
Convergent connections and information loss: how do insects

sense odors?

Jacob Davidson, Einat Couzin

October 19, 2018

1 Introduction and Summary

Insects rely predominantly on their olfactory system to sense their environment, locate resources,
and move to areas with food. The American cockroach is equipped with relatively long antennae
(40-50 mm) covered by roughly 200 thousand olfactory receptor neurons (ORNs). Each ORN carries
a specific olfactory receptor (OR) and all receptor neurons bearing the same OR converge on the
same functional unit within the antennal lobe (the first olfactory processing centre, analogous to the
mammalian olfactory bulb)(Figure 1a-a). Thus, even if the same odorant can be received in different
positions along the antenna, the information of the stimulus location may be lost.

Nonetheless, behavioral observations show that cockroaches are able to accurately sense sur-
rounding odors, and then subsequently follow resource gradients towards areas with higher amounts
of food. Because ORNs along the entire length of the antenna converge to a single output neuron,
creating an “information bottleneck” which seems to lose information about the local spatial dis-
tribution of odors, the prevailing hypothesis is that the animal can only determine the direction
of resource gradients by continuously moving and re-sampling average concentration levels [Refs
needed]. There are many outstanding questions regarding this: Why would a system evolve an
architecture that seems to discard environmentally relevant information? How are movement and
active sensing strategies used to enhance gradient detection?

We have recently obtained neural recording data that suggests that despite of the convergent
neural architecture, the time-dependent stimulus response of both the ORNs and the output neurons
may be tuned to enable local gradient detection within ecologically relevant temporal and spatial
scales. Strong odorants elicit stronger and faster neuronal responses, and that stimuli originating on
antennal portions closer to the head (e.g. 5 mm) take less time to reach the antennal lobe with respect
to more distal stimulations (e.g. 45 mm). Hence, gradients with opposite directions (stronger ahead
or stronger behind) could be integrated in different ways, thus allowing the cockroach to encode
information about the spatial distribution of an odorant.

To understand the mechanisms for odor processing, we propose a theoretical-experimental col-
laborative project to develop a computational model of the odor detection system of the cockroach.
Work on a model began as part of a course project earlier this year, with the course “Computational
modeling in neuroscience and systems biology”, which was jointly taught by Jacob Davidson and
Jun-Prof. Tatjana Petrov. The funding will support a computer science master’s student as a HIWI
to further develop the model, perform simulations that represent common odor detection scenarios
and movement patterns of the cockroach, and to incorporate newly acquired data as part of the
input structure of the model. Jacob Davidson will lead theoretical development and simulations,
and Einat Couzin will lead experimental analysis and advise on incorporating experimental findings
into the model.

2 Preliminary results

A schematic of a simplified model structure is shown in Fig 2. The firing rate of the output neuron
is v. Each ORN has a firing rate has a time-dependent firing rate ui(t), which depends on the
odor concentration: strong odors elicit a fast response, while weak odors elicit a slow response. In
addition, there is a lag time for the signal to travel from an ORN to the output neuron, based on
the distance xi, which represents a location along the antenna.
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Figure 1: Neural architecture of the olfactory system. (a) About 1000 ORNs originating in
different antennal segments (red) converge onto a single output neuron (green). (b) ORNs from
different location synapse onto different portions of the dendritic compartment of the receiving
neuron.
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Figure 2: Model structure. Multiple input olfactory receptor neurons (ORNs) with firing rates
uj are connected to a single output neuron which has firing rate v. The axial distance L determines
the signal lag time from the ORNs to the output neuron.

This model is defined by the following coupled equations:

τv
dv

dt
= −v +

N∑
i=1

wiui(t− xi/ν) (1)

τu(si(t))
dui
dt

= −ui + si(t) (2)

τu(s) =
x̄/ν

2
+

x̄/ν

1 + exp (λ(s− s̄))
(3)

where τv is the time constant for firing rate changes of the output neuron, ν is the signal transmission
speed, wi are the weights, N is the total number of ORNs, τu(s) is the time constant for firing rate
changes of the ORNs which depends on the scent level s, si(t) is the time-dependent scent input to
ORN neuron i, x̄ =

∑
i xi/N is the average ORN position, s̄ =

∑
i si/N is the average scent input,

and λ is a parameter that describes how much the timescale for changes in the ORN firing rate
depends on the scent level.

Setting the sum of the weights to 1, i.e.
∑

i wi = 1, the steady-state response of the output
neuron is simply a weighted sum of the inputs: v =

∑
i si/N ≡ s̄. Using this, we can consider a

linear gradient function that depends on the x-position:

s(x) = s̄+
1

N

N∑
i=1

a (x− x̄) . (4)

By definition, this gives the steady-state output of v =
∑

i s(xi) = s̄. Thus, we can define different
gradients, as illustrated in Fig. ??a, which yield the same steady-state output response.

This suggests that the time-dependent response, but not the steady-state firing rate, of the
output neuron could be used to distinguish different gradient configurations. To test this hypothesis
we simulated a ‘rotation’ of the antennas in a gradient field, where the average odor level stays
the same, but after the rotation the gradient along the antenna changes from zero either positive
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Figure 3: Preliminary model results (a) Different gradient configurations (b) Simulation with a
change from (left) no gradient to a positive gradient, and (right) no gradient to a negative gradient

or negative. Fig ??b confirms this hypothesis, showing that there can be a difference in the time-
dependent response of the output neuron, even if the overall odor level is the same. Thus, in contrast
to having to move and sample the ‘average odor level’ to determine a gradient direction, it is possible
that the neural properties enable the animal to detect the gradient direction by simply moving its
antennas.

3 Planned analysis

The preliminary results suggest that ‘sampling’ movements of the antenna could lead to output that
can differentiate gradient direction. However, the results of this simple model depend on tuning of
the time and length scale parameters, as well as the nonlinearity of the time-dependent response. In
addition, the weights in the model were set equal to 1, for simplicity, and the output was taken as
a linear sum. Current experimental work seeks to take recordings of the input odor levels, ORNs,
and the output neuron, such that the model parameters and nonlinearities can be directly informed
by the data. This also gives the opportunity to use actual recordings from the cockroach ORNs
as input to the model, in order to test hypotheses for neural circuit mechanisms. The planned
analysis will further develop the computational model to test the sensitivity of gradient sensing to
different parameters, configurations, and gradient conditions, incorporate neural recordings from
experiments, and constrain input-output properties based on the data.

There are many questions raised by the preliminary results, that we wish to address. How to do
the timescales of antennal movement and neural activity affect and constrain the gradient sensing
ability? What are the limits of gradient configurations, in terms of spatial and temporal properties,
that can be accurately detected, and how do these compare with typical environmental conditions?
Can nonlinear input-output transformations enhance detection ability, given the constraints of the
‘bottleneck’ architecture? How does noise, in the form of turbulent odor plumes or noisy neural
activity, affect detection? What happens if the antenna is damaged?
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This project will proceed via a close integration of experimental findings in the computational
model. Current anatomical studies are examining synapse size of the ORNs on the output neu-
ron, to ask if connection weights depend on location along the antenna. Behavioral studies with
different odor environments till track antennal movement. Electrophysiology experiments yield time-
dependent activity of the output neuron (v(t)), along with the odor concentrations along the antenna
(si(t)) that elicited this output. We will constrain and modify model structure by the experimental
findings, as well as use measured input-output data as a direct test of information processing mecha-
nisms. The proposed collaborative theoretical-experimental project will enable us to ascertain what
neural processing mechanisms are needed to to distinguish biologically-relevant odor gradients, and
to address the evolutionary puzzle of the convergent-divergent anatomical architecture

4 Budget

• 700 euros for conference (include this?)

• * for HIWI, for * months
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