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We present, by using previous results on extended Petri Nets, the relations

of various hydrological dynamical systems (HDSys) derived from the water

budget (DynWB). Once DynWB has been implemented, there exist a consistent

way to get the equations for backward travel time distributions (DynTT), for

the forward response time distribution (DynRTD) and for the concentration

for a solute or a tracer (DynC). We show that the DynWB has a correspon-

dence one to many with the DynTT. In fact to any one of the DynWB equation

correspond as many equation as the input precipitation events times. The

DynTT is related to DynRTD by the Niemi’s relationship and, in presence of

multiple, n outputs, by the specification of n − 1 partition functions, which

determine which fraction of water volume, injected in the control volume

at a specific time t i n , goes asymptotically into a specific output. The DynC,

given DynTT, depends further on the solute/tracer concentration in inputs.

The paper clarifies the complicate set of relations above by using an example

from literature. Upon the introduction of the appropriate information, it is

also shown how these (HDSys) can be solved simultaneously without dupli-

cating calculations. It is also shown that these systems can be solved exactly,

under the hypothesis of uniform mixing of water ages inside each reservoir

within the system.
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1 | INTRODUCTION

The extended Petri Nets (EPN), presented in a previous paper by Bancheri et al. (2019), are a new way to describe the
hydrological water and energy budgets with graphs. EPN, more than a pictorial representation, are actually a notation
for the systems’ equations themselves. Any hydrological dynamical systems (HDSys) was seen to be composed by
a topology and a semantics, the first describing the connections between the compartments of the budget, and the
second associating symbols to the topology, a meaning to symbols and an expression to fluxes, as overviewed in
Appendix A.

In this paper we use EPN to discuss various aspects of the water budget (named from now on DynWB as Dynamical
Water Budget) and discuss its relationship with other dynamical systems, namely:

• travel times (Maloszewski and Zuber, 1982; McGuire and McDonnell, 2006; Sprenger et al., 2019), described by
the age-ranked functions, as in Rigon et al. (2016b). This dynamical system will be named DynTTD as Dynamical
system of backward Travel Times Distribution, according to Botter et al. (2010, 2011);

• response times that generalizes the geomorphological unit hydrograph theory Rodríguez-Iturbe andValdes (1979);
Gupta and Waymire (1983); Rodríguez-Iturbe and Rinaldo (2001); Rigon et al. (2016a,b). This dynamical system
will be named DynRTD as Dynamical system of Response Time Distribution;

• solute/tracers concentrations, named DynC as Dynamical system of Concentrations McGuire and McDonnell
(2006); Duffy (2010).

To show these equivalences, we borrow some concepts from the language of the category theory (Fong and
Spivak, 2018). We do not introduce category theory here explicitly, in order to maintain our description as simple as
possible, but interested readers should refer to (Rihel, 2016; Fong and Spivak, 2018; Bradley, 2018). However, we
will define and mention below the concept of functor (e.g., Bradley (2018)), a “function” that connects every element
of a dynamical system with the correspondent of the other dynamical systems, i.e. the state variables with the state
variable, but also the fluxes with the fluxes, and any quantity that appears in the mathematical description of one
HDSys.

Our methodology for discussing the relations among the four dynamical systems (DynWB, Dyn TTD, DynRTD
and DynC) is based on:

1. showing that HDSys are representable as EPN;
2. exploiting these facts by describing each system through the graphical representation;
3. adding the dictionary and the various expression tables, relative to each HDSys in such a way that there is a one

to one correspondence between the differential or integral operators of each system.

Points one and two above are essentially already accomplished in Figure 1) and therefore what remains to do
is to write the dictionaries and the tables of expression for all the HDSys. With the latter operations, we practically
construct the functors that connects the categories, i.e. we give the rules to associate reservoir (called object in
category theory, place in EPN) to reservoir between two HDSys and flux (called arrow in category theory, transition in
EPN) to flux. Practically the equivalences come automatically, as a demonstration of the power of EPN representation,
by associating the same numbered rows of the dictionaries and table of expression.

The association/equivalence seems therefore a straightforward achievement but less trivially wewill produce also
the mathematical expression of the solutions of the dynamical systems and highlight that the mathematical morphism
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F IGURE 1 Based on the same topology, we can have different view of our perceptual model. On top left
(DynWB) we have the EPN representation of the water budget of a subbasin of the Maimai catchment (Gabrielli
et al., 2018) or the model used in (Kirchner, 2016, 2019); on top right (Dyn TTD) we have the representation of the
travel time distributions; on bottom left (DynRTD) we have the representation of the life expectancy distributions;
on bottom right (DynC) we have the representation of the concentrations of a tracer.
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between the dynamical systems is not a isomorphism because the information content of any of the system is slightly
different and some assumptions, usually buried below the mathematical formalism, must be done to move from one
to the the other.

To exemplify the concepts just enumerated, we start from discussing the DynWB, which is the basis of all of our
arguments.

2 | THE WATER BUDGET DynWB

We firstly illustrate the water budget, assuming that it is representative of some really existent hydrological system,
and, for instance, the Maimai catchment (Gabrielli et al., 2018) could be such a case. One aspect of EPN is that they
have a topological part, called topology of the model, which resolves the system behavior in a group of interconnected
reservoirs (absolutely the same way the tradition teaches, (Beven, 2011)) that receive and exchange fluxes and a more
specific part that represents the mathematical expressions used for estimating the fluxes (the semantic of the model).
Concentrating our attention to Figure 1, the reservoirs are represented by two circles, and corresponds to the number
of ODEs used. Squares represents the fluxes between the reservoirs or inputs or outputs. The dotted line circle is a
stationary reservoir where waters from Su and S l just mix to produce the discharge QS as a sum of contributions.

As already mentioned, in the EPN nomenclature Bancheri et al. (2019), the reservoirs (circles) are named places
and the fluxes transitions. The dictionary of dynamical system in Table 1 gives a meaning to the variables used.
Differently from Bancheri et al. (2019), we number here the row of the dictionary for use in the following sections.

# Symbol Name Type Unit

1 ETS Evapotranspiration F [L T−1]

2 L̂ Percolation from upper storage to lower storage F [L T−1]

3 Ľ Discharge from the upper reservoir F [L T−1]

4 P Precipitation F [L T−1]

5 Q l Discharge from the lower reservoir F [L T−1]

6 QS Surface water discharges F [L T−1]

7 R l Percolation flux to deeper groundwater F [L T−1]

8 S l Lower storage reservoir SV [L]

9 Su Water upper storage SV [L]

TABLE 1 Dictionary of the HDSys presented in Figure 1 a). F stand for "flux"; SV stands for "State Variable"; [L]
for "length unit"; [T] for "time" unit. The names of the variables were chosen after (Kirchner, 2016).

Before translating the graph to equations, we have to specify a table of expression for the places, to associate to
any place symbol an operator, as shown in Table 2 below.

After the use of Expression in Table 2, the diagram in Figure 1 allows the writing of the systems’ equations as:

dSu (t )
d t

= P (t ) − ETs (t ) − Ľ (t ) − L̂ (t ) (1)
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# Symbol Name Expression

8 S l Water in lower storage dS l /d t

9 Su Water in the upper storage dSu/d t

TABLE 2 Expression for the Water Budget places. The numbers refer to the position of the state variable in the
dictionary of Table 1

dS l (t )
d t

= L̂ (t ) − Q l (t ) − R l (t ) (2)

QS (t ) = Q l (t ) + Ľ (t ) (3)

As written in Table 2 to the state variables in place S l and Su correspond, in the left side of the equations, the
time variation of the quantity. At the right side of the equation, transitions with an input arrow going into the place
are positive, and transitions, with an output arrow going out the place are negative. So, for the upper reservoir,
precipitation, P , is an input while there are three outputs, ETs , Ľ and L̂. The dashed, unnamed place is then used
to show that low and upper reservoir discharges mix and are collected in surface water. In turn, the surface water
reservoir does not vary its water content and its outputs is exactly the sum of the incoming discharges (for these
reasons the reservoir is dashed, or invisible.

These water budget equations are not fully specified and cannot be solved, since the fluxes’ expressions are not
yet given. In this case, Kirchner (2016, 2019) help us to build our example and giving an expression for each input and
output flux. The expressions are given below in Table 3 which, for its function, is called Expression Table of the model.

Symbol Name Expression

1 ETS Evapotranspiration f (Rn ,u, δe,Ta , zd , z0)

2 L̂ Percolation from upper storage to lower storage (1 − η)kuSbuu

3 Ľ Discharge from the upper reservoir ηkuS
bu
u

4 P Precipitation •

5 Q l Discharge from the lower reservoir βk l S
b l

6 QS Total discharge Ľ + Q l

7 R l Percolation flux to deep groundwater (1 − β )k l Sb l

TABLE 3 Expressions of fluxes from and into reservoirs. With respect to Kirchner (2016), evapotranspiration and
percolation to deep groundwater were added to be more similar to the Gabrielli et al. (2018) perceptual model.
Evapotranspiration expression was not actually specified but thought as function of net radiation, Rn , wind velocity,
u , evaporative demand, δe , air temperature,Ta , zero displacement height, zd and surface roughness, z0. The •
symbol indicates that precipitation are measured, i.e. a given quantity.

An ancillary dictionary should be then produced to explain all the new symbols introduced. Table 4 contains it
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Symbol Name Type Unit

b l Parameter in Q l expression P [-]

bu Parameter in L̂ and Ľ expression P [-]

k l Lower reservoir coefficient P [T−1 L1−b l ]

ku Upper reservoir coefficient P [T−1 L1−bu ]

Rn Net Radiation V [E T−1 L−2]

Ta Air temperature V [K]

u wind velocity V [L T−1]

z0 Surface roughness P [L]

zd Zero displacement height P [L]

β Partition coefficient for lower reservoir fluxes P [-]

δe Evaporative demand V [F L−2]

η Partition coefficient for the upper reservoir fluxes P [-]

TABLE 4 Additional dictionary introduced after the explication of fluxes in 3. To be added to Table 1

with mostly parameters to be set by literature knowledge or calibration values.

The dynamical system such defined can be solved numerically once precipitation and evaporation data are avail-
able. Evaporation, in turn, could be obtained by making explicit the model used, i.e. the form of the function f in Table
3. This is not necessary at present and we avoid it for simplicity. However, from now on, we will assume that all the
state variable, Su (t ) and S l (t ) are known for all the instant of time for which we have precipitations inputs. A larger
set of model’s examples, to which, the same considerations apply are presented in Bancheri et al. (2019).

3 | THE TRAVEL TIME DynTTD

With just a simple change of semantics, the same topology of Figure 1 a) can represent travel time distributions Rigon
et al. (2016b), as shown in Figure 1 b).

The main visible changes in Figure 1 b) are i) the addition of shadows to the graph, to indicate that we are now
dealing with a system of equations, each one dependent on a t i n , i.e. the injection time to the control volume and ii)
the use of lower case quantities. The dictionary of the DynTTD system is presented below in Table 5.

Each of the quantities appearing in Table 5 are age-ranked functions, i.e. they trace the quantity of water injected
in the system with precipitation at time t i n . Once integrated over the injection time, they give the corresponding
‘bulk" quantities present in Table 1. For instance, it is:

S l (t ) =
∫ t

−∞
s l (t , t i n )d t i n (4)

where S l is the eightest entry in Table 1 and s l (t , t i n is the eightest entry in Table 5. The complete treatment of the
theory, mainly due to Botter et al. (2010) and van der Velde et al. (2012), is presented in Rigon et al. (2016b) with the
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# Symbol Name Type Unit

1 eT S (t , t i n ) Evapotranspiration generated by pi n F [L T−2]

2 l̂ (t , t i n ) Percolation from upper storage generated by pi n F [L T−2]

3 ľ (t , t i n ) Discharge from the upper reservoir generated by pi n F [L T−2]

4 pi n (t i n ) Precipitation at time t i n F [L T−2]

5 q l (t , t i n ) Discharge from the lower reservoir generated by pi n F [L T−2]

6 qs (t , t i n ) Surface water discharge generated by pi n F [L T−2]

7 r l (t , t i n ) Percolation flux to deeper groundwater generated by pi n F [L T−2]

8 s l (t , t i n ) Water in lower storage generated by by pi n SV [L T−1]

9 su (t , t i n ) Water in upper storage by pi n SV [L T−1]

TABLE 5 Dictionary of the DynTTD. The enumerated quantities are all age-ranked functions, since the
dependence from the injection time t i n has been added

same notation we use in this paper. Equations are obtained by associating the differential operator to state variables,
as shown in Table 6, analogously to what already done in the case of DynWB:

Symbol Name Expression

8 s l Water in lower storage ds l (t , t i n )/d t

9 su Water in the upper storage dsu (t , t i n )/d t

TABLE 6 Expression for age ranked state variable. The numbers refer to the position of the state variable in the
dictionary of Table 5

Therefore the age-ranked equations for the Kirchner (2016) system are:

dsu (t , t i n )
d t

= pi n (t i n ) − eTS (t , t i n ) − ľ (t , t i n ) − l̂ (t , t i n ) (5)

and

ds l (t , t i n )
d t

= l̂ (t , t i n ) − r l (t , t i n ) − q l (t , t i n ) (6)

with also:

qs (t , t i n ) = ľ (t , t i n ) + q l (t , t i n ) (7)

In the theory of age-ranked functions, the expressions to insert into fluxes variables are not given directly but are
mediated by the introduction of the so called backward residence time probabilities, defined as:
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pi (t − t i n |t ) :=
si (t , t i n )
S (t ) (8)

where i ∈ {u, l } means that i can be either u or l , and the backward travel time probabilities:

pk (t − t i n |t ) :=
g (t , t i n )
G (t ) (9)

where (g ,G ) ∈ {(eTS , ETS ), ( ľ , Ľ), ( l̂ , L̂), (r l , R l ), (q l ,Q l ) }, meaning that any of the couples between the braces
can be substututed to (g ,G ) . Furthermore, according to Botter et al. (2010, 2011), the following equation is valid:

pk (t − t i n |t ) := ωk i (t , t i n )pi (t − t i i n |t ) (10)

where, if k ∈ {eTS , l̂ , ľ }, then i = u or, if k ∈ {q l , r l }, then i = l , and ωs are called StoraAge Selection functions
(SAS).

Substitution of (8) into (5) gives:

dSu (t )pu (t − t i n |t )
d t

= pi n (t i n )δ (t − t i n ) − ETS (t )ωTS (t , t i n )pu (t − t i n |t ) +

−Ľ (t )ωĽ (t , t i n )pu (t − t i n |t ) − L̂ (t )ωL̂ (t , t i n )pu (t − t i n |t ) (11)

and substitution of (9) into (6) gives:

dS l (t )p l (t − t i n |t )
d t

= L̂ (t )ωL̂ (t , t i n )pu (t − t i n |t ) − Q l (t )ωQ l (t , t i n )p l (t − t i n |t ) − R l (t )ωR l (t , t i n )p l (t − t i n |t ) (12)

After Equations (11) and (12) we can reshape the association rule for the differential operator acting on state
variables. In place of Table 6, we better use:

Symbol Name Expression

8 s l Water in lower storage dS l (t )p l (t − t i n |t )/d t

9 su Water in the upper storage dSu (t )pu (t − t i n |t )/d t

TABLE 7 Operators to apply to age ranked state variables, for obtaining Equations (11) and (12)

We are also ready to properly write the expression table for transitions in the age-ranked equations, as reported
in Table 8.

With Tables 7 and 8 we have completed the construction of the functor relating the DynWB and DynTTD dynamical
systems. In fact, we have simply to associate the rows of the related tables to obtain the correspondence:

• among symbols, associating Table 1 as domain to Table 5 as codomain;
• among operators, associating Table 2 as domain to Table 6 as codomain;
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Symbol Name Expression

1 eTS Age-ranked evapotranspiration ETS (t )ωeTS (t , t i n )pu (t − t i n |t )

2 l̂ Age-ranked percolation

for upper storage to lower storage L̂ (t )ωL̂ (t , t i n )pu (t − t i n |t )

3 ľ Age-ranked discharge from the upper reservoir Ľ (t )ωĽ (t , t i n )pu (t − t i n |t )

4 pi n Precipitation input a time t i n •

5 q l Age-ranked discharge from lower reservoir Q̌ l (t )ωQ l (t , t i n )p l (t − t i n |t )

6 qs Age-ranked total discharge q l (t , t i n ) + qs (t , t i n )

7 r l Age-ranked percolation flux to groundwater Ř l (t )ωR l (t , t i n )p l (t − t i n |t )
TABLE 8 Expression of the operators to apply to age ranked state variables, for obtaining Equations (11) and (12)

• among expressions, associating Table 3 as domain to Table 8 as codomain.

Notwithstanding this morphism between the two HDSys, they do not contain the same information. To obtain
the dynamics of DynTTD we have, in fact, to specify the form of the SAS functions which require further knowledge
or assumptions. Besides, the morphism is a relation one-to-many, since to each equation in DynWB correspond a set
of equations in DynTTD, each one labeled (“ranked”) by a precipitation time t i n . At the same time, for solving DynTTD,
the knowledge of the solutions of DynWB is mandatory, since the bulk quantities appear explicitly in the age-ranked
equations.

Equations (11) and (12) are linear in the probabilities p l (t − t i n |t ) and pu (t − t i n |t ) and are analytically solvable
(Botter et al., 2010, 2011).

During the recent years various recipes were developed to constrain the form of the SAS ( e.g., Benettin et al.
(2017)), however in many papers, the simplest assumption is made that the fluxes are sampled uniformly from the
storages and, i.e., [i ωi (t , t i n ) = 1. In this case the solutions for the probabilities pu is (Botter et al., 2010):

pu (t − t i n |t ) =
P (t i n )
Su (t i n )

e
−

∫ t
ti n

P (t ′)
Su (t ′) d t

′
(13)

while the solution for the probability p l , after applying the rules for integration of a linear ODE, as provided in
the complimentary material, results:

p l (t − t i n |t ) =
P (t i n )
Su (t i n )

∫ t

t i n

L̂ (t ′′)
S l (t ′′)

e
−

∫ t ′′
ti n

P (t ′)
Su (t ′) d t

′
e
−

∫ t
t ′′

L̂ (t ′)
Sl (t ′)

d t ′
d t ′′ (14)

Upon defining:

p l (t − t ′′ |t ) :=
L̂ (t ′′)
S l (t ′′)

e
−

∫ t
t ′′

L̂ (t ′)
Sl (t ′)

d t ′ (15)

which can be seen as the backward probability distribution of travel time inside the single place S l , equation 14 can
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be written as:

p l (t − t i n |t ) =
∫ t

t i n

p l (t − t ′′ |t )pu (t ′′ − t i n |t ′′)d t ′′ := 〈p l ∗ pu 〉 (16)

which contains a sort of convolution between the travel times inside the path Su → S l . This is actually not
a convolution of probabilities in strict sense, since, while p l is a probability distribution function (pdf) in t ′′, pu is a
probability distribution function in t i n and not in t ′′ Rigon et al. (2016b). This is the reason why we indicated this
operation in (16) with the 〈 and 〉 parentheses besides the traditional ∗ sign.

4 | THE RESPONSE ORIENTED DynRTD

A traditional way to mathematically describe the water fluxes is given by the theory of instantaneous unit hydrograph
and its generalizations Beven (2011); Rigon et al. (2016a). In the supplementary material with practical example, we
show how this HDSys deals with the life expectancy, i.e., the time at which one molecule of water is expected to exit
the control volume, which is a variable shared with populations dynamics (e.g., Calabrese and Porporato (2015)). We
do not require a new dictionary for this dynamical system, as it is evident from the Figure 1 c) that uses for places the
same symbols of Figure 1 a). Not even a new operators table is required, since the budget equations remain the same
as in equations Equations 1 and 2. Fluxes are instead represented by the same symbols than in DynWD but with 〈 and
〉 parentheses, because, in these theories fluxes are assigned through a convolution:

〈Q̂k j i 〉 =
∫ t

−∞
Θk i (t i n )pk (t − t i n |t i n )︸                         ︷︷                         ︸

F(t ,t i n )

Jj k (t i n )d t i n := [pk i ∗ (Θk i Jj k ) ] (t ) (17)

where

• Jj k (t i n ) is the j -est input to the k storage;
• pk (t − t i n |t i n ) is the so called response time probability or life expectation probability (conditional on t i n ) of the

k -est storage;
• Θk i (t i n ) is a coefficient that partitions the outgoing fluxes and was found to be dependent of the injection time

t i n Botter et al. (2010);
• 〈Q̂k j i 〉 is the i -est outgoing flux from storage (place) k generated by the j − est input;
• F(t , t i n ) is the known response function, whose meaning will be explained below.

In the hydrological literature (e.g., Rigon et al. (2016a)), the treatment of these system is obtained by assigning
the probabilities pk (t − t i n |t i n ) instead of solving the partial differential equations of the water budget. Actually, if we
start by solving DynWB we can, for any time t , determine F but its separation in Θk i and pk can be determined only
at t = ∞ as described in Rigon et al. (2016b). The square parentheses and the * symbol are used as a short form for
the convolution represented by the integral. Therefore the expression table for DynRTD is now changed as shown in
Table 9, where it is to be noticed that the convolutions contain also the partitioning functions Θk i .
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# Symbol Name Expression

1 〈ETS 〉 Evapotranspiration [pETS ∗ (ΘETS P ) ]

2 〈L̂ 〉 Percolation from upper storage to lower storage [pL̂ ∗ (ΘL̂P ) ]

3 〈Ľ 〉 Discharge from the upper reservoir [pĽ ∗ (ΘĽP ) ]

4 P Precipitation •

5 〈Q l 〉 Discharge from the lower reservoir [pQ l ∗ (ΘQ l L̂) ] = [pQ l ∗ (ΘQ l ∗ pL̂ ∗ (ΘL̂P )) ]

6 〈QS 〉 Total discharge Ľ + Q l

7 〈R l 〉 Percolation flux to deep groundwater [pR l ∗ (ΘR l L̂) ] = [pR l ∗ (ΘR l ∗ pL̂ ∗ (ΘL̂P )) ]

TABLE 9 The dynamical system DynRTD is given trough the assignment of the response time distribution of the
fluxes.

In DynRTD the bulks mass budget for the u reservoir can be written as:

dSu
d t

= P (t ) − [pETS ∗ (ΘETS P ) ] (t ) − [pĽ ∗ (ΘĽP ) ] (t ) − [pL̂ ∗ (ΘL̂P ) ] (t ) (18)

where, for instance, is:

[pL̂ ∗ (ΘL̂P ) ] (t ) :=
∫ t

−∞
pL̂ (t − t i n |t i n ) (ΘL̂ (t i n )︸                          ︷︷                          ︸

FL̂ (t ,t i n )

P (t i n ))d t i n (19)

and analogous equations hold for the other outgoing fluxes Ľ and ETS . For the l reservoir is therefore:

dS l
d t

= [pL̂ ∗ (ΘL̂P ) ] − [pQ l ∗ (ΘQ l ∗ pL̂ ∗ (ΘL̂P )) ] − [pR l ∗ (ΘR l ∗ pL̂ ∗ (ΘL̂P )) ] (20)

where, is:

[pR l ∗ (ΘR l pL̂ ∗ (ΘL̂P )) ] :=
∫ t

−∞
pR l (t − τ)ΘR l (τ)

[∫ τ

−∞
pL̂ (τ − ε |ε)ΘL̂ (ε)P (ε) dε

]
︸                                        ︷︷                                        ︸

L̂ (τ )

dτ (21)

If the response probabilities are assigned, the water budget is known, and therefore there is a clear functor be-
tween DynRTD and DynWB. Evidently, the assignment of DynRTD expressions of Table 9 is usually not compatible with
the contemporary assignment of an expression for fluxes. In fact, equating for instance row 2 of Table 3 and Table 9,
produces:

(1 − η)KuSbuu = [pL̂ ∗ (ΘL̂P ) ] (22)
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a functional equation that cannot be guaranteed to be satisfied for an arbitrary form of the right member of Equa-
tion 22 and for any time. Vice versa, assignment of fluxes of the water budget implicitly determines the expression
of the response probabilities. Because, as said above, at any time t we do not know the values of the partitioning
coefficients, DynRTD actually contains some more information than DynWB. This is also apparent when it is observed
that the DynRTD systems is connected to the DynTTD system, by means of the Niemi’s identity (e.g., Niemi (1977)),
here written for simplicity only for the transition Ľ:

ľ (t , t i n ) = Ľ (t )pĽ (t − t i n |t ) = ΘĽ (t i n )pĽ (t − t i n |t i n )︸                        ︷︷                        ︸
FĽ (t ,t i n )

pi n (t i n ) (23)

Solving DynTTD we know, at any time t the known response FĽ but not the partition function Θľ . Therefore
Equation (23) associates to any backward probability infinitely many forward probabilities compatible with it, each
one corresponding to a different value of the partition coefficients ΘĽ . Because also pL (t − t [i n |t i n ) is not known for
any time t ′ > t , unless a “ad hoc” assumption is made the backward probabilities alone are not able to determine the
forward probabilities future form.

There is an apparent conundrum when considering that there is a one-to-many relation between DynWB and
DynTTD and, for fixed Θs values, a one-to-one relation between DynTTD and DynRTD. This in fact would imply a one-
to-many relation between DynRTD and DynWB, while it seems to be a one-to-one relation between DynWB and DynRTD.
However, the contraddiction is only apparent since the integration over all the injection times t i in Eq. (17), to which
the response time is subjetc, recollects all the time precipitations together.

5 | THE CONCENTRATION OF A TRACER DynC

The fourth dynamical system we are analyzing is the dynamical system that describes the concentrations of a tracer
(or a solute or a pollutant), so called T through the section. According to Figure 1 d) the dictionary of such a system
is in Table 10 below.

# Symbol Name Type Unit

1 E ′TS
T content in ET F [L T−1]

2 L̂′ Percolation of T from upper storage to lower storage F [L T−1]

3 Ľ′ Discharge of T from the upper reservoir F [L T−1]

4 P ′ T in precipitation F [L T−1]

5 Q ′
l

T discharge from the lower reservoir F [L T−1]

6 Q ′
S

T discharge in surface water F [L T−1]

7 R ′
l

T percolation to deeper groundwater F [L T−1]

8 S ′
l

T content in the lower storage reservoir SV [L]

9 S ′u T content in the upper storage SV [L]

TABLE 10 Dictionary of DynC presented in Figure 1 bottom right.
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Table 10 for T is trivially the analogous of Table 1 for clean water. At this point, we can imagine to work in analogy
with what done for water and build all the equation of the T mass budget, however this is not the way tracers and
solutes are treated in literature, where it is usually discussed of their concentration Duffy (2010) and not of their
mass and where the knowledge of the water storages and fluxes is used to simplify the solution of the solute system.
Therefore for any solute storage S ′ it is considered its concentration in water, such that:

S ′ (t ) := S (t )C (t ) (24)

where S (t ) is the water amount and C (t ) the solute concentration. Accordingly we can have for the generic flux
F ′ (t )

F ′ (t ) := F (t )CF (t ) (25)

where F (t ) is the water flux and CF (t ) the concentration of the solute in the water flux. As a result, the solute
budget equations for upper reservoir of the Kirchner (2016) topology is:

dSu (t )Cu (t )
d t

= P (t )CP (t ) − ETS (t )CETS (t ) − Ľ (t )CĽ (t ) − L̂ (t )CL̂ (t ) (26)

where the symbols are explained in the new dictionary for concentrations in Table 11.

# Symbol Name Type Unit

1 CETS
T concentration in ET F [-]

2 CL̂ T concentration in L̂ F [-]

3 CĽ T concentration in Ľ F [-]

4 CP T concentration in precipitation F [-]

5 CQ l T concentration in Q l F [-]

6 CQS T concentration in QS F [-]

7 CR l T concentration in R l F [-]

8 CSl T concentration in S l SV [-]

9 CSu T concentration in Su SV [-]

TABLE 11 Dictionary of concentrations of DynC.

A similar equation holds for the lower reservoir:

dS l (t )C l (t )
d t

= L̂ (t )CL̂ (t ) − Q l (t )CQ l (t ) − R l (t )CR l (t ) (27)

It is then natural that the operator for the places can be set as in Table 12.
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# Symbol Name Expression

8 S ′
l

T in lower storage dS l (t )C l (t )/d t

9 S ′u T in water in the upper storage dSu (t )C l (t )/d t

TABLE 12 Expression for the Water Budget places.

There are several options to solve the above equations, among which we choose the one that allows to establish
a connections between the concentrations and the probabilities we have introduced and calculated in the previous
sections. According to the standard procedure presented in the supplementary material, the concentration of solute,
for instance in the discharge Q l , can be given as:

CQ l (t ) =
∫ t

−∞
pQ l (t − t i n |t )CL̂ (t i n ))d t i n := [pQ l ∗ CL̂ ] (t i n ) (28)

where, on the right end side of the equation we have used the synthetic form for representing the convolution
between the probability pQ l and the initial concentration of T in that discharge, which is actually the output concen-
tration from the upper reservoir CL̂ (t i n ) .

The expression table for the solute mass transport is then Table 13 below.

# Symbol Name Expression

1 CETS
T concentration in ET [pETS ∗ CP ] (t i n )

2 CL̂ T concentration in L̂ [pL̂ ∗ CP ] (t i n )

3 CĽ T concentration in Ľ [pĽ ∗ CP ] (t i n )

4 CP T concentration in P •

5 CQ l T concentration in Q l [pQ l ∗ CL̂ ] (t i n )

6 CQS T concentration in QS CĽ + CQ l

7 CR l T concentration in R l [pR l ∗ CL̂ ] (t i n )

TABLE 13 The dynamical system DynRTD is given trough the assignment of the response time distribution of the
fluxes. As explained in the text, these are not giving the same information contained

6 | DISCUSSION AND CONCLUSION

The various HDSys presented in the paper are related and partially alternative ways to face catchment hydrology.
DynWB is certainly the basic dynamical system, without which the other cannot be solved. From DynWB we can obtain
any of the other three by applying the functor constructed in the paper and the addition of some information. DynTTD
is actually obtained by separating the input events globally accounted in DynWB but expects that some hypothesis
about the water ages sampling, i.e. about the SAS, is made for each one of the compartments present in the system.
Recent literature, (e.g., Benettin et al. (2017); van der Velde et al. (2012)), provides hints to identify suitable SAS.

In the paper, however, we fully explored the simplest case of uniform water age sampling, which is actually the



Rigon et al. 15

case implicitly assumed in most of literature. Niemi’s equality is the connection between DynTTD and DynRTD and al-
lows to obtain one HDSys from the other under some assumptions. DynRTD, in fact, assumes that asymptotic partition
coefficients, the Θs, are known, which is usually not known for any finite time. At time t , the complete equivalence is
not between backward pdf and life expectation pdf but between backward pdf and the known responses, F. However,
in practice, it can be found an effective concentration time, tc (t ) , after which the Θ(t i n ) variations are negligible. The
DynC by definition introduces new substances and therefore new requirements. It turns out that for passive solutes
the only further information needed is the concentration of the substance in the input.

One additional note has to be done on how what presented in this paper makes easier the computation. Com-
putation usually is built upon tables as those presented in the supplemental material and in Benettin and Bertuzzo
(2018), whose columns are the injection times, the rows the current time (for places) or the exit time for transitions,
and the entries are, respectively, the quantity of water inside the place and the quantity of water exiting with a given
flux. Maintaining one of such tables for any place and transition allows the determination of any of the probabilities
introduced in this paper with simple operations, either they derive from measurements or from computation. The
concentrations, cause the relation exploited in this paper, simply follow from the multiplication of these tables entries
by the solute/tracers concentration in input and their accounting does not need any further equation solving.

To summarize, in this paper we discussed the relations of various hydrological dynamical systems, i.e., the dynam-
ical systems of backward travel times distribution, of response time distribution and of concentrations, starting from
the water budget. What we wanted to show is the following:

• given the topology of those dynamical systems, then the writing of equations easily follows;
• the equations of the different dynamical systems have a legacy;
• moving from one HDSys to the others, some information as has to be acquired or some assumption to be made:

about the SAS for getting DynTTD from DynWB; about Θs when going from DynTTD to DynRTD; about initial so-
lute/tracers inputs for getting the DynC.

• After the assumptions are made, all the quantities can be easily estimated
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A | SUMMARY OF EXTENDED PETRI NETS CHARACTERISTICS

EPN are a mathematical modelling language for the description of the hydrological dynamical systems (HDSys). They
standardize the way HDSys are represented and facilitate the user comprehension of all the possible eco-hydrological
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F IGURE 2 Principal objects in the extended Petri Nets representation.

interactions. In the following, a brief summary of the important concepts of the EPN, extracted from Bancheri et al.
(2019), is reported.

Figure 2 shows the principal graphical objects in EPN:

• reservoirs (called places) are represented as circles;
• fluxes (called transitions) between reservoirs (or places) are represented as squares;
• controllers, which are quantities in charge of regulating fluxes, are represented as triangles;
• connections between places and transitions are represented as generic arc;
• binding arcs are used when two different fluxes in two different budgets contain the same variable;
• connections from places to controllers and from controllers to transition are represented as oriented dashed arcs;
• small, solid, black circles are used to mark measured quantities, i.e. the climatic variables;
• small, empty circles represent quantities that are also given but are used to assess the goodness of the model, i.e.

discharge measurements against which the model is calibrated;
• big circles with dotted borders represent hidden places, whose budget is stationary;
• splitters represent partition coefficients, i.e. when transition are connected to more than one place.

To complete the information, two other elements should be added:

• a dictionary giving the names of the symbols in the graphic, conveying their meaning;
• an expression table giving mathematical completeness to the fluxes.

Applying the rules previously introduced, it is easy to cast any model into the EPN representation, as it is clearly
shown in Bancheri et al. (2019), where three examples are reported.

EPN facilitates the construction of the appropriate numerical model of a catchment from the experimental evi-
dence in the "perceptual phase" of research. Moreover, thanks to their compositional property, they allow to represent
a single hydrological response unit as well as a complex catchment, where multiple systems of equations are solved
simultaneously.
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Finally, EPN can be used to describe complex earth system models that include feedback between the water,
energy and carbon budgets. The representation of HDSys with EPN provides a clear visualization of the relations and
feedback between subsystems, which can be studied with techniques introduced in contemporary non-linear systems
theory and control theory.
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