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Abstract

The objective of this work is to present the Epidemic Volatility Index (EVI), an early warning tool for upcoming epidemic

waves. EVI is based on the volatility of the newly reported cases per unit of time, ideally per day, and issues an early warning

if the rate of the volatility change exceeds a threshold. EVI is simple and its application on data from the current COVID-19

pandemic, revealed a consistent and stable performance in predicting the waves of the COVID-19 epidemic for each one of the

world countries. The application of EVI in the case of other epidemics and syndromic surveillance is straightforward and its

combination with existing alarm systems will promote the early implementation of appropriate interventions and the successful

containment of outbreaks.

Introduction

Early warning tools are crucial for the timely application of intervention strategies that will effectively control
the spread of the etiologic agent and mitigate the adverse health, social and economic effects of an epidemic.
Early warning systems can be based on the seasonality of epidemics and the link between pathogens and
meteorological parameters 1 and/or the measurement of vector indices for vector-borne pathogens2. Further,
sentinel networks in combination with information technology infrastructures in public health3 provide data
for the detection of spatial and temporal aberrations in the expected number of cases for groups of signs and
symptoms. Several modelling frameworks exist for the analysis of such data, as, for example, the moving
epidemic method, an approach used to monitor, among others, the start of the flu epidemic4.

Once an epidemic erupts, growth models - mainly based on R0 - can be used to predict the course
of the outbreak and quantify its consequences. The advantages and limitations of these methods have
been extensively discussed 5. Machine learning algorithms have also been utilized with the most recent
application being in the current COVID-19 pandemic6. Correlation of parameters, from big data sources,
with the number of COVID-19 cases has been used to predict a future rise in cases. For example, monitoring
of digital data streams can be an early sign for a rise in the COVID-19 cases and deaths in the next 2-3
weeks7. All models have limitations arising from the imperfect nature of the data. The need for open, better,
detailed data is imperative for the deployment of models with improved accuracy, models that will have better
predictive ability and will be more useful for the timely application of appropriate control measures for the
COVID-19 pandemic8.

In this work, the Epidemic Volatility Index (EV I) is presented for the first time. EV I has been inspired
by the use of volatility indices in the stock market. Volatility has mainly a negative association with stocks or
stocks’ future prices 9,10. EV I is based on the moving standard deviation of the newly reported cases during
an epidemic. Initially, EV I is presented and then an example application is given with COVID-19 data.
Results revealed a firm and consistent ability of EV I to predict the waves of the COVID-19 epidemic in
each one of the world countries.
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Methods

The Epidemiologic Volatility Index

The epidemiologic volatility index is calculated for a rolling window of time series epidemic data (i.e.
the number of new cases per day). At each step, the observations within the window that are analyzed
are obtained by shifting the window forward over the time series data one observation at a time. Let yi =
{y1, y2, ..., yn} be a time series of length N . The rolling window size - that is the number of consecutive
observations per rolling window - is m. With 0 < m ≤ mmax and 0 ≤ mmax ≤ N , there are t = N −m+ 1
consecutive rolling windows.

At each of the t steps, EV I uses the standard deviation (σt) of the newly reported
cases (yjt = {y1t , y2t , ... , ymt}) within the specified m:

σt =

√√√√ 1

m

m∑
it=1

(xit − µt)

with µt the mean of the tth window. Subsequently, EV I is calculated as the relative change of (σt) between
two consecutive rolling windows:

EV It−1,t =
σt − σt−1

σt

We expect an increase in the future number of cases, if EV It−1,t exceeds a threshold c (c ∈ [0, 1]) and the
observed cases at time point t, (yt) are higher than the average of the reported cases in the previous week:

IndEV It−1,t
=

{
1 if EV It−1,t >= c ∧ yt >= µt:t−7

0 otherwise

Case definition and desired accuracy

The user should provide a case definition of what constitutes the minimum expected rise in cases that,
if present, should be detected. A case definition can be a rise in cases between two consecutive weeks that
exceeds a threshold r:

µt:t−7
µt:t+7

≥ r

with 0 ≤ r ≤ 1.

The accuracy of EV I, given the specified case definition, depends on m and c, which should be selected
in a way to achieve a desired accuracy target. Several strategies are available. Selection of m and c values
that lead to the simultaneous maximization of the sensitivity (Se) and the specificity (Sp) for EV I and
the Youden index (J = Se+ Sp− 1)11 and thus to an overall minimization of the false results (i.e. both
false positive and false negative early warnings). Another approach could be to select m and c such that the
highest Se (or Sp) is achieved with Sp (or Se) = 1 not dropping below a critical value (e.g. 95%). Advanced
Receiver Operating Characteristic curve analysis can also be performed 12 and selection of critical values
can be based on indices that quantify the relative cost of false positive (i.e., falsely predicting an upcoming
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epidemic wave) to false negative (i.e., failing to predict an upcoming epidemic wave) warnings, like the
misclassification cost term (MCT ).

Issuance of an early warning

Every time a new time point t is observed, the model uses all the observed cases up to t to decide whether
it should issue an early warning, at time point t. The steps are:

1. Observed cases up to t are analyzed for all possible values for the window size (m ∈ [1,mmax]) and
threshold (c ∈ [0, 1]).

2. For each of the m, c combinations the Setm,cand Sptm,c is estimated for the predefined case definition
(Eq. 4).

3. The m′ and c′ that give the best Setm′,c′ and Sptm′,c′ combination are selected.
4. For m′ and c′, the value of IndEV It,t−1

is determined at the most recent time point t and a decision is
made on whether a warning signal is issued.

Accuracy, Positive and Negative Predictive Values

Further, at each time point t, the probability of observing a rise or drop in the future cases given that
an early warning was issued or not can be calculated as the positive (PVt+) and negative (PVt−) predictive
value, respectively:

PVt+ = P (D+ | T+) =
p1:tSetm′,c′

p1:tSetm′,c′ + (1− p1:t)
(

1− Sptm′,c′
)

PVt− = P (D− | T−) =
(1− p1:t)Sptm′,c′

(1− p1:t)Sptm′,c′ + p1:t

(
1− Setm′,c′

)
where p1:t is the proportion of events satisfying the condition of Eq. 4 up to time point t.

Once the entire time series data has been observed, the overall Se of EV I can be estimated as the fraction
of the total number of occurrences for which an early warning was issued, given that the case definition (Eq.
4 ) holds (P (T+ | D+)), divided by the total number of occurrences that the case definition holds (P (D+)).
Similarly, the overall Sp of EV I is calculated as the fraction of the total number of occurrences for which
an early warning was not issued given that the expected rise of cases was not observed, that is, the case
definition is not true, (P (T− | D−)) divided by the total number of occurrences that the case definition is
not true (P (D−)):

Se =
P (T+ | D+)

P (D+)
, Sp =

P (T− | D−)

P (D−)

Sensitivity analysis

The performance of EVI depends on the specified case definition (i.e., r) and the desired accuracy.
Ideally, in the presence of historical data, various case definitions and r values should be explored to identify
combinations that provide the optimal monitoring of an epidemic.
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Example application

The current most serious threat to global health and economy13 is the COVID-19 pandemic that begun
in China and was first reported to the WHO China Country Office on December 31, 201914. Data on the
confirmed cases of COVID-19 were retrieved by the COVID-19 Data Repository, which is maintained by
the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University15. The number of
daily confirmed new cases of COVID-19, for each country, from January 22, 2020 until April 13, 2021 were
analyzed. Due to unnatural variability in the reporting cases between working days and weekends, the 7-day
moving average rather than the actually observed cases were analyzed. For the analysis mmax was restricted
to 30 days in order to avoid the effect of potentially higher volatility from previous epidemic waves on the
volatility estimates of the most recent data and the predicitve ability of EV I for upcoming and perhaps
milder epidemic waves.

The case definition was an increase in the mean of expected cases, between two consecutive weeks, equal
or higher than twenty percent, r ≥ 1

1.2 . For sensitivity analysis, the detection of an increase in the mean
of expected cases equal or higher than 50 percent (r ≥ 1

1.5 ) was considered. Data were analyzed separately
for each country and for each of the United States of America that had, until April 13, 2021, experienced a
total number of cases higher than 20,000.

Statistical software

All models were run in R16 and the packages readxl17, ggplot218, cowplot19 and readr20 were used.

Results

Results for Italy, one of the most severely affected EU countries21, and New York, which was in the
epicenter of the pandemic in the U.S.22, are presented in the main manuscript. Results from a list of selected
countries, namely, Argentina, Australia, Belgium, Brazil, California, Canada, Czechia, Florida, France,
Germany, Greece, India, Italy, Netherlands, New York, Poland, Portugal, Romania, Russia, Saudi Arabia,
South Africa, Spain, Sweden, Texas Ukraine and the United Kingdom, are provided as a supplementary
material along with results from all countries in the world and the Unites States (S1, S2 and S3, respectively).

Confirmed cases COVID-19 for Italy and New York, from January 22, 2020 until April 13, 2021, are in
Figures 1 and 2, respectively. Red dots correspond to time points that an early warning was issued according
to IndEV It,t−1

, while grey dots to time points without an early warning indication. Further, the positive
and negative predictive values at each time point are in Figures 3 and 4, respectively.
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Figure 1: Daily confirmed cases of COVID-19 in Italy, January 22, 2020 until April 13, 2021. Red dots
correspond to dates that, according to the Epidemic Volatility Index (EVI), an early warning was issued
indicating that a rise in the COVID-19 cases is expected. Data are presented on the original scale (1a) and
the logarithmic scale (1b), which facilitates the comparison of the steepness of the epidemic curve between
the different waves of the pandemic.

Figure 2: Daily confirmed cases of COVID-19 in Italy, January 22, 2020 until April 13, 2021. Red dots
correspond to dates that, according to EVI, an early warning was issued indicating that a rise in the
COVID-19 cases is expected. Data are presented on the original scale (1a) and the logarithmic scale (1b),
which facilitates the comparison of the steepness of the epidemic curve between the different waves of the
pandemic.
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Figure 3: Positive and negative predictive values (PPV in 3a and NPV in 3b), for Italy, depending on
whether an early warning was isseud or not. Higher color intensity corresponds to predicitve values closer
to the value of 1.

Figure 4: Positive and negative predictive values (PPV in 4a and NPV in 4b), for Italy, depending on
whether an early warning was isseud or not. Higher color intensity corresponds to predicitve values closer
to the value of 1.

For Italy, the overall sensitivity for EVI was 0.82 and the specificity was 0.91 (0.88; 0.94). For New York,
the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91).

6



Sensitivity analysis results for Italy, under alternative r specification (i.e., r = 1
1.5 ), are in Figure 5. The

overall sensitivity and specificity, for r = 1
1.5 , was 0.75 (0.66; 0.85) and 0.93 (0.91; 0.96).

Figure 5: Daily confirmed cases of COVID-19 in Italy, January 22, 2020 until April 13, 2021. Analysis
with r = 1

1.5 . Red dots correspond to dates that, based on EVI, an early warning was issued indicating that
a rise in the COVID-19 cases is expected. Data are presented on the original scale (1a) and the logarithmic
scale (1b) which facilitates the comparison of the steepness of the epidemic curve between the different waves
of the pandemic.

A common and consistent finding in the results from all countries was that repetitive early warnings
are linked to the beginning of a new epidemic wave, while absence of warnings indicate a stable course or a
future drop in the number of COVID-19 new cases (Figure 1 and 2 and supplementary files S1, S2 and S3).

Discussion

EV I is an efficient, early-warning tool for an upcoming rise in the number of new cases. This ability
of EV I, as expressed by its overall Se and Sp, was, in all instances, high. A more important aspect lies in
the fact that repetitive issuance of early warnings indicates the beginning of future epidemic waves. This
was a consistent and remarkably stable finding across all countries (Fig. 1 and 2, supplementary files S1,
S2 and S3). In a similar manner, absence of a series of early warnings imply that the number of cases will
remain the same or drop. The latter was also a consistent finding across all countries. Additionally, false
early warnings (i.e. false positives) were isolated instances and did not occur in a consecutive series. There
were few instances with a consecutive absence of early warnings despite a continuing rise in the number of
cases (i.e. false negatives). Nevertheless, such series of false negatives never occurred at the beginning of
an epidemic wave but was always close to the peak of the wave. Since EV I depends on volatility and the
rate of increase in the number of cases drops when approaching the peak of an epidemic wave, this finding is
reasonable and could be interpreted as an early sign of reaching the peak. Positive and negative predictive
values that are calculated at each time point can also be used to assess the probability that an early warning
or its absence is true. In all instances, predictive values were high with the exception of few instances at the
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beginning of the time series due to the absence of enough data.

The ability of EV I to provide valid predictions does not seem to be affected by the fact that sampling
and testing schemes for COVID-19 are mainly based on passive surveillance systems. EV I performed equally
well among different countries with different control strategies, testing intensity and reporting accuracy and
despite the fact that within countries sampling and testing has changed over time and/or differs between
regions 23,24.

The performance of EV I depends on the specified case definition and r, parameters which are epidemic-
specific and country-specific. Modifications to allow for different case definition and r for the different periods
of an epidemic are rather straightforward. Parameters c and m are allowed to vary and take values that would
satisfy the conditions set by the defined case and the desired accuracy. A point of concern is the selection
of mmax. For an ongoing epidemic with multiple waves, as is the case with COVID-19, mmax should be limited
to a period shorter than the whole observation period. This prevents excess volatility of past epidemic waves
from affecting the most recent volatility estimates and the ability of EV I to warn for upcoming waves
that may be smaller and of lower volatility than previous ones. In our example, we limited mmax to one
month. EV I also depends on data quality. Detailed data at the lowest time unit (i.e., days rather than
weeks) is preferable. In the COVID-19 example the 7-day moving average was analyzed instead of the daily
reported cases because daily data had unnatural variability due to reporting variations between working
days and weekends. Nevertheless, analysis based on the daily reported cases provided similar results (data
not shown here).

Beyond the case of epidemics or rare events, like the COVID-19 pandemic, an important application of
EVI can be in the context of syndromic surveillance25, not limited to outbreaks from terrorist attacks, but in
its broader sense: the detection of temporal and spatial aberrations in the expected number of cases for sign
and symptom categories. Such systems already exist and utilize state-of-the-art information technologies in
public health3. EV I can provide an additional early warning tool for these systems. The presence a similar
mechanism 26 would have warned Chinese authorities - or the authorities of any country - for an upcoming
unusual surge in the number of cases and could have led to early control measures for COVID-19.

Supplementary Material

In all supplementary files one country is presented per page. Each page is organized as follows:

Title: Country

Subtitle: Overall Se and Sp

Figure a: Daily confirmed cases of COVID-19, presented on the original scale, with red dots corresponding
to dates that, according to EVI, an early warning was issued.

Figure b: Daily confirmed cases of COVID-19, presented on the logarithmic scale, which facilitates the
comparison of the steepness of the epidemic curve between the different waves of the pandemic. Red dots
correspond to dates that, according to EVI, an early warning was issued.

Figure c: Positive predictive values (PPV ) for the days that an early warning was issued. Higher color
intensity corresponds to PPV closer to the value of 1.

Figure d: Negative predictive values (NPV) for the days that an early warning was not issued. Higher color
intensity corresponds to NPV closer to the value of 1.

Supplementary file 1: Results from a list of countries

Hosted file
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All.pdf available at https://authorea.com/users/155758/articles/516426-the-epidemic-

volatility-index-an-early-warning-tool-for-epidemics

Supplementary file 2: Results from all world countries

Hosted file

1_All.pdf available at https://authorea.com/users/155758/articles/516426-the-epidemic-

volatility-index-an-early-warning-tool-for-epidemics

Supplementary file 3: Results from each of the United States

Hosted file

1_All_US.pdf available at https://authorea.com/users/155758/articles/516426-the-epidemic-

volatility-index-an-early-warning-tool-for-epidemics
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