
Statistics Coursework 2018

Ioannis Valasakis1

1Birkbeck, University of London

December 17, 2018

1

Question 1

To plot the expression levels of the “Ras-Like Protein Tc4” the Golub dataset is loaded from
the respective library (hopach from Bioconductor). To perform computations on the expressions
of this gene we need to know its row index.

load the Golub data from bioconductor

source("http://www.bioconductor.org/biocLite.R")

biocLite(c("hopach"))

library(hopach)

data(golub)

find the row index of tc4

tc4 = grep("Ras-Like Protein Tc4", golub.gnames[, 2],

ignore.case = TRUE)

golubFactor <- factor(golub.cl,

levels = 0:1,

labels = c("ALL", "AML"))

side by side boxplot for AML and ALL

boxplot(golub[tc4,] ~ golubFactor, ylim = c(0, 2))

The above R program generates the boxplot in Fig. 2. There is a difference in gene expression
values of the Tc4 in ALL versus AML patients as shown in Fig. 2. Testing the data for normality
with the Shapiro-Wilk test and a plot to indicate the shape of the distribution in Fig. 1

Shapiro-Wilk normality test

data: golub[tc4,]
W = 0.9614, p-value = 0.2108

As the plot shows a normal distribution and the Shapiro-Wilk test has a p-value > 0.05, a
normal distribution is assumed and we are using a two-sample t-test further. (Karadimitriou,
n.d.)

To test the null hypothesis, we can apply a Welch two-sample t-test to determine whether the
means of two gene expressions of populations are statistically different. The null hypothesis is:

H0 : µ1 = µ2 (1)

where

• μ1 is the mean expression for gene tc4 in ALL patients
• μ2 is the mean expression for gene tc4 in AML patients

Let’s suppose that x is the mean of the gene expression data for the group ALL and y is the
mean of the population AML, and s12 the variance of the first and s22 that of the second, for {x1,

2

· · ·,xn} and {y1, · · ·, ym} the data for ALL and AML respectively. Then the t-statistic can be
formulated as:

t =
(x− y)− (µ1 − µ2)√

s21/n+ s22/m
(2)

The decision procedure concerning the null-hypothesis is now entirely similar for the above t-
test. Note that the t-value is large if the difference between x and y is significant and the standard
deviations s1 and s2 are small. We assume that the distribution of both data sets must be normal,
to assess if the gene is differentially expressed between the two groups, with α (significant level)
equal to 5% (α = 0.05) (Krijnen, n.d.). The test can be run in the same environment as
the previous R code by using the library function t.test() with the parameter var.equal =

FALSE which calculates the Welch two-sample test:

t.test(golub[tc4,] ~ golubFactor, var.equal = FALSE)

We can directly calculate the p-value which is of interest by:

t.test(golub[tc4,] ~ golubFactor, var.equal = FALSE)$p.value

The value is very low (p = 0.0002028185) which is considerably lower than the α (0.05 or 5%)
threshold for statistical significance level. Therefore we can reject the null hypothesis that the
gene expression values of Tc4 are the same between all the ALL versus AML patients.

Question 2

Create a loop that samples 1000 random samples of size k = 20 from a normal distribution of
‘true’ mean 10 and true standard deviation 5.

nsampl = 1000

e stores the randomly generated samples

e <- vector("list", nsampl)

sample_mean = rep(NA, nsampl)

for (i in 1:nsampl) {

e[[i]] <- rnorm(n = 20, mean = 10, sd = 5)

sample_mean[i] <- mean(e[[i]])

}

In order to plot the sample mean values for sample size k = 20, we can use plot() with the
function abline() as shown in the Fig 3.

plot(sample_mean, xlab="sample size (N)", ylab="sample mean (\\x)")

abline(h=10, col="orange")

The following function calculates the standard deviation of the means of 1000 random samples
of user-specifiable sample size k, drawn from a normal distribution of true mean m and true
standard deviation s.

3

sd_sample_mean <- function(k, m, s) {

nsampl = 1000

e contains the randomly generated samples

e <- vector("list", nsampl)

sample_mean = rep(NA, nsampl)

for (i in 1:nsampl) {

e[[i]] <- rnorm(n = k, mean = m, sd = s)

sample_mean[i] <- mean(e[[i]])

}

return(sd(sample_mean))

}

The standard deviation of the means, for the specific values of k = 3, k = 100 and m = 10 and
s = 5 is:

> sd_sample_mean(3,10,5)

[1] 2.881059

> sd_sample_mean(100,10,5)

[1] 0.4869542

The theoretical approximation of the Standard Deviation of Error (SDE) for those same values
and in relation to the Standard Deviation (SD) can be calculated simply by (Altman and Bland,
2005)

SDE =
SD√

(samplesize)
(3)

in our case k is the sample size, therefore, SDE3 = 2.886751 and SDE100 = 0.5 which is pretty
close to the above-calculated values.

Question 3

By importing the data of the 20 replicate measurements of the concentration of a protein X for
each of the cell lines which are carried out by mass spectrometry:

wildtype <-

c(

560,

968,

3297,

1200,

858,

646,

992,

2507,

4

2037,

546,

2929,

1171,

1389,

1958,

3149,

1165,

2257,

2120,

65,

1571

)

knockout <-

c(

589,

232,

983,

2597,

827,

1363,

634,

12,

643,

1889,

2840,

1291,

939,

811,

3290,

525,

90,

543,

2400,

3012

)

If we plot the data, we can observe that they don’t fall in the case of a normal distribution. As
the distribution of concentrations is skewed, the median could be a better measure of centrality
than the mean. The distribution of the concentrations also has heavy tails so the median could
be a more efficient estimator of centrality than the mean (Peters, n.d.). Thus to determine if the
deletion of the transcription factor changes the concentration of protein X present in the cell,
we consider the median value of the concentration. The result of the plot is in Fig. 4. We will
also use the percentile bootstrap method (Carpenter and Bithell, 2000) in order to determine
the 95% confidence interval.

import the boot library

library(boot)

5

w <-

boot(

data = wildtype,

statistic = function(x, i)

median(wildtype[i]),

R = 10000

)

plot(w)

calculate the 95% confidence

boot.ci(w,

conf = 0.95,

type = "perc")

The result is:

> BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

> Based on 10000 bootstrap replicates

> CALL :

> boot.ci(boot.out = w, conf = 0.95, type = "perc", main = "Histogram of > wildtype")

> Intervals :

> Level Percentile

> 95% (980, 2078)

> Calculations and Intervals on Original Scale

That gives us 95% certainty that the mean value of the concentration of the protein X is between
980 and 2078. Now we can do the same for the knockout cell line. The plot is in Fig. 5

k <-

boot(

data = knockout,

statistic = function(x, i)

median(knockout[i]),

R = 10000

)

plot(k)

calculate the 95% confidence

boot.ci(k,

conf = 0.95,

type = "perc")

Which results in:

> BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

> Based on 10000 bootstrap replicates

> CALL :

6

> boot.ci(boot.out = k, conf = 0.95, type = "perc")

> Intervals :

> Level Percentile

> 95% (611.5, 1626.0)

> Calculations and Intervals on Original Scale

That means we are 95% confident that the mean concentration of the protein X is between 611.5
and 1626. To calculate the median difference using bootstrap here is a respective function and
is pictured in Fig. 6

diff.medians <- median(wildtype) - median(knockout)

nboot <- 5000

n <- length(wildtype)

diff.medians.boot <- rep(0, nboot)

for (i in 1:nboot) {

wildtype.boot <- sample(wildtype, n, replace = T)

knockout.boot <- sample(knockout, n, replace = T)

diff.medians.boot[i] <-

median(wildtype.boot) - median(knockout.boot)

}

hist(diff.medians.boot,

col = "orange",

nclass = 20,

main = "")

title("Bootstrap distribution of difference between medians",

cex.main = 1.0)

Compute 95% CLT based Bootstrap confidence intervals

for difference between medians

ci.lower.sd <- diff.medians - 1.96 * sd(diff.medians.boot)

ci.upper.sd <- diff.medians + 1.96 * sd(diff.medians.boot)

c(ci.lower.sd, ci.upper.sd)

Compute 95% Boostrap percentile confidence intervals

for difference between medians

ci.lower.perc <- sort(diff.medians.boot)[0.05 * nboot / 2 + 1]

ci.upper.perc <- sort(diff.medians.boot)[nboot - 0.05 * nboot / 2]

c(ci.lower.perc, ci.upper.perc)

Question 4

Here is the data describing the dependence of survival on the mutation of gene X organised in a
2x2 contingency table. Each object is classified according to more than one categorical variable.

7

The objects are mutant and non-mutant and the variables died and survived.

died survived total

mutant 40 42 82

non-mutant 47 107 154

total 87 149 236

The null hypothesis for the following chi-square test is that the events are not associated, i.e.
that the survival is not dependent on the mutation of the gene X.

create the contingency table

t1 <- data.frame(died = c(40, 42), survived = c(47, 107))

rownames(t1)[1] <- "mutant"

rownames(t1)[2] <- "nonmutant"

perform a chi-square test

chisq <- chisq.test(t1)

which results in:

Pearson’s Chi-squared test with Yates’ continuity correction

data: t1 X-squared = 6.9019, df = 1, p-value = 0.008611

As the p-value is much smaller than 0.05 our null hypothesis is rejected which means that there
is an association between the mutation of the gene to the survival rate of the patients.

We can also extrapolate the expected and observed results:

> chisq$observed

died survived

mutant 40 47

nonmutant 42 107

> round(chisq$expected,0)

died survived

mutant 30 57

nonmutant 52 97

We can perform a 2-sample test for equality of proportions with continuity correction.

mut_strength <- matrix(c(47, 40, 107, 42), nrow = 2)

prop.test(mut_strength)

Here is the result which shows a 95% confidence interval not overlapping with 0, thus we can
predict that there is a difference between the two variables.

> prop.test(mut_strength)

2-sample test for equality of proportions with continuity correction

data: mut_strength

X-squared = 6.9019, df = 1, p-value = 0.008611

alternative hypothesis: two.sided

95 percent confidence interval:

8

-0.32231661 -0.04290353

sample estimates:

prop 1 prop 2

0.3051948 0.4878049

Question 5

We have the following data:

enzyme <-

c(

0.114,

0.510,

0.722,

1.276,

1.928,

2.150,

2.238,

2.732,

2.758,

3.015,

3.616,

3.951,

4.281,

5.315,

6.693,

6.964,

7.056,

8.162,

8.216,

8.410

)

metabolite <-

c(

56.1,

60.6,

67.2,

72.7,

80.5,

83.2,

82.2,

88.9,

89.5,

90.6,

94.9,

95.2,

97.1,

9

96.3,

77.6,

71.6,

69.3,

37.2,

36.0,

26.9

)

We will plot the data in order to check for normal distribution:

hist(enzyme, probability=T, main="Histogram of enzyme", col="purple")

lines(density(enzyme),col=2)

hist(metabolite, probability=T, main="Histogram of enzyme", col="yellow")

lines(density(metabolite),col=2)

The data for enzyme are in Fig. 7 and for metabolite in Fig. 8

From the graphical representation, it is pretty obvious that the metabolite data is skewed while
the enzyme data is more normally distributed.

If we plot their relationship we can see that it is definitely non-linear. See also the Fig. 9

y <- metabolite * enzyme

plot(enzyme, y)

We can try and fit a curve in the above relation using the polynomial equation.

x <- metabolite

y <- enzyme

#fit first degree polynomial equation:

fit <- lm(y~x)

fit2 <- lm(y~poly(x,2,raw=TRUE))

fit3 <- lm(y~poly(x,3,raw=TRUE))

fit4 <- lm(y~poly(x,4,raw=TRUE))

xx <- seq(0,100, length=100)

plot(x,y,pch=10,ylim=c(0,50))

lines(xx, predict(fit, data.frame(x=xx)), col="red")

lines(xx, predict(fit2, data.frame(x=xx)), col="green")

lines(xx, predict(fit3, data.frame(x=xx)), col="blue")

lines(xx, predict(fit4, data.frame(x=xx)), col="purple")

The result can be seen in the Fig. 10

Notes

10

All the R code in this coursework has been beautified using the tidyverse style guide which is
a standard plug-in in the R-Studio suite.

References

Karadimitriou, S.M., n.d. Checking normality for parametric tests in R. https://www.

sheffield.ac.uk/polopoly_fs/1.579191!/file/stcp-karadimitriou-normalR.pdf.

Krijnen, W.P., n.d. Applied Statistics for Bioinformatics using R.

Altman, D.G., Bland, J.M., 2005. Standard deviations and standard errors. BMJ 331, 903.
doi:10.1136/bmj.331.7521.903

Peters, C.A., n.d. Statistics for Analysis of Experimental Data.

Carpenter, J., Bithell, J., 2000. Bootstrap confidence intervals: when which, what? A practical
guide for medical statisticians. Statistics in Medicine 19, 1141–1164. doi:10.1002/(sici)1097-
0258(20000515)19:9¡1141::aid-sim479¿3.0.co;2-f

11

https://www.sheffield.ac.uk/polopoly_fs/1.579191!/file/stcp-karadimitriou-normalR.pdf.
https://www.sheffield.ac.uk/polopoly_fs/1.579191!/file/stcp-karadimitriou-normalR.pdf.

Figure Captions

Figure 1. Are Tc4 data normally distributed?

Figure 2. Expression levels of the Ras-Like Protein Tc4

Figure 3. Sample mean values of true mean 10

Figure 4. Wildtype cell line boost plot

Figure 5. Knockout cell line boost plot

Figure 6. Bootstrap distribution of difference between medians

Figure 7. Enzyme distribution

Figure 8. Metabolite distribution

Figure 9. Enzyme and metabolite non-linearity

Figure 10. Polynomial fit

12

Figures

Figure 1: Are Tc4 data normally distributed?

Figure 2: Expression levels of the Ras-Like Protein Tc4

13

Figure 3: Sample mean values of true mean 10

Figure 4: Wildtype cell line boost plot

14

Figure 5: Knockout cell line boost plot

Figure 6: Bootstrap distribution of difference between medians

15

Figure 7: Enzyme distribution

Figure 8: Metabolite distribution

16

Figure 9: Enzyme and metabolite non-linearity

Figure 10: Polynomial fit

17

