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Abstract18

Clouds interact with atmospheric radiation and substantially modify the Earth’s energy19

budget. Cloud formation processes occur over a vast range of spatial and temporal scales20

which make their thorough numerical representation challenging. Therefore, the impact21

of parameter choices for the simulation of cloud-radiative effects is assessed in the cur-22

rent study. Numerical experiments were carried out using the ICON model with vary-23

ing grid spacings between 2.5 and 80 km and with different subgrid-scale parameteriza-24

tion approaches. Simulations have been performed over the North Atlantic with either25

one-moment or two-moment microphysics and with convection being parameterized or26

explicitly resolved by grid-scale dynamics. Simulated cloud-radiative effects are compared27

to products derived from Meteosat measurements. Furthermore, a sophisticated cloud28

classification algorithm is applied to understand the differences and dependencies of sim-29

ulated and observed cloud-radiative effects. The cloud classification algorithm developed30

for the satellite observations is also applied to the simulation output based on synthetic31

infrared brightness temperatures, a novel approach that guarantees a consistent and fair32

comparison. It is found that flux biases originate equally from clearsky and cloudy parts33

of the radiation field. Simulated cloud amounts and cloud-radiative effects are dominated34

by marine, shallow clouds, and their behaviour is highly resolution dependent. Bias com-35

pensation between shortwave and longwave flux biases, seen in the coarser simulations,36

is significantly diminished for higher resolutions. Based on the analysis results, it is ar-37

gued that cloud-microphysical and cloud-radiative properties have to be adjusted to fur-38

ther improve agreement with observed cloud-radiative effects.39

Plain Language Summary40

Clouds are a major challenge for climate science and their effects are difficult to41

quantify. Clouds scatter sunlight back into space and thus prevent the Earth from warm-42

ing up. But clouds also hold back heat radiation upwelling from the surface. Both ef-43

fects typically compensate each other and thus lead to the net cloud-radiative effect. Com-44

puter programs that are used to simulate the climate - so-called climate models - often45

use very coarse grid-box sizes in their computational mesh. Cloud processes and their46

effects are represented in them in a very simplified way, which leads to problems. For47

this reason, this study deals with the question to what extent the simulations of cloud-48

radiative effects can be improved by choosing more precise descriptions of the cloud pro-49

cesses. To investigate this, different configurations of realistic weather models were taken50

to simulate cloud formation over the North Atlantic. The resulting simulation data were51

compared to satellite observations. It could be shown that problematic biases of the coarser52

climate models are reduced if, as is usual in weather models, one switches to smaller grid-53

box sizes and improved descriptions of the cloud processes.54

1 Introduction55

Clouds are very effective in cooling the Earth. Clouds scatter sunlight back to space56

before it can be absorbed by the Earth’s surface. They also trap longwave radiation orig-57

inating from the warm surface and thus induce a counter-acting greenhouse effect (Ramanathan58

et al., 1989). In the global mean, the shortwave effect of clouds (46 - 48 Wm−2) dom-59

inates over their longwave effect (26 - 28 Wm−2) in the top-of-the-atmosphere (TOA)60

radiation budget, leading to a net negative cloud-radiative effect (CRE) of −18 to −20 Wm−2
61

(Arking, 1991; G. L. Stephens et al., 2012; Henderson et al., 2013; Zelinka et al., 2017).62

The magnitude of net radiative effects becomes even larger and more important for cloud63

systems over the mid-latitude oceans, where the net CRE is more than twice the global64

average (see e.g. Zelinka et al., 2017).65

Cloud feedbacks, i.e. the impact of changes in clouds on the TOA radiation bud-66

get, remain a major source of uncertainty in future climate projections (Boucher et al.,67
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2013; Ceppi et al., 2017). Recent work indicates that the global-mean cloud feedback to68

global warming is likely positive, i.e., cloud changes will lead to an additional warming69

(Ceppi et al., 2017). This is largely attributed to a reduction in low-level cloud amount70

and a rise of high-level clouds (Zelinka et al., 2017). Yet, significant uncertainties remain71

in the parameterization of clouds and their radiative effects, in particular regarding the72

treatment of cloud microphysical processes in climate models (Gettelman & Sherwood,73

2016). Understanding clouds and their radiative changes is also relevant for regional cli-74

mate change, as the simulated response of the atmospheric circulation to global warm-75

ing is strongly shaped by clouds (Voigt & Shaw, 2015; Voigt et al., 2019; Ceppi & Shep-76

herd, 2017).77

The steady increase in computational power and advent of a new generation of mod-78

els that can harness this power has begun to allow for global atmospheric simulations79

with horizontal grid spacings on the order of a few kilometers (e.g. Satoh et al., 2018;80

Stevens et al., 2019). In these high-resolution simulations, clouds and the atmospheric81

flow interact much more naturally than in current low-resolution models typically run82

horizontal grid spacings of around 50 km. The explicit simulation of at least part of the83

cloud-scale circulations in fact provides a physical link between the resolved atmospheric84

flow and the parameterized cloud-microphysical processes (Satoh et al., 2019; Stevens85

et al., 2020). Moreover, and importantly, high-resolution models and satellite observa-86

tions probe the atmosphere on similar spatial and temporal scales, allowing for a mean-87

ingful comparison between simulation and observations that helps model evaluation as88

well as the interpretation of observations (see also arguments from Satoh et al., 2019).89

As such, high-resolution modelling might break the so-called cloud parameterization ”dead-90

lock” (Randall et al., 2003) and promises to lead to more reliable simulations of cloud91

and precipitation responses to future climate change (Roberts et al., 2018; Collins et al.,92

2018; Stevens et al., 2020).93

Motivated by these advances, we consider the radiative effects of mid-latitude cloud94

systems in simulations with a large range of horizontal resolutions, with three different95

treatments of atmospheric convection, and with two different treatments of cloud micro-96

physics in this study. This creates a hierarchy of simulations that at the one end resem-97

bles current low-resolution climate models with parameterized convection and relatively98

simple cloud microphysics, and at the other end resembles the next-generation high-resolution99

models with explicit convection and more detailed cloud microphysics. Through this ap-100

proach we investigate how a sequential reduction in model grid spacing from climate-101

model scales of 80 km down to 2.5 km affects, and hopefully improves, the simulation102

of cloud-radiative effects. Furthermore, we investigate the impact of subgrid-scale pa-103

rameterization choices regarding convection (fully explicit convection vs. parameterized104

shallow convection vs. parameterized convection) and cloud microphysics (one-moment105

scheme vs. two-moment scheme) on cloud-radiative effects and the radiation budget. To106

this end we analyze simulations with the ICON (ICOsahedral Nonhydrostatic) model107

(Zängl et al., 2014) over a large domain of the North Atlantic. Our work contributes to108

recent efforts to understand the sensitivity of climate simulations with respect to hor-109

izontal resolution and convection parameterization (Webb et al., 2015; Haarsma et al.,110

2016; Evans et al., 2017; Maher et al., 2018; Thomas et al., 2018; Vannière et al., 2019).111

We expand these efforts by bridging the gap between current climate models and and112

convection-permitting models.113

The focus region of this study is the mid-latitude North Atlantic. This is motivated114

on the one hand side by its importance for current and future European weather, and115

on the other hand side by the difficulties of current coarse-resolution global climate mod-116

els to represent the radiative effects of mid-latitude clouds (Bodas-Salcedo et al., 2014;117

Voigt et al., 2019) and their coupling to the circulation (Grise & Polvani, 2014). Cloud-118

radiative effects in the mid-latitudes feed back onto circulations. As such, they are es-119

sential to anticipated poleward shift and strengthening of the eddy-driven jet streams120
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under global warming (Voigt & Shaw, 2016; Albern et al., 2019; Ceppi & Hartmann, 2016;121

Li et al., 2019), and they also can impact mid-latitude weather on time-scales of days122

(Schäfer & Voigt, 2018; Grise et al., 2019)123

Biases in simulated mid-latitude CREs appear to be primarily due to deficiencies124

in parameterized physics of clouds and convection (Ceppi & Hartmann, 2015). These physics125

strongly depend on cloud type. Analysis of data from space-born imaging radiometers126

has shown that low-level clouds over the oceans provide the largest contribution to the127

net TOA CREs because reflection of sunlight dominates over the trapping of longwave128

radiation (Hartmann et al., 1992; Ockert-Bell & Hartmann, 1992; Chen et al., 2000). The129

traditional cloud classification approaches have been revised to assess the importance130

of cloud regimes as a whole using clustering techniques (Oreopoulos & Rossow, 2011; Ore-131

opoulos et al., 2016; McDonald & Parsons, 2018) and the vertical structure of cloud fields132

based on active satellite sensors (G. Stephens et al., 2018; L’Ecuyer et al., 2019). The133

latter showed that clouds are predominantly organized in multiple layers, which is typ-134

ically not resolved by passive imagery. Because active satellite observations are very sparse135

in time and space, we here nevertheless rely on the traditional cloud classification ap-136

proach to separate cloud-cover and CRE model biases into contributions from different137

cloud types. The comparison is based on instantaneous and high-resolution geostation-138

ary satellite data. We follow modern model evaluation standards and sequentially de-139

rive synthetic satellite observations using a satellite simulator (similar to Bodas-Salcedo140

et al., 2011; Pincus et al., 2012) and cloud products with an advanced cloud classifica-141

tion software. For the latter step, we apply the cloud classification consistently for the142

full diurnal cycle (including nighttime). This improves the attribution of instantaneous143

CREs to different cloud types.144

The paper is organized as follows: In section 2, the setup of the ICON model sim-145

ulations and sensitivity studies is described. Sect. 2 also provides information on the ob-146

served and synthetic narrow-band satellite radiances that are forwarded into the cloud147

classification software and on our method for deriving TOA radiation fluxes from Me-148

teosat observations. Sect. 3 presents the main results. We first consider domain-averaged149

radiation fluxes and CREs, and then split cloud cover and radiative effects into contri-150

butions from different cloud types. A summary and conclusions are given in section 4.151

A more detailed description of the modifications of the cloud classification software and152

supporting information is provided in the supplement.153

2 Data and Methods154

2.1 Overview of the Analyses Workflow155

Before we provide more details, Fig. 1 presents an overview of the workflow and156

analyses steps for observations (black) and simulations (blue). The diagram is to be read157

from top to bottom. The input data from ICON (see Sect. 2.2) and Meteosat SEVIRI158

(see Sect. 2.3) are provided in the first row. From these, observed and simulated cloud159

types (Fig. 1a) and CREs (Fig. 1b) are derived, as shown in the last row. Importantly,160

this workflow makes sure that observations and simulations are directly comparable to161

each other.162

For cloud classification, ICON simulations are translated into observation space us-163

ing the SynSat forward operator (Sect. 2.3). Based on observed and synthetic infrared164

brightness temperatures, cloud types are derived with the help of the NWCSAF v2013165

software (Sect. 2.5). For the assessment of CREs, Meteosat SEVIRI data are processed166

to obtain GERB-like allsky radiation fluxes at the top of the atmosphere (Sect. 2.4). The167

observed allsky fluxes are supplemented by simulated clearsky fluxes, which are corrected168

with a scaling factor in the shortwave and a constant additive offset in the longwave part169

to correct for biases in simulated ocean surface properties (Sect. 2.6).170
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Figure 1. Overview of the workflow for (a) the calculation of a consistent cloud classification

and (b) the derivation of CREs. Two parallel paths for observations (black) and the simula-

tions (blue) are shown. The symbols in the top row visualize the input data (either satellite data

archive or simulation output). Final data are shown in the last row. Rectangles denote processing

methods further discussed in the text, and slanted parallelograms correspond to intermediate and

final data.

2.2 ICON Simulations171

We analyze simulations with the ICON model in limited-area setup performed over172

a large area of the North Atlantic (model version icon-2.1.00 with bug fixes for two-moment173

cloud microphysics). The simulation region extends from 78◦W to 40◦E in longitudinal174

direction, and from 23◦N to 80◦N in latitudinal direction (see Fig. 3 in Stevens et al. (2020))175

and was chosen to encompass the region covered by the NAWDEX field campaign of fall176

2016 (Schäfler et al., 2018). ICON is used with the numerical weather prediction physics177

package in a setup that largely follows the tropical Atlantic setup of Klocke et al. (2017).178

ICON is initialized from the integrated forecast system (IFS) analysis data of the Eu-179

ropean center for medium-range weather forecasts (ECMWF) at 0 UTC. The lateral bound-180

ary data are taken from IFS at 3-hourly resolution. At 0 UTC and 12 UTC IFS anal-181

ysis data are used. In between 3-hr, 6-hr and 9-hr IFS forecast data are used. The con-182

tinually updated analysis and forecast data ensure that the model stays close to the ac-183

tual meteorology over the simulation period over several days (see below). The IFS data184

is retrieved at the highest available resolution in space (∼ 9 km horizontal grid spac-185

ing). 11 days are analyzed in total. These result from 4 simulation sets that each cover186

a time span of 3 or 4 days, and for which the first day is disregarded as spin-up. The sim-187

ulations are listed in Tab. 1.188

The simulations are performed for six horizontal grid spacings of 80, 40, 20, 10, 5189

and 2.5 km. In the vertical, always the same set of 75 levels is used. Sweeping through190

the horizontal resolution allows us to cover both the resolution of present-day global cli-191

mate models, which typically run at 50-100 km, as well as the resolution of existing convection-192

permitting regional climate simulations (Prein et al., 2015) and upcoming global sim-193

ulations (Stevens et al., 2019), which run at 2-5 km. For the finest resolution of 2.5 km194

the convection parameterization scheme is switched off either fully or partly. In the lat-195

ter setup, only shallow convection is parameterized, whereas mid-level and deep convec-196

tion are explicitly represented (ICON Model Tutorial April 2018). The setup with only197

shallow convection parameterization has emerged as the standard setup for 2.5km-ICON198
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Table 1. List of days simulated with ICON during the period of the NAWDEX field cam-

paign in fall 2016. Nsim is the number of simulations as a result of testing for the sensitivity with

respect to horizontal resolution and the treatment of cloud microphysics and convection.

Simulation period Analyzed days Nsim

Set 1 Sep 20:0UTC - Sep23:0UTC Sep 21, 22 14
Set 2 Sep 22:0UTC - Sep26:0UTC Sep 23, 24, 25 20
Set 3 Sep 29:0UTC - Oct02:0UTC Sep 30, Oct 01, 02 14
Set 4 Oct 02:0UTC - Oct06:0UTC Oct 03, 04, 05 14

simulations at the German Weather Service (pers. comm. A. Seifert). For resolutions199

of 5 km and coarser, the convection scheme is fully enabled and takes care of shallow as200

well as mi-level and deep convection. In addition, for a three-day subset (Sep 22, 23, and201

24), the 2.5 km simulations are repeated with fully enabled convection parameterization,202

and the 5 and 10 km simulations with fully disabled convection parameterization. This203

allows us to compare the impact of the convection scheme with respect to changes in res-204

olution. Besides assessing the impact of resolution and representing convection in an ex-205

plicit or parameterized manner, we study the impact of representing cloud microphysics.206

To this end, all simulations are performed with the one-moment cloud microphysical scheme207

with graupel described in Baldauf et al. (2011) as well as with the two-moment cloud208

microphysical scheme of Seifert and Beheng (2006). The one-moment scheme is currently209

used operationally by the German Weather Service; the two-moment scheme is used in210

large-eddy mode simulations with ICON (Heinze et al., 2017).211

To indicate the model setup in the plots and tables, the following nomenclature is212

used. For instance ICON( 10km, *, CP ) refers to ICON simulations with 10 km grid213

spacing, one-moment microphysics and fully enabled convection parameterization. In con-214

trast, ICON( 2.5km, ** ) refers to ICON simulations with 2.5 km grid spacing, two-215

moment microphysics and fully disabled convection parameterization - a setup that is216

called ”simulation with explicit convection” in the following. Lastly, ICON( 2.5km, **,217

sCP ) refers to a simulation in which only the shallow convection parameterization is218

enabled. Tab. 2 summarizes the model setups.219

Table 2. Overview of different treatment of convection for the four sets of simulations (see

Tab. 1). sCP means that only the shallow convection scheme is active. CP means that convec-

tion is fully parameterized. A notation example is given in the last row for simulations with

2.5 km grid spacing and one-moment cloud microphysics (indicated by *; two-moment cloud

microphysics are indicated by **).

explicit convection sCP CP

Set 1, 3, 4 2.5 km 2.5 km 5 - 80 km
Set 2 2.5, 5, 10 km 2.5 km 2.5 - 80 km

Notation example ICON( 2.5km, * ) ICON( 2.5km, *, sCP ) ICON( 2.5km, *, CP )

Radiative transfer is calculated by the global model version of the Rapid Radia-220

tion Transfer Model, RRTMG (Mlawer et al., 1997). RRTMG uses a reduced number221

of g-points for the correlated k-method to mitigate some of the computational burden222

of the parent RRTM model. 14 bands are used in the shortwave, 16 bands are used in223

the longwave. The solar constant is set to 1361.4 Wm-2. For cloud overlap, the gener-224
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alized maximum-random overlap scheme of Hogan and Illingworth (2000) is used, with225

a vertical decorrelation length scale of 2 km. Ozone is specified according to the GEMS226

climatology, and aerosol according to the climatology of Tegen et al. (1997). Only aerosol-227

radiation-interactions are considered, aerosol-cloud interactions are not taken into ac-228

count. The cloud droplet number used in the radiation for the effective radius of droplets229

and crystals follows a prescribed vertical profile taken from the global atmosphere model230

ECHAM6 (Stevens et al., 2013). Cloud optical properties, i.e., single scattering albedo,231

extinction coefficient and asymmetry factor, are also specified as in ECHAM6. Radia-232

tion is called every 12 minutes. The radiation fields are output every hour and are al-233

ways consistent with the simulated cloud field, insolation, solar zenith angle and the state234

of the atmosphere and surface.235

The diffuse ocean albedo is set to a constant value, αdif = 0.07. The direct ocean236

albedo follows the radiation scheme of Ritter and Geleyn (1992) and is a function of the237

diffuse albedo and the solar zenith angle, µ0,238

αdir =
1 + 0.5 cosµ0 (α−1

dif − 1)

(1 + cosµ0 (α−1
dif − 1))2

. (1)239

The maximum value allowed for αdir is 0.999. Diffuse and the direct ocean albedo240

are independent of wavelength do not depend on surface roughness and wind speed.241

Simulated radiation fluxes were re-gridded onto the observational grid (Sect. 2.3).242

Note that a common grid is important to accurately assess cloud-radiative effects because243

even small differences in the grid structure can induce artificial biases. For ICON sim-244

ulations with grid spacing of 2.5 and 5 km, re-gridding is done by means of box-averaging245

for which all model grid boxes that fall into the same observational grid box/pixel are246

averaged. For coarser ICON grids and for empty boxes at higher resolutions, re-gridding247

is done by means of a nearest-neighbor approach.248

The analysis is restricted to ice-free ocean areas, which avoids complications from249

differences in surface albedo. As such, the analysis domain includes the North Atlantic250

and connected water bodies, including the North sea and the Baltic sea (see e.g. Fig. 2251

and Fig. 4). The southern boundary is at 28.3◦N and is determined by the boundary nudg-252

ing zone of the 80 km grid. A maximum satellite zenith angle of 75◦ marks the north-253

ern boundary of the domain.254

2.3 Observed and Synthetic Meteosat Radiances255

Observations are provided by measurements of the imaging radiometer SEVIRI (Spin-256

ning Enhanced Visible and InfraRed Imager) on board the geostationary satellites of the257

Meteosat Second Generation (MSG) series operated by EUMETSAT (European Organ-258

isation for the Exploitation of Meteorological Satellites). SEVIRI provides satellite im-259

ages for 11 narrow-band channels covering solar and terrestrial radiation with a nadir260

resolution of 3×3 km2 and for one broad-band high-resolution visible channel with a three-261

fold higher horizontal resolution (Schmetz et al., 2002). For our study, we utilize data262

from SEVIRI’s operational prime service located at a nominal longitude of zero degrees263

and a scan repeat cycle of 15 minutes. The temporal resolution is sub-sampled to hourly264

data to be comparable with the model output frequency. Due to the strategy of the SE-265

VIRI full disk scan which sequentially proceeds from South to North, a row-depended266

time delay exists for the SEVIRI images. For the considered North Atlantic domain, the267

average delay is around 10 minutes between nominal and actual scan time. Hence, sim-268

ulated and observational data do not represent exactly the same instantaneous scenery269

- an aspect that is especially important for the downwelling shortwave radiation. In the270

next sections, Meteosat radiances are utilized to estimate instantaneous radiation fluxes,271

cloud cover and a classification into different cloud types.272
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An example of upwelling thermal radiation measured at 10.8 µm, is provided in Fig. 2273

(top row). The shown brightness temperatures (BTs) give measures of effective black-274

body temperatures depending on the temperature and emissivity of the medium. In the275

atmospheric window at 10.8 µm, atmospheric gases are relatively transparent and ther-276

mal emission mainly originates from the Earth surface, from clouds or from a combina-277

tion of the two (in case of semi-transparent or fractional clouds). High temperatures typ-278

ically represent clear regions, whereas low temperatures represent emission from high cir-279

rus clouds. In contrast, opacity of the moist atmosphere is significantly increased in the280

water-vapor channel at 6.2 µm (see supplement for an example visualization). In cloud-281

free situations, most of the signal in the water-vapor channel originates from the upper282

troposphere between 200 to 300 hPa. Higher BT-values consequently mean lower effec-283

tive emission heights and thus reduced upper-level moisture. Surface and low to mid-284

level clouds are located at too low altitudes to be visible in the water-vapor images. How-285

ever, high cirrus does appear in addition to the upper-level water-vapor structures. In286

the scene of Fig. 2, a low-pressure system is located in the Atlantic ocean. Its frontal cloud287

system, seen by the low BTs, extends towards the south and approaches the British Is-288

lands. In the western part of this low-pressure system, cold and rather dry air is advected289

southwards. Marine, low-level clouds form within that cold sector and also propagate290

towards lower latitudes. Moist and dry-air patches are organized by synoptic-scale waves,291

sometimes leading to rather thin dry filaments.292

For a fair comparison between observations and simulations, the simulated data293

have to be transformed into the observational space using forward operators (or some-294

times called instrument simulators). This has become a standard approach in the last295

decades (Morcrette, 1991; Roca et al., 1997; Chaboureau et al., 2000) and is especially296

important when such ambiguous variables like cloud cover and cloud types are taken into297

consideration (e.g. Pincus et al., 2012). For our study, we apply the so-called SynSat op-298

erator after Keil et al. (2006) and Senf and Deneke (2017) to derive synthetic satellite299

images with the sensor characteristics of MSG SEVIRI. The SynSat operator prepares300

vertical profiles of atmospheric temperature, humidity, condensate content and subgrid-301

scale cloud cover as well as several surface variables to perform single-column radiative302

transfer calculations with the RTTOV model (Saunders et al., 1999; Matricardi et al.,303

2004), here version 11.3. We apply a standard configuration that has been operationally304

employed by the German Weather Service for several years and utilized for ICON sim-305

ulations in previous studies (Heinze et al., 2017; Senf et al., 2018; Pscheidt et al., 2019).306

For this, diagnostic subgrid-scale cloud condensate content is added to its grid-scale coun-307

terpart, and ice and snow masses are simply combined to a frozen condensate content.308

Radiative properties of frozen condensate are estimated using relations for randomly-309

oriented hexagonal columns after Fu (1996) and McFarquhar et al. (2003). The deriva-310

tion of synthetic BTs is impacted by uncertainties in the formulation of microphysical311

and radiative hydrometeor properties. A complicating fact is that different model pa-312

rameterization handle hydrometeor properties differently leading to model-internal in-313

consistencies as additional cause for uncertainties in the forward calculations. Consid-314

ering these issues and typical parameter variations, Senf and Deneke (2017) showed that315

uncertainties in BTs are in the order of a few Kelvin and largest for semi-transparent316

cirrus clouds with low cloud-top temperatures and with emissitivies close to 0.5.317

Fig. 2 also provides a sequence of synthetic BTs for different model grid spacings318

from 2.5 to 80 km. As expected, the simulations capture the general cloud scenery and319

the synoptic-scale features very well. All simulations show the frontal cloud band that320

approaches the European continent and the upper-level trough located upstream in the321

North Atlantic. The coarser the resolution, the less detail can be seen in the synthetic322

BT-fields. However, no abrupt quality changes appear to happen with increased grid spac-323

ing.324
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Figure 2. Overview of observed and simulated BTs from Meteosat SEVIRI’s window channel

at 10.8 µm for 1200 UTC 23 Sept 2016. Observations are compared to ICON simulations with

increasing grid spacing (left to right and downwards, from 2.5 to 80 km). Only the subset of sim-

ulation experiments with one-moment microphysics and fully parameterized convection is chosen

for visualization. A special color scheme is used to highlight observed and simulated features.

BTs over land are also shown to improve anticipation of the cloud scenery. Further analysis

however only considers the Atlantic ocean region.

2.4 Observations of Allsky Radiation Fluxes325

The geostationary satellites of the Meteosat Second Generation series carry the broad-326

band radiometer GERB (Geostationary Earth Radiation Budget; Harries et al. (2005)).327

GERB provides accurate measurements of allsky TOA radiation fluxes. Unfortunately,328

during the period of our analysis GERB was in ”safe mode” to protect its sensors. We329

therefore base our TOA radiation flux estimates on GERB-like products that are derived330

as internal products in the Royal Meteorological Institute of Belgium (RMIB) GERB331

processing system. The processing steps are in detail explained in Dewitte et al. (2008)332

and briefly summarized in the following.333

The calculations of the GERB-like algorithm are based on multi-spectral observa-334

tions from narrow-band SEVIRI channels as input. SEVIRI data are first calibrated to335
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correct for sensor aging and degradation (Meirink et al., 2013). Broadband filtered and336

unfiltered radiances are obtained from a narrow-to-broadband conversion method that337

relies on regression relations from a database of simulated scenes. To finally obtain ra-338

diation fluxes, angular distribution modelling (ADM) is applied. The longwave ADM is339

based on plane parallel radiative transfer (Clerbaux et al., 2003) and the same database340

as the narrow-to-broadband conversion. Thermal angular conversion factors depend on341

viewing zenith angle and SEVIRI’s thermal narrow-band observations. The shortwave342

ADMs are derived after Loeb et al. (2003) and also take into account cloud-optical prop-343

erties derived on each SEVIRI pixel. The ADMs are applied to spatial aggregates of 3344

× 3 SEVIRI pixels. Previous work found that the accuracy of the narrowband-to-broadband345

conversion (GERB-like) is 3.5% for shortwave fluxes Fsw and 0.7% for longwave fluxes346

Flw (Clerbaux et al., 2005). For a particular scene type, this error must be considered347

as a systematic error. For estimates of downwelling shortwave fluxes, temporal variations348

in the total solar irradiance are taken into account as described in Mekaoui and Dewitte349

(2008).350

For our study, we retrieve GERB-like TOA radiation from the RMIB archive and351

regrid these to SEVIRI’s native resolution. Throughout the paper, we use a positive-upward352

convention so that upwelling fluxes are positive and downwelling fluxes are negative (following353

G. L. Stephens, 2005). This is typical for satellite studies. Model studies usually adopt354

the opposite positive-downward convention.355

2.5 Cloud Classification356

A cloud classification is derived from simulation and satellite data with the soft-357

ware of the satellite application facility in support to nowcasting and very short range358

forecasting (NWCSAF) version 2013. As input, the NWCSAF software expects multi-359

spectral data of MSG SEVIRI in its native data format. Using a set of several multi-spectral360

tests, a categorical classification is derived for all pixels classified as cloudy (Derrien &361

Le Gléau, 2005). The applied thresholds mainly depend on the illumination, the view-362

ing geometry, the geographical location and numerical forecast data describing the mois-363

ture and thermodynamic structure at coarser resolution. For the latter, short-term IFS364

forecasts are supplied.365

Cloud types are mainly distinguished by their cloud-top height and opacity sim-366

ilar to the ISCCP-approach (International Satellite Cloud Climatology Project, see e.g.367

Rossow and Schiffer (1999)). No further distinction between convective and stratiform368

cloud structures is performed. The typical properties of the NWCSAF cloud types are369

shown in Fig. 3 and contrasted to the categorization after Hartmann et al. (1992). For370

practical reasons, we consider planetary albedo instead of cloud-optical thickness as mea-371

sure of cloud opacity. Clouds are divided into different height classes: very low, low, mid-372

level, high and very high clouds are approximately separated by the pressure levels of373

800, 650, 450 and 300 hPa. Cirrus clouds are distinguished by different opacity levels and374

called: semi-transparent (semi.) thin, semi. moderately thick, semi. thick cirrus as well375

as high and very high opaque clouds. The latter might also contain deep convective cores376

and parts of anvils close to upper-level convective outflow. An additional class is used377

for fractional clouds which are typically made of small boundary-layer cumuli. The sep-378

aration between this and the very-low cloud category is rather artificial. We therefore379

combine these two classes and end up with eight cloud types that will be utilized for fur-380

ther analysis. No undefined class exists, i.e. satellite pixels are either classified as cloud-381

free (k = 0) or cloudy (k > 0). Therefore, the total domain-average cloud cover can382

be estimated from the sum of fractions of the individual cloud types.383

For very low / fractional clouds (k = 1 and k = 9 in Fig. 3), very low albedo384

values (close to the clearsky albedo of ∼0.1) are most probable. This cloud type mainly385

consists of shallow clouds with low geometrical and optical thicknesses especially due to386
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Figure 3. Planetary albedo versus cloud-top height for the different NWCSAF classes. The

circles represent averages and the error bars give the standard deviation of clearsky or cloud

properties. Data have been taken from the observed scenery shown in Fig. 2 and 4. Numbers

k = {0 . . . 9} refer to the different classes listed in the legend. Note that the cloud classes “frac-

tional” and “very low” (which are shown separately here) are combined in the following analysis.

For comparison, a second categorization after Hartmann et al. (1992) is provided as background

image. It separates cloud amounts into three height categories (low, mid-level and high) as well

as into two opacity levels (thin and thick clouds).

high sub-pixel variability and considerable clearsky contributions. For more opaque clouds387

with higher cloud tops, averaged albedo shifts to higher values. These cloud types have388

larger vertical and horizontal extent, and thus higher cloud-optical thicknesses. A sim-389

ilar shift to higher albedo values is found for semi-transparent cirrus going from semi.390

thin (k = 6) to semi. moderately thick (k = 7) to semi. thick (k = 8). Cloud-spatial391

structures and sub-pixel variability might be also an important factor for the albedo of392

semi-transparent cloud categories.393

The NWCSAF software has undergone more than a decade of development and is394

highly adjusted to the needs of operational forecasters and nowcasting applications. It395

tries to account for as much information as available to derive a comprehensive and in-396

stantaneous classification of the cloud field. Changes in solar illumination can lead to397

changes in product quality and systematic differences, especially between day- and night-398

time, are inevitable in the standard setup of the NWCSAF cloud classification. To mit-399

igate these problems and to build a time-consistent cloud classification, we implemented400

a modification to the cloud product generation chain. The NWCSAF software has been401

set up to run in permanent-night conditions at which only infrared radiation of terres-402

trial origin is utilized. We developed an algorithm which reads in infrared SEVIRI ra-403

diances from a selected scene and thereafter outputs these data into a template valid for404

the same day, but for 0 UTC. The template files, including the embedded satellite ra-405

diances, are supplied to the NWCSAF software which generates a cloud classification in406

night-mode. To keep the software itself unmodified, we provide simple estimates of ra-407

diances at 3.9 µm which are mandatory, but contaminated with sunlight during day-time408

(further explained in the supplement). Beyond time consistency, there is an other ma-409

jor advantage of our approach: It also allows to exchange real observations with synthetic410

observations. In our case, we utilized synthetic radiances derived from all the different411

simulations with the SynSat method (see Sect. 2.3) and provide these data to the NWC-412

SAF software. In this way, a cloud classification is obtained for all simulations that is413

directly comparable to its observational counterpart.414
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An example scenery of an instantaneous and high-resolution cloud classification is415

shown in Fig. 4. The figure also illustrates the analysis domain, which is restricted to416

the subtropical and Northern mid-latitude parts of the Atlantic ocean. The scene is sim-417

ilar to the one shown in Fig. 2, but here the focus is on 2.5 km simulations with differ-418

ent treatment of convection and cloud microphysics. A frontal cloud band extends from419

the British Island to the open Atlantic. Upstream of this cold front, marine clouds of420

type ”low” and ”very low / fractional” propagate towards the European continent. In421

the subtropical areas, Meteosat observations show a rather low fraction of low and very422

low / fractional marine clouds. The amount of these cloud types, which appear in large423

patches of marine stratocumulus, is strongly overestimated in the simulations, especially424

in the variants with explicit convection.425

Figure 4. Example of observed and simulated cloud types for 1200 UTC 23 Sept 2016 as

derived from Meteosat SEVIRI observations (top left) and ICON simulations with 2.5 km hor-

izontal resolution. The left column is for simulations with one-moment cloud microphysics (*),

the right column for simulations with two-moment microphysics (**). The second row is for fully

explicit convection, the third row for simulations with a shallow convection scheme (sCP), and

the fourth row for simulations with fully parameterized convection (CP).
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2.6 Estimation of Observed Clearsky Radiation Fluxes426

We are interested in the cloud impact on broadband shortwave and longwave ra-
diation fluxes. This impact is commonly measured in terms of cloud-radiative effects (CREs),

CREnet = Fnet,clear − Fnet , (2)

which are defined as time-average difference between hypothetical clearsky fluxes that427

would occur in the absence of clouds and cloud-affected allsky fluxes. We follow the sign428

convection of G. L. Stephens (2005) and remind the reader that we defined upwelling all-429

sky and clearsky fluxes as positive. Positive CREs indicate a gain of radiative energy and430

a warming effect of clouds, negative CREs indicate a loss of radiative energy and a cool-431

ing effect. Note that CREs are the net result of different cloud types; the radiative im-432

pact of individual cloud types is analyzed later in Sect. 3.2.433

The ICON simulations provide allsky and clearsky fluxes, where the latter are cal-434

culated via a second radiation call with cloud fields set to zero. Simulated CREs follow435

directly from the application of eq. (2). As consequence, CREs are also available for re-436

gions that are classified as cloud-free (k = 0). These CREs are caused by undetected437

clouds. We thus need to distinguish between allsky and clearsky fluxes in cloud-free re-438

gions. Therefore, a distinction between “cloud-free” and “clearsky” is made thorough439

the rest of the paper.440

The CREs of undetected clouds help us to assess the quality of the NWCSAF cloud441

detection (modified by us to run in night-mode). We discuss this effect first based on sim-442

ulations (see Fig. 5). Please ignore the observational effects until we come back to them443

in the next paragraph. For a perfect cloud classification, all values should be at zero. This444

is not the case, however, and this demonstrates that a small amount of clouds remains445

undetected. Undetected clouds from the simulations contribute around 3 Wm−2 of ad-446

ditional shortwave reflection in cloud-free regions. In the longwave, simulated flux dif-447

ferences are between 1 and 2 Wm−2 in cloud-free regions and result from the reduced448

emission temperature of undetected clouds. The shortwave and longwave effects of un-449

detected clouds partially cancel. When weighted by the clearsky fraction of around 25%,450

we conclude that CREs of undetected clouds have negligible impact on the total domain-451

average radiation budget.452

Deriving clearsky fluxes is more difficult for the observations. Clearsky fluxes could453

be derived from satellite pixels classified as cloud-free, but even these might contain un-454

detected clouds. For our analysis the situation is even more challenging because (i) the455

North Atlantic is very cloudy, and (ii) we are interested in instantaneous high-resolution456

radiation fluxes and CREs, for which the clearsky fluxes cannot be derived by tempo-457

ral and spatial aggregation (as done in, e.g., Futyan and Russell (2005)). We therefore458

apply the following recipe to estimate observational clearsky fluxes (clearsky path in Fig. 1b):459

(i) Clearsky fluxes are taken from simulations as first guess (similar to Allan, 2011).460

The ICON( 10km, *, CP ) experiment has been chosen as reference, but any other461

simulation experiment or a combination of these would suffice as well.462

(ii) A bias correction is applied to simulated clearsky fluxes under the constraint that463

the radiative effects of undetected clouds have similar magnitudes in observations464

and simulations.465

For the shortwave, Fsw,up,clear has been rescaled by a factor of 0.88. From Fig. 6, we see466

that this scaling brings the simulated curve approximately down to the observational curve.467

In the longwave, an offset of 2 Wm−2 is subtracted from Flw,clear. After correction, the468

simulated clearsky fluxes are used together with observed allsky fluxes for the calcula-469

tion of observed CREs using eq. (2).470
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Figure 5. The radiative effect of undetected clouds in areas classified as cloud-free (i.e.

k = 0). All data points show the average difference between clearsky and allsky fluxes for (a)

shortwave ∆Fsw = Fsw,clear − Fsw and (b) longwave ∆Flw = Flw,clear − Flw. The bars give an

robust estimate of the standard error of the daily-average values over all simulation sets, thus

provide a confidence interval. For this, the difference between the 84-th and 16-th percentile

has been calculated to approximate twice the multi-day standard deviation 2σ which was fur-

ther divided by
√
N with N = 11. Colored symbols represent different simulations which have

been vertically stacked to improve visibility. The gray symbols show the uncorrected observa-

tional estimate where the allsky fluxes are based on Meteosat, but the clearsky fluxes are directly

taken from ICON( 10km, *, CP ). The black symbols show the corrected observational values

with a scale factor applied to the shortwave and a constant additive offset to the longwave part

of clearsky fluxes taken from ICON( 10km, *, CP ). Thin gray lines connect all other symbols

to the observation for improved interpretation. The clearsky bias of the simulations is directly

obtained from the difference between black and gray symbols.

The effects of the bias correction are illustrated in Fig. 5 where uncorrected observed471

CREs (gray symbols) are contrasted to corrected observed CREs (black symbols). The472

difference between the two is caused by biases in the simulated clearsky fluxes. Simu-473

lated shortwave fluxes are systematically too large in cloud-free regions. We believe this474

overestimation results from a too bright ocean surface albedo in ICON. Additional sup-475

port for this interpretation comes from independent internal investigations by the Ger-476

man Weather Service (pers. comm. A. Seifert). Moreover, simulated ocean surface seems477

to be too warm causing an overestimation of outgoing longwave clearsky fluxes that adds478

to the shortwave bias. In summary, we like to emphasize, that the applied strategy for479

cloud classification is extremely helpful to establish a consistent bias correction of instan-480

taneous clearsky fluxes estimated from simulations.481

3 Results482

3.1 Domain and Time-Averaged Radiation Fluxes and Cloud-Radiative483

Effects484

We begin with a comparison of observed and simulated radiation fluxes averaged485

over the North Atlantic domain and all days (Fig. 7). The observed net flux is around486

25 W m−2 and directed outward (Fig. 7a), implying that the North Atlantic region looses487

more radiative energy than it gains. All simulations show larger net fluxes, indicating488

that they overestimate the loss of radiative energy. Simulations with partly or fully pa-489

rameterized convection have a net flux of around 30 W m−2, with the coarsest resolu-490

tion showing the smallest deviation with respect to observations. Furthermore, simula-491
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Figure 6. Simulated and observed upwelling versus downwelling shortwave fluxes in cloud-

free areas. The upwelling flux is calculated for 10 bins of the downwelling flux. Symbols denote

conditional median values and error bars show the inter-quartile range. Simulations are shown in

gray, with the simulations for ICON( 10km, *, CP ) shown in green. Observations are shown by

the black diamonds and the black sold line. The dashed black line shows the upwelling flux from

ICON( 10km, *, CP ) rescaled by a factor of 0.88.

tions with fully parameterized convection have net fluxes slightly closer to the observa-492

tion when used with one-moment microphysics instead of two-moment microphysics. This493

might reflect previous model tuning that was done for one-moment but not for two-moment494

microphysics. Simulations with parameterized shallow convection show net fluxes very495

similar to simulations with fully parameterized convection. Much stronger deviations oc-496

cur, however, for simulations with explicit convection, for which the net flux reaches about497

40 W m−2. We note that the deviations in the net flux are not simply a result of differ-498

ences in the downwelling shortwave flux, which amount to 1 W m−2 due to slight differ-499

ences in the solar constant in the simulations and observations.500

The better agreement in terms of the net flux for low-resolution simulations and501

for simulations with (partly) parameterized convection results from compensating biases502

in outgoing longwave fluxes and upwelling shortwave fluxes, however (Fig. 7b and d). With503

one exception, the simulations overestimate outgoing longwave radiation (Fig. 7b), which504

corresponds to a too high effective emission temperature. The longwave bias increases505

with increasing grid spacing, with the largest bias found for the coarsest simulation at506

80 km resolution. Simulations with fully parameterized convection underestimate upwelling507

shortwave radiation, which corresponds to a too low planetary albedo. As for the long-508

wave bias, the shortwave bias is stronger for the coarser simulations. The better agree-509

ment in the net flux found for the coarser simulations is thus achieved for the wrong rea-510

son: a systematic bias compensation between longwave and shortwave fluxes that increases511

when a coarser resolution is used. Put differently, this also means that bias compensa-512

tion becomes smaller as the resolution is made finer - an encouraging signature of con-513

vergence with increasing resolution.514

For the highest resolution simulations at 2.5 km the outgoing longwave flux improves515

when the shallow-convection scheme is disabled so that convection becomes fully explicit.516

This is in particular the case for two-moment microphysics, which agrees best with ob-517

servations in terms of the longwave flux (Fig. 7b). However, the simulations with fully518

explicit convection strongly overestimate the upwelling shortwave flux. As a result, the519

overall most satisfying agreement is found for simulations that combine two-moment mi-520

crophysics and parameterized shallow convection. The shallow-convection parameter-521

ization avoids the strong overestimation of upwelling shortwave flux found for fully ex-522

plicit convection.523
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Figure 7. Domain and time-averaged allsky radiation fluxes: (a) total net flux, (b) outgoing

longwave flux, (c) net shortwave flux, (d) upwelling shortwave flux, and (e) downwelling short-

wave flux. Observations are shown by the black horizontal lines. The deviations of simulated

fluxes with respect to observations are shown by colored bars.

The simulation of domain- and time-averaged CREs and cloud cover is analyzed524

in Fig. 8. For the observations, CREs are around −41 Wm−2 in the shortwave and around525

27 Wm−2 in the longwave, with a net cooling effect of clouds of −14 Wm−2. Simulated526

shortwave and longwave CREs are negatively correlated, with larger positive longwave527

CREs obtained for more negative shortwave CREs (Fig. 8a). Simulations with fully pa-528

rameterized convection lie in the upper left quadrant of Fig. 8a and thus underestimate529

the magnitude of both longwave and shortwave CREs. Although these simulations show530

some improvement with decreasing grid spacing, none of the simulations approaches the531

observed CREs, and the impact of resolution appears to saturate at a grid spacing of 10 km.532

This indicates that even if the grid spacing was further reduced, the simulations would533

be unable to approach the observations if convection is fully parameterized. This idea534

is supported by Fig. S4 (supplementary material).535

In contrast, simulations with shallow-convection scheme and fully explicit convec-536

tion are scattered around the observations (Fig. 8a). In these simulations, the impact537

of cloud microphysics is also much more pronounced. Overall, this suggests a clear ben-538

efit from (partly) disabling the convection scheme. In fact, simulations with shallow-convection539

scheme and two-moment microphysics show a remarkable match with observed longwave540

and shortwave CREs.541

Fig. 8b-d further shows the relation between CREs and cloud cover. In the obser-542

vations, cloud cover is around 73%. Cloud cover is a primary control on CREs (e.g. Nam543

et al., 2012). Unsurprisingly this is visibile in the simulations, which show a near-linear544

relation between cloud cover and the CREs. The observations, however, do not fall onto545

the simulation-based relationship. This leads to a dilemma: For none of the simulations546

do CREs and cloud cover at the same time match the observations. Cloud cover is bet-547

ter simulated for coarser grid spacings, whereas CREs improve as the grid spacing is re-548

fined. This indicates that work on cloud-radiative properties is needed.549
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Figure 8. Comparison of domain- and time-averaged cloud-radiative effects and cloud cover:

(a) longwave CRE vs. shortwave CRE. Cloud cover vs. (b) shortwave CRE, (c) longwave CRE,

and (d) net CRE. Similar to Fig. 5, symbols denote average values and error bars provide confi-

dence intervals. Please note the differences in the y-axis range.

Using Eq. (2) the radiation flux biases of the ICON simulations with respect to ob-
servations can be written as the sum of clearsky and CRE biases, i.e.,

δF = FICON − FOBS = δFclear − δCRE. (3)

The results of this decomposition are collected in Fig. 9, with net flux biases shown in550

the left column, shortwave flux biases in the middle column, and longwave flux biases551

in the right column. The matrix presentation of Fig. 9 allows for two implicit summing552

rules: the left column is the sum of the middle and right columns, and the first row is553

the sum of 2nd and 3rd rows. The second row of Fig. 9 shows that net biases are to a554

substantial extent due to clearsky biases, which are independent of the simulation setup555

and amount to ∼ 7.4 Wm−2. This explains why simulated clearsky fluxes could not be556

directly used as observational clearsky estimates and required a bias correction. The clearsky557

bias mostly arises from the shortwave (∼ 5.6 Wm−2), with a smaller longwave contri-558

bution (∼ 1.8 Wm−2). The magnitude of the clearsky shortwave bias is somewhat sur-559

prising, and likely reflects an imperfect representation of ocean surface albedo in the ICON560

simulations.561

The dependence of allsky flux biases on resolution and the treatment of convection562

and cloud microphysics results entirely from CREs (Fig. 9, third row). The net CRE bias563

reduces the net allsky bias for simulations with fully parameterized convection, but in-564

creases it for simulations with fully explicit convection. For simulations with parame-565

terized shallow convection, the CRE biases depend on cloud microphysics. With one-moment566

microphysics, the CRE biases are similar to the biases found for fully parameterized con-567

vection. In contrast, with two-moment microphysics there is essentially no CRE bias,568

neither in the shortwave, longwave or net. The net flux bias of the two-moment simu-569

lation with parameterized shallow convection is therefore entirely due to clearsky biases,570

which could be decreased by adjusting the ocean albedo.571
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Figure 9. Decomposition of domain- and time-averaged biases for net (left), shortwave (mid-

dle) and outgoing longwave (right) radiation fluxes. The allsky bias (1st row) is the sum of

clearsky (2nd row) and CRE (3rd row) biases. The clearsky biases are calculated with respect

to the bias-corrected clearsky fluxes of ICON( 10km, *, CP ), which serves as observational

reference.

3.2 Dependence of Cloud-Radiative Effects and Cloud Cover on Cloud572

Type573

We now explore the origins of the domain- and time-averaged cloud-cover and CRE
biases in the ICON simulations. To this end we use the cloud classification outlined in
Sect. 2.5, which allows us to quantify the biases as a function of cloud type. This is done
by writing the instantaneous domain-averaged net flux, Fnet, as a sum of contributions
from the K cloud types of the cloud classification,

Fnet =

K∑
k=0

fk Fnet,k , (4)

where fk is the fractional cloud cover of a certain cloud type k and Fnet,k is the instan-
taneous net flux averaged over the area covered by cloud type k. Areas classified as cloud-
free are included at k = 0. As before a positive sign is taken for upwelling fluxes. In-
stantaneous domain- and time-averaged CREs are decomposed analogously,

CREnet = −
K∑

k=0

fk (Fnet,k − Fnet,clear,k) , (5)

where the cloud type-separated instantaneous net fluxes are averaged over time. This574

yields to a CRE decomposition into contributions from different cloud types. Note that575

clearsky and cloud-free fluxes are not equal, Fnet,0 6= Fnet,clear,0, because of clouds that576

are undetected by the cloud classification (cf. Fig. 5).577

Fig. 10 presents the cloud-type separation of total cloud cover. In the observations,578

cloud cover is dominated by very low / fractional clouds, which contribute around 30%579

–18–



manuscript submitted to JGR-Atmospheres

to the total observed cloud cover of 73%. The three cloud types ”low”, ”high opaque”580

and ”semi. moderately thick” clouds each provide around 10%. The remaining cloud types581

are less important. From a qualitative point of view, all simulations capture the cloud582

cover of the different cloud types rather well. A few features of simulated cloud types,583

however, stand out:584

(i) The cloud cover of very low / fractional clouds strongly depends on resolution and585

is better simulated in coarse-resolution simulations with grid spacings between 10586

and 80 km. Finer-resolution simulations substantially overestimate very low / frac-587

tional cloud cover, with a more severe overestimation as the grid spacing is decreased.588

The largest overestimation is found for simulations with explicit convection.589

(ii) Most simulations underestimate the low cloud cover and overestimate the cloud590

cover of semi-transparent clouds. These biases are less resolution dependent and591

become smaller when convection is fully explicit.592

(iii) The choice of the microphysics scheme (one-moment vs. two-moment scheme) has593

a dominant impact on the cloud cover of cirrus clouds, which are represented by594

the five cloud types “high” and “very high opaque” as well as “semi. thin”, “semi.595

moderately thick” and “semi. thick”. The effect is evident from high and very high596

opaque clouds, for which the two-moment scheme produces smaller cloud cover than597

the one-moment scheme for fully parameterized convection but higher cloud cover598

for very high opaque clouds and parameterized shallow convection. At the same599

time, the two-moment scheme leads to increased cloud cover and cloud-cover bi-600

ases for semi. thin and moderately thick clouds independent of the treatment of601

convection.602

The domain- and time-averaged shortwave CRE depends on the typical albedo of603

a certain cloud type (see Fig. 3). This relation is further illustrated by Fig. 11a where604

CREs have been calculated for a hypothetical overcast situation in which the radiative605

effect of each cloud type was considered separately assuming a total coverage of 100%.606

Based on observations, very low / fractional clouds induce a rather low shortwave over-607

cast CRE of −30 Wm−2. The shortwave overcast CRE increases reaching −140 Wm−2
608

for very high, opaque clouds. The concurrent increase of albedo and cloud-top height also609

leads to increases in longwave overcast CREs. The imperfect compensation between short-610

and longwave CREs causes net effects that have different signs for observed opaque and611

observed semi-transparent clouds. All opaque clouds induce a net cooling due to their612

negative net CREs in the observation. For observed low and mid-level clouds, the mag-613

nitudes of net overcast CREs are largest with −50 Wm−2. The warming effect of ob-614

served semi-transparent clouds is less pronounced and is largest for semi. thick clouds615

with 15 Wm−2.616

The comparison of observed overcast CREs with their simulated counterparts helps617

to assess how good the different simulation setups represent the individual cloud-type618

specific radiation fluxes (independently of the fractional cloud cover of each type). On619

a qualitative level, all simulations perform very well showing the observed dependence620

of overcast CREs on cloud type. Most remarkably, none of the simulated semi-transparent621

cloud types causes significant positive net CREs (except for ICON(2.5 km, **, sCP)),622

i.e. hardly any of the ICON simulations induce a net domain-average warming from semi-623

transparent cirrus (see Fig. 11b). For all simulated semi-transparent cloud types, the long-624

wave CREs and thus their thermal cloud emissitivies are underestimated (see Fig. 11a).625

The dependence of allsky CREs on cloud type is presented in Fig. 11c-d. Follow-626

ing eq. (5), allsky CREs are calculated by weighting the difference between overcast and627

clearsky radiation fluxes by the cloud cover of each cloud type. The relative amount of628

each cloud type determines the importance of this cloud type and its CREs for the domain-629

and time-average. Thus, simulated biases in allsky CREs can arise from biases in (i) the630

radiative properties of a given cloud type, and (ii) the cloud cover of a given cloud type.631
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Figure 10. Observed and simulated cloud cover as a function of cloud type (a) as well as

cloud cover biases of the simulations with respect to Meteosat observations (b). Similar to Fig. 5,

symbols denote average values and error bars provide confidence intervals.

From Fig. 11d, we infer that mainly the four cloud types ”very low / fractional”, ”low”,632

”mid-level” and ”high opaque” (with decreasing importance) contribute to the observed633

negative net allsky CREs. The remaining four cloud types either have near zero net all-634

sky CREs or too little cloud cover. For simulations with fully parameterized convection,635

net allsky CREs for very low / fractional and low clouds are severely underestimated.636

The discrepancy is much reduced for simulations with shallow convection at 2.5 km grid637

spacing, especially for one-moment microphysics. In contrast, the net allsky CREs of very638

low / fractional clouds are overestimated in simulations with fully explicit convection.639

The allsky net CREs of mid-level clouds are better represented for simulations with ei-640

ther shallow or full convection scheme than in simulations with fully explicit convection.641

In addition, semi. moderately thick clouds have too negative allsky net CREs in all sim-642

ulations, with the largest bias for simulations with fully explicit convection.643
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Figure 11. Observed and simulated (a,b) overcast CREs and (c,d) allsky CREs for different

cloud types. Overcast CREs are calculated assuming a hypothetical cloud cover of 100%. All-

sky CREs include weighting by the cloud-type’s specific cloud cover. Similar to Fig. 5, symbols

denote average values and error bars provide confidence intervals.

To separate the effects of cloud type-dependent cloud cover and radiative proper-
ties on biases of simulated allsky CREs, we apply a bias decomposition to eq. (5),

δCREnet =−
K∑

k=0

δfk (Fnet,k − Fnet,clear,k)︸ ︷︷ ︸
cloud cover

−
K∑

k=0

fk δ(Fnet,k − Fnet,clear,k)︸ ︷︷ ︸
radiative properties

−
K∑

k=0

δfk δ(Fnet,k − Fnet,clear,k)︸ ︷︷ ︸
co-variation

.

(6)
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The first term results from a misrepresentation of cloud cover, the second term from a644

misrepresentation of radiative properties and overcast CREs, and the third term from645

the co-variation between the two factors. As before, cloud-free contributions are included646

at k = 0. The decomposition holds for the allsky net CREs as well as its shortwave and647

longwave components.648

Fig. 12 summarizes biases in the domain- and time-averaged CREs and their de-649

composition. As discussed in Sect. 3.1, net CREs are biased negative for simulations with650

explicit convection, i.e. clouds cool too much, but biased positive for simulations with651

shallow-convection scheme and fully parameterized convection (except for ICON(2.5km,652

*, sCP)), i.e. clouds cool too little. For the latter simulations, net CRE biases become653

smaller as the grid spacing is decreased. The compensation of CRE biases originating654

in the longwave and shortwave is very apparent for fully convection-parameterized sim-655

ulations (Fig. 12a-c).656

The bias compensation between shortwave and longwave CREs leads to different657

roles of cloud cover and radiative properties, depending on whether one looks at net CREs658

or their shortwave and longwave components. For net CREs, cloud cover biases dom-659

inate. They are responsible for around half of the positive bias for fully parameterized660

convection (Fig. 12d). For simulations with fully explicit convection, in contrast, biases661

in radiative properties clearly control the net CRE biases. For the shortwave and long-662

wave CRE components, biases in radiative properties dominate in general. A pronounced663

compensation between shortwave and longwave CRE biases is apparent. We thus find664

that the earlier discussed compensation of shortwave and longwave flux biases directly665

traces back to a mis-representation of cloud-radiative properties. In all simulations ex-666

cept the ones with fully explicit convection, two-moment microphysics leads to less CRE667

biases due to radiative properties than the one-moment microphysics. The simulations668

with shallow-convection parameterization possess smaller biases than the fully param-669

eterized simulations. The simulations with fully explicit convection show acceptable re-670

sults for the longwave bias due to radiative properties. Their worse net performance orig-671

inates from the missing compensation by shortwave biases which are also negative for672

these simulations.673

The interpretation of CRE biases is further supported by Fig. 13 which provides674

a detailed bias decomposition separated by cloud type. We see that not only the com-675

pensation between shortwave and longwave CRE biases is important, but also the com-676

pensation of biases originating from different cloud types. For the net CRE biases (Fig. 13c),677

mainly cloud types “very low / fractional” and “low” contribute to the positive bias of678

simulations with fully parameterized convection. This is partially compensated by a neg-679

ative net CRE bias from semi. moderately thick clouds. The net CRE bias of simula-680

tions with fully parameterized convection is again dominated by CRE biases due to ra-681

diative properties.682

For shortwave and longwave CRE biases (Fig. 13a,b), it is found that the resolu-683

tion dependence of CRE biases not only originates from very low / fractional and low684

clouds, but also from very high opaque clouds. This cloud type is connected to deep con-685

vection which representation significantly improves for decreasing grid spacing. The sim-686

ulations with two-moment microphysics show a rather poor performance for the very high687

opaque clouds which needs to be addressed in future. In the shortwave, the positive CRE688

bias of simulations with fully parameterized convection comes mainly comes from very689

low / fractional and low clouds. For the former, biases in radiative properties dominate690

whereas for the latter CRE biases due to cloud cover also contribute. Switching from one-691

moment to two-moment scheme, we find improvements in the representation of short-692

wave components of individual radiative properties (see Fig. 12h and Fig. 13g) which are693

partially masked by worse cloud cover biases (see Fig. 12e). In the longwave, many cloud694

types simulated with fully parameterized convection show a negative bias originating from695
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Figure 12. Decomposition of CRE biases (1st row) into contributions from biases in cloud

cover (2nd row) and cloud-radiative properties (3rd row). Co-variations between biases in cloud

cover and radiative properties are shown in the 4th row. The net CRE biases (left column) are

decomposed into shortwave and longwave (right column) contributions.

the bias in radiative properties. The magnitudes of the individual longwave biases are696

much smaller for simulations with explicit convection.697

In summary, the above analysis showed that future model development should equally698

concentrate on improvements of simulated clearsky and cloud-affected TOA radiation699

fluxes. For the former, we recommend to revise the formulation of ocean albedo to reach700

better consistency with observations. For CREs, strategies for further improvement de-701

pend on the choice of the convection scheme, especially at kilometer-scale resolutions.702

For simulations with fully parameterized convection, radiation is typically too weakly703

interacting with clouds, especially for low and very low / fractional clouds. Hence, im-704

proving radiative properties of these cloud types should be the main target in this model705

setup, either from a macrophysical or a microphysical point of view. Specifically, in the706

used ICON version the effective radius of cloud particles used for radiative transfer fol-707

lows from a prescribed number concentration of cloud particles and is unaware of the num-708

ber concentration simulated by the two-moment microphysics scheme. Adjusting this in-709

consistency might help to correct the negative biases in longwave CREs of semi-transparent710

cirrus. For simulations with only shallow or fully explicit convection, the radiative prop-711

erties of clouds show signs of improvement. For these simulations, it becomes increas-712

ingly more important to constrain biases related to cloud cover, especially for cloud types713

“very low / fractional”, “low” and “very high opaque”.714
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Figure 13. CRE biases and their decomposition for different cloud types. Following eq. (6),

(top row) biases in CREs are separated into (bottom row) contribution from (left) cloud-cover

biases and (right) radiation-flux biases. The split into (a, d, g) shortwave and (b, e, h) longwave

components that sum up to the (c, f, i) net CRE bias is also provided in the different sub-panels.

Similar to Fig. 5, symbols denote average values and error bars provide confidence intervals.
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4 Conclusions and Outlook715

Clouds regulate Earth’s energy budget (Ramanathan et al., 1989). Shallow low-716

level clouds are efficient scatterers of shortwave radiation and, in combination with their717

small thermal contrast to Earth’s surface, they have strong negative cloud-radiative ef-718

fects and cool the Earth. In contrast, the cloud-radiative effects of high-level cirrus clouds719

also include longwave effects so that depending on cirrus-optical properties these clouds720

can either have a near zero or a warming effect (G. L. Stephens, 2005).721

In mid-latitude environments, cyclones lead to the formation of frontal cloud bands722

with a complicated mixture of stratiform and convective clouds, possibly including multi-723

layer structures and embedded convection. Realistically representing such complex cloud724

structures and their radiative effects poses a challenge to numerical models, especially725

over oceans where extended shallow boundary-layer cloud fields occur in addition. Fur-726

thermore, the radiative impact of clouds on the mid-latitude circulation might depend727

on cloud type. We therefore investigated the ability of a specific numerical weather pre-728

diction - the ICON model (Zängl et al., 2014) - to represent cloud cover and cloud-radiative729

effects for selected days of the NAWDEX field campaign in boreal autumn 2016 over a730

large North Atlantic domain. Using a comprehensive set of sensitivity simulations that731

vary horizontal grid spacing between 2.5 and 80 km, we identified sensitivities with re-732

spect to model resolution. Moreover, we studied the impact of different choices regard-733

ing the parameterization of cloud microphysics (one-moment versus two-moment scheme)734

and convection (fully parameterized, shallow-convection only, fully explicit). This allowed735

us to identify strengths and weaknesses of the different model setups, in particular with736

respect to top-of-atmosphere radiation fluxes and cloud-radiative effects.737

To assess the ICON model we made use of multi-spectral observations from the geo-738

stationary Meteosat satellite in two ways. First, we analyzed observational estimates of739

instantaneous top-of-atmosphere radiation. Second, we derived a detailed and state-of-740

the-art cloud classification from the Meteosat observations. For a consistent compari-741

son between the ICON simulations and the observations, the simulation data were for-742

warded to a satellite forward operator performing radiative transfer calculations to de-743

rive synthetic infrared satellite images. This transfer of the simulations to observation744

space allowed us to subject simulations and observations to the same cloud classifica-745

tion software, and to analyze and compare observed and simulated cloud-type fields within746

the same framework.747

In observations, the average net TOA radiation flux over the North Atlantic region748

and for the selected analysis days is around +25 Wm−2, indicating a net energy loss (re-749

member that we adopted a positive-upward convention for radiation fluxes). Clouds sub-750

stantially contribute to the energy loss and are responsible for a net cooling of −14 Wm−2.751

Major contributors to the net CRE are shallow clouds of the cloud type ”very low / frac-752

tional” and ”low”, which both contribute around −5 Wm−2 to the total net CRE. The753

shallow clouds also account for around half of the total cloud cover of 73%.754

The main results of our comparison between observed and ICON simulated radi-755

ation fluxes and cloud fields are as follows:756

(i) For all model setups, the domain- and time-averaged net TOA radiation flux is larger757

than in the observations, independent of resolution and the treatment of cloud mi-758

crophysics and convection. The ICON model thus overestimates the TOA loss of759

radiative energy. Simulations with fully parameterized convection underestimate760

TOA shortwave reflection and overestimate outgoing longwave radiation, i.e. seen761

from space they are too dark and too warm.762

(ii) There is a systematic bias compensation between shortwave reflection and outgo-763

ing longwave radiation. The compensation is stronger for coarse-resolution simu-764

lations. Clearsky and CRE biases have similar magnitudes, but only CRE biases765
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are sensitive to horizontal resolution and in fact decrease with finer resolution. For766

fully parameterized-convection simulations, clouds are too weakly interacting with767

the radiation field leading to positive CRE biases in the shortwave and negative768

CRE biases in the longwave which partially compensate each other.769

(iii) For none of the ICON setups, a simultaneous match between observed and sim-770

ulated CREs and total cloud cover is achieved. Cloud cover compares better to ob-771

servations for coarse resolutions, whereas CREs compares better to observations772

for finer resolutions.773

(iv) The cloud cover of shallow clouds (types: “very low / fractional” and “low”) strongly774

depends on resolution. It compares well with observations for coarser resolutions775

of 10-80 km, but finer resolutions and explicit convection severely overestimate it776

by up to 50% relative to observations. For simulations with fully parameterized con-777

vection, net CRE-biases of shallow clouds are dominated by positive shortwave bi-778

ases in radiative properties. Biases in shortwave and net CREs are reduced when779

only shallow convection parameterization is applied. Using explicit convection even780

switches the sign of the shortwave CRE-biases leading to too bright shallow clouds781

and too large cloud-induced reflection.782

(v) The choice of the microphysics scheme has dominant impact on cloud cover of cir-783

rus clouds leading to smaller cloud cover for high opaque and very high opaque clouds784

and larger cloud cover for semi. thin and semi. moderately thick clouds. No pro-785

nounced net warming effect is found for simulated semi-transparent clouds. The786

net CRE bias of semi-transparent clouds is negative and caused by a mis-representation787

of cirrus radiative properties, especially in the longwave.788

In summary, our analysis shows that refining horizontal resolution and resolving789

convection allows the ICON model to more accurately represent cloud-radiative effects790

over the North Atlantic. We found substantial bias compensation between top-of-atmosphere791

shortwave and longwave radiation fluxes as well as between clearsky fluxes and cloud-792

radiative effects. An acceptable net performance of a selected model setup is not at all793

a guarantor of realistic individual contributions. The best representation of longwave and794

shortwave CREs is achieved when ICON is configured with two-moment cloud micro-795

physics, a shallow-convection scheme (explicit treatment of mid-level and deep convec-796

tion) and a horizontal resolution of 2.5 km.797

The improvement from increasing resolution are gradually up to a resolution of 10 km,798

at which point a further increase in resolution no longer improves the simulated CREs.799

Instead, at resolutions of 10 km and finer, the improvement results from disabling the800

convection scheme so that the model is allowed to represent convection in an explicit man-801

ner. However, a resolution of 2.5 km is still too coarse to resolve the shallow clouds and802

circulation in the marine boundary layer, because of which the best simulation is achieved803

with an explicit treatment of mid-level and deep convection but a parameterized treat-804

ment of shallow convection. Compared to fully explicit convection, the use of a shallow-805

convection scheme mitigates the otherwise too high low-level cloud cover and too strong806

cloud shortwave reflection, and at the same time does not affect longwave CRE, which807

are dominated by high-level clouds.808
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