, 2015] 

Test [2007, 2012] 

F10.7 ≤ 300 sfu 

Ap3 ≤ 80 

Altitude ~350 km 

𝑵𝒆 [log10(5 × 109) , log10(3 ×
1012)] el/m^3 

 

Table S2. Data setting and the conditions to clean ISR data. The ISR data has the greatest number 
of observations near height of 350km, which indicates the data availability is of our major 
consideration. The filters on two F10.7 and Ap3 would rule out high intensity geophysical events. 
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 SLNN DNN SLNN-NAS DNN-NAS 

# of layers and 
neurons [18] [24, 22, 20] [52] [60, 32] 

Learning rate 5e-04 9e-05 1.6e-04 7.7e-05 

# of epochs 2195 4444 2116 6046 

Table S3. The hyperparameters for four NN models, which are the optimal results of each category 
in architecture, learning rate, and validation loss dip epoch. 

 
 SLNN DNN SLNN-NAS DNN-NAS 

MAE 0.1399 0.1312 0.1307 0.1250 
RMSE 0.1908 0.1805 0.1821 0.1784 
RE (%) 1.2667 1.1872 1.1844 1.1327 

Table S4. Prediction errors for four models in mean absolute error (MAE), root mean square error 
(RMSE), and relative error (RE) percentage. 

 
  SLNN DNN SLNN-NAS DNN-NAS 

CC 

Rank 1 25 16 26 61 (48%) 
Rank 2 26 35 41 26 
Rank 3 32 48 31 17 
Rank 4 45 29 30 24 

MAE 

Rank 1 17 30 27 54 (42%) 
Rank 2 34 32 33 29 
Rank 3 29 32 44 23 
Rank 4 48 34 24 22 

Table S5. The number of ranks for daily pattern prediction. Among the 128 days in the test set, 
the Pearson correlation coefficients (CCs) and mean absolute errors (MAEs) are calculated and 
sorted from best (highest CC or lowest MAE). The DNN-NAS shows the greatest number of rank 
1 cases.   
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