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Abstract

This study presents a novel methodology for extracting latent variables from high-dimensional sparse data, particularly

emphasizing spatial distributions such as precipitation distribution. This approach utilizes multidimensional scaling with a

distance matrix derived from a new similarity metric, the Unbalanced Optimal Transport Score (UOTS). UOTS effectively

captures discrepancies in spatial distributions while preserving physical units. This is similar to mean absolute error, however it

considers location errors, providing a more robust measure crucial for understanding differences between observations, forecasts,

and ensembles. Probability distribution estimation of these latent variables enhances the analytical utility, quantifying ensemble

characteristics. The adaptability of the method to spatiotemporal data and its ability to handle errors suggest its potential as

a promising tool for diverse research applications.
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Key Points:6

• Novel method reveals hidden information from spatial ensemble data for under-7

standing probability distributions.8

• Technique extracts essential similarities and differences in sparse distributions, aid-9

ing interpretation for improved analysis.10

• Approach is adaptable to different data types, making it promising for diverse sci-11

entific fields.12
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Abstract13

This study presents a novel methodology for extracting latent variables from high-dimensional14

sparse data, particularly emphasizing spatial distributions such as precipitation distri-15

bution. This approach utilizes multidimensional scaling with a distance matrix derived16

from a new similarity metric, the Unbalanced Optimal Transport Score (UOTS). UOTS17

effectively captures discrepancies in spatial distributions while preserving physical units.18

This is similar to mean absolute error, however it considers location errors, providing a19

more robust measure crucial for understanding differences between observations, fore-20

casts, and ensembles. Probability distribution estimation of these latent variables enhances21

the analytical utility, quantifying ensemble characteristics. The adaptability of the method22

to spatiotemporal data and its ability to handle errors suggest its potential as a promis-23

ing tool for diverse research applications.24

Plain Language Summary25

This study introduces a new method to understand weather patterns by simplify-26

ing complex data. A mathematical technique was developed to efficiently identify hid-27

den information from patterns. This assists meteorologists in understanding the weather28

with greater accuracy. This method simplifies weather data by highlighting the essen-29

tial similarities and differences between weather patterns, making it easier for scientists30

to interpret and use the resultant data effectively. This study offers a new and efficient31

way to make sense of vast weather data, benefiting meteorological research, and poten-32

tially improving weather forecasting. The technique contributes to the meteorological33

field, in addition it also contributes to various fields with sparse distribution data.34

1 Introduction35

Probabilistic forecasts play a pivotal role in systems characterized by chaotic or stochas-36

tic behavior, such as weather forecasting (Gneiting & Katzfuss, 2014). Ensemble sim-37

ulations are commonly employed to estimate the probability distributions of future states38

(Wilks, 2006). However, evaluating the predictive distribution in such multivariate, high-39

dimensional systems poses challenges, for instance in considering spatially distributed40

phenomena (Murphy, 1991).41

While univariate cases allow straightforward distribution definitions based on en-42

semble member results, multivariate cases, particularly in high-dimensional systems such43

as weather forecasting, face the “curse of dimensionality” (Scott, 1992). Representing44

joint distribution that matches the state vector’s dimensionality becomes infeasible ow-45

ing to this issue, which influences accurate probability estimations.46

Current discussions often focus on one-dimensional distributions, considering points47

individually (e.g., grid points) or single statistical quantities, such as spatial averages (Gneiting48

& Katzfuss, 2014). However, this point-wise approach could overlook crucial spatial pat-49

terns, especially in sparse quantities such as precipitation, leading to an overestimation50

of discrepancies between states, particularly in high-resolution simulation results (Gilleland51

et al., 2009).52

This study tackles these limitations by leveraging the power of latent variables to53

capture the underlying structure and reduce complexity within high-dimensional ensem-54

ble data. Latent variables are hidden factors that influence observable data and repre-55

sent underlying structure and relationships in the data (Loehlin, 2004; Lee, 2007). The56

dimensionality of these latent variables can be significantly smaller than that of real vari-57

ables (for example, Turk & Pentland, 1991). This is supported by the fact that some sys-58

tems operate within small, embedded manifolds of lower dimensions, known as ranks (Foias59

et al., 1988; Constantin, 1989). By extracting these latent variables from ensemble sim-60
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ulations, I aim to create a lower-dimensional space that faithfully represents the essen-61

tial features of the original data.62

This study proposed a new novel methodological approach for extracting meaning-63

ful latent variables from high-dimensional ensembles. Dimensionality reduction is a key64

technique in this method to capture essential features and reduce the high-dimensional65

ensemble data to more manageable data. The state vector obtained within the low-dimensional66

space through dimension reduction serves as an estimate of the underlying latent vari-67

ables. In the consideration of the probability distribution of ensemble data, the distance68

between the ensemble members is important as it is intrinsic to the spread of the dis-69

tribution. Therefore, to capture the essential characteristics of the probability distribu-70

tion of ensemble data by reconstructing the probability distribution in a low-dimensional71

latent variable space, a reduction method that preserves the distance is appropriate.72

Several dimensionality reduction techniques exist. Principal component analysis73

(PCA) is widely used for dimensionality reduction. However, it has limitations in non-74

linear systems (for example, Nishizawa & Yoden, 2004) and is based on point-wise cal-75

culation. The variational autoencoder (VAE; Kingma & Welling, 2013) can extract non-76

linear relationships, and has received much attention in recent years, however, distance77

information is lost due to normalization. It also faces challenges in predictive forecast78

problems owing to limited ensemble sizes for training. In most practical cases, the en-79

semble size is less than a hundred, and the size is insufficient to obtain latent variables80

from the ensemble data by the VAE. Moreover, this approach requires previous knowl-81

edge of the effective dimensions, which is the minimum number of dimensions of the la-82

tent vectors necessary for a sufficiently accurate representation of the underlying phys-83

ically meaningful structure of the original high-dimensional data. With some other di-84

mension reduction methods, such as locally linear embedding (LLE; Roweis & Saul, 2000),85

t-distributed stochastic neighbor embedding (t-SEN; Van der Maaten & Hinton, 2008),86

uniform manifold approximation and projection (UMAP; McInnes et al., 2018), and densMAP87

(Narayan et al., 2021), the distance is not maintained because low-dimensional variables88

are reconstructed based on weights or probabilities corresponding to neighboring points.89

In this study, multidimensional scaling (MDS; for example, Cox & Cox, 2000), specif-90

ically classical MDS, a.k.a., principal coordinate analysis, is utilized to construct a Eu-91

clidean low-dimensional space, where the distances between samples correspond to the92

distance in the original high-dimensional state space. This method preserves the distance93

in a dimension-reduced latent variable space and does not require prior knowledge of the94

effective dimension of the system. MDS operates as a linear procedure. A nonlinear di-95

mension reduction technique, Isomap (Tenenbaum et al., 2000), was also examined. Isomap96

extends MDS by capturing nonlinear manifolds embedded within the original space. By97

employing geodesic distance with a neighborhood graph, Isomap can be applied to com-98

plex data structures beyond linear representations. The influence of the linear limita-99

tion of MDS on the extracted state vectors was examined by employing Isomap.100

The dimension reduction with MDS and Isomap is performed using a similarity met-101

ric for all pairs of input samples. The units and magnitude of the similarity metric are102

retained as a distance in the low-dimensional space. Therefore, the validity of the ex-103

tracted latent variables significantly depends on the definition of the similarity metric104

used, and the choice of an appropriate similarity metric is a critical aspect of this method.105

To measure the similarity of two different states, several metrics exist. Existing met-106

rics often fall short of capturing overall differences, leading to potentially misleading in-107

terpretations. These metrics include traditional metrics, such as the mean absolute er-108

ror (MAE), root mean squared error (RMSE), and Pearson correlation coefficient (CORR).109

In addition, these include scores considering event-based dichotomous variables, such as110

the frequency bias (FB, also called as bias ratio; for example, Wilks, 2006), equitable threat111

score (ETS; Gilbert, 1884), and fractions skill score (FSS; N. M. Roberts & Lean, 2008;112
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N. Roberts, 2008). These were calculated point-wise, with the exception of FB and FSS.113

The point-wise comparison is known to double-penalize small-scale discrepancies (Gilleland114

et al., 2009). Among them, FSS is a score that allows some spatial displacement and is115

widely used for high-resolution simulations. However, as it is based on a categorized or116

thresholded quantity, it does not consider amplitude differences. When considering scores117

with different thresholds simultaneously to determine the event, the amplitude differ-118

ence may be implicitly interpreted. In cases with a large number of samples, the inter-119

pretation of multiple scores may require complex and difficult considerations. Recently,120

structure, amplitude and location (SAL; Wernli et al., 2008) and its extension for en-121

semble forecast (eSAL; Radanovics et al., 2018) have been used to evaluate validity of122

forecasts. However, they are not a single score but a combination of three independent123

scores corresponding to structure, amplitude and location errors. A comprehensive sin-124

gle score is preferred for several purposes, for example, estimating or characterizing a prob-125

ability distribution from ensemble. Therefore, FSS, SAL and eSAL are not suitable for126

the purposes like probability distribution estimation. The displacement and amplitude127

score (DAS; Keil & Craig, 2009) is a single score of combination of displacement and128

amplitude differences, containing more information than the traditional scores. However,129

there are several arbitrary in definitions and computational procedures. Keil and Craig130

(2007) showed that Dmax, which is the maximum search distance, has a great decisive131

impact on the result. It can only take discontinuous values: Dmax is proportional to grid132

spacing times a power of two. Therefore, it may be difficult to choose an appropriate value133

based on physical considerations owing to its discontinuous constraint. They suggested134

that other parameters had a minor impact, however, non-negligible arbitrariness which135

they did not discuss exists. The score was defined such that the amplitude difference be-136

tween one distribution and the morphed distribution of the other becomes the lowest;137

however, no condition was provided for the morphing flow, and in general, many pos-138

sible flows can achieve the smallest amplitude difference. Thus, there are many possi-139

bilities for displacement, and the total score depends on the displacement. Another ar-140

bitrary factor is the difference in weight between the displacement and amplitude. This141

score is a combination of these two differences. As they have different units, the differ-142

ences are normalized or nondimensionalized. On the original definition of DAS, the nor-143

malization factors are determined such that the two terms have equivalent weights. How-144

ever, there are other possibilities to choose the weights than the equivalent weights. In145

this sense, the weight parameter is inherently arbitrary. Indeed, there are arbitrary in146

the definition of the normalization factor of the amplitude error term I0. In addition,147

there is considerable arbitrariness in its computational procedure, resulting in a varia-148

tion in the score. In fact, this study’s implementation of computing the DAS results in149

a non-negligible difference in the obtained score compared to Keil and Craig (2009) for150

the same distributions owing to the undocumented details in the procedure. Another crit-151

ical issue is that the procedure does not consider mass conservation during morphing.152

To address these issues in the existing metrics, this study introduces the Unbal-153

anced Optimal Transport Score (UOTS) as a novel similarity metric specifically designed154

for evaluating spatial distribution discrepancies. UOTS considers both amplitude and155

location differences in a unified manner, as does the DAS. However, the two terms of the156

displacement and amplitude differences have the same units and can be compared di-157

rectly. Therefore, nondimensionalization is not needed to combine them into a single score.158

UOTS is a more straightforward score that considers both displacement and amplitude159

differences than DAS. UOTS also has the same units as the original quantity, which fa-160

cilitates physical interpretations. UOTS offers significant advantages over existing met-161

rics by minimizing arbitrariness in its mathematical definition and providing clearer phys-162

ical interpretations, particularly regarding its hyperparameters.163

The effectiveness of this approach and the suitability of UOTS in extracting mean-164

ingful latent vectors are demonstrated through experiments with synthetic and real-world165

meteorological data. This method is expected to provide valuable insight into high-dimensional166
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Table 1. Metrics for similarity used in this study. The rightmost column shows the conversion

equation from the metric to the corresponding distance.

Abbreviation Name Distance

UOTS Unbalanced optimal transport score UOTS
DAS Displacement and amplitude score DAS
FSS Fractions skill score 1− FSS
MAE Mean absolute error MAE
RMSE Root mean squared error RMSE

CORR Pearson correlation coefficient
√
2(1− CORR)

ETS Equitable threat score 1− ETS
FB Frequency bias | log(FB)|

ensemble data, leading to improved probability distribution estimation and ultimately,167

more accurate and informative forecasts.168

2 Methods169

2.1 Extracting Latent Variables170

In this subsection, the proposed approach to extract latent variables from high-dimensional171

ensembles is described. The methodological approach was divided into two steps.172

1. Calculation of a similarity metric for all pairs of ensemble members and observa-173

tions.174

2. Extraction of latent variables in a low-dimensional space from the distance ma-175

trix based on the similarities.176

2.1.1 Metric for Similarity177

Assessing the similarity between spatial distributions requires a robust metric that178

capture various discrepancies, including amplitude, location, area, and shape differences.179

In this study, various metrics were employed to measure the similarity between spatial180

distributions. Table 1 summarizes the metrics used in this study.181

2.1.1.1 Unbalanced Optimal Transport Score The UOTS proposed in this study182

serves as a novel similarity metric tailored to assess spatial distribution discrepancies.183

The UOTS is defined as follows:184

UOTS =
1

N
min

γ∈RN2

≥0

2
∑
i1,i2

γi1i2

(
∥xi1 − xi2∥2

L

)q
+ ∥γ1− ϕ1∥1 +

∥∥γT1− ϕ2

∥∥
1

 , (1)185

where xi represents the location of the point i, ϕ1(xi) and ϕ2(xi) are mass distribution186

in the two distributions which are to be compared. γ is the transport matrix, which is187

a N×N matrix whose element γi1i2 is a non-negative real number representing the mass188

transported from xi1 to xi2 . 1 is a vector whose elements are all unity, and ∥•∥p rep-189

resents the Lp norm. The superscript T represents transposition. N is the vector length,190

i.e., i = 1, · · · , N . In this study, the score is defined as divided by N , however the num-191

ber of nonzero elements can be used instead of N , depending on the purpose.192

The UOTS is defined based on optimal transport (OT), which is a mathematical193

problem introduced by Monge (1781). OT is an optimization problem of determining194

mass transport plan to minimize the overall cost of moving one mass distribution onto195
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another one with respected to given costs of moving a unit of mass between all pairs of196

spatial points. It has been widely used in various fields, especially in the machine learn-197

ing field, as a measure of similarity of non-negative distribution, such as probability dis-198

tributions. For OT, two distributions to be compared must have the identical mass; prob-199

ability density distributions have unit mass, however, spatial distributions, such as pre-200

cipitation distribution, can have various mass. Therefore, the OT cannot be used to mea-201

sure similarity for these distributions.202

Unbalanced OT (UOT) is an extension of the OT to enable to apply to distribu-203

tions with different total mass. UOT has some variants in the form representing the mass204

difference. The most popular form is using Kullback–Leibler (KL) divergence (Kullback205

& Leibler, 1951) (Frogner et al., 2015). Another form is using L1 norm, which is called206

the partial optimal transport (Caffarelli & McCann, 2010; Chizat et al., 2018; Figalli,207

2010), flat metric (Peyré & Cuturi, 2019), or Kantrovidge–Rubinshutain distance (Hanin,208

1992; Lellmann et al., 2014). UOTS is based on the UOT with L1 form, normalized by209

the q-square of the length scale L. Thanks to the normalization, UOTS has the units210

of mass (or the units of the original quantity). In OT, the total mass is unity, or its value211

is usually normalized by the total mass, and thus the cost value has units of distance.212

Therefore, the optimal value in OT is often referred to as Wasserstein “distance”.213

The OT and UOT have advantages over conventional metrics, such as point-wise214

norms and relative entropy, such as KL divergence, (Séjourné et al., 2023; De Plaen et215

al., 2023). One advantage is their ability to capture global structure, considering the over-216

all distribution and global relationship. They are sensitive to geometry and shapes, which217

an important feature as similarity metric. Another advantage is robustness to noise and218

outliers, as since they have information across the entire distribution, the impacts of in-219

dividual anomalies are reduced. Therefore, OT and especially UOT are less affected by220

noise and outliers, which are often contained in practical dataset.221

UOTS inherits the advantages of OT and UOT. The UOTS captures both ampli-222

tude and location differences and is robust to noise and outliers. The UOTS employs the223

L1 norm to express the mass difference as in the partial optimal transport, and can be224

interpreted as the mean absolute error when spatial displacements are considered. The225

first term in the brackets on the right-hand side of Eq. 1 penalizes mass transport or dis-226

placement of the distribution. γ1 and γT1 denote the transported source and target dis-227

tributions, respectively. Therefore, the second and third terms represent the mean ab-228

solute error after the transport. Through mass transport, the absolute error can be de-229

creased. On the other hand, larger transport costs more. The UOTS is to be determined230

to minimize the sum of the transport cost and the resulting absolute error, therefore, UOTS231

can be considered the mean absolute error with location error correction.232

Its formulation involves the hyperparameters L and q. The parameter L determines233

the distance threshold for identifying same phenomena. Patterns exceeding this thresh-234

old are considered different. For the i1 and i2 index pairs, where ∥xi1−xi2∥2 > L, the235

optimized value of γi1i2 must be zero; otherwise, the first term representing the trans-236

port cost outweighs the second and third terms representing the amplitude difference.237

To understand this, a simplest case of two points x1 and x2 can be considered, in which238

ϕ1(x1) > 0, ϕ2(x2) > 0, and ϕ1(x2) = ϕ2(x1) = 0. Then, it is evident that γ12 ≤239

min (ϕ1(x1), ϕ2(x2)) and γ11 = γ22 = γ21 = 0. UOTS can be written as:240

UOTS =
1

2
min

γ12∈R≥0

{
2γ12

(
∥x1 − x2∥2

L

)q

+ (γ12 − ϕ1(x1)) + (γ12 − ϕ2(x2))

}
241

=
1

2
min

γ12∈R≥0

[
2γ12

{(
∥x1 − x2∥2

L

)q

− 1

}
+ ϕ1(x1) + ϕ2(x2)

]
. (2)242

Therefore, γ12 = 0 since
(

∥x1−x2∥2

L

)q

− 1 > 0.243
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Next, the range of possible values for UOTS is considered. In general, the lower244

bound is zero but there is no upper bound. It is instructive to consider the limit values245

for L, as the limit values give a range of the possible values of UOTS. As L decreases,246

transportation costs increase and the UOTS approaches MAE:247

lim
L→0

UOTS =
1

N
(∥ϕint − ϕ1∥1 + ∥ϕint − ϕ2∥1) =

1

N
∥ϕ1 − ϕ2∥1 , (3)248

where ϕint is the intersection of ϕ1 and ϕ2. This is because γi1i2 must be zero for i1 ̸=249

i2, for which ∥xi1 − xi2∥2 > 0, otherwise the term representing transport cost becomes250

infinity. On the other hand, as L increases, transportation costs decrease and the UOTS251

approaches the mean mass difference, or bias:252

lim
L→∞

UOTS =
1

N

(
∥γ1− ϕ1∥1 +

∥∥γT1− ϕ2

∥∥
1

)
=

1

N
|∥ϕ1∥1 − ∥ϕ2∥1| , (4)253

because γT1 = ϕ2 and ∥γ1∥1 = ∥ϕ2∥1, when ∥ϕ1∥1 ≥ ∥ϕ2∥1; and vise versa. For in-254

termediate L, the UOTS have the value between the two limits (MAE and the mean mass255

difference) as 1
N |∥ϕ1∥1 − ∥ϕ2∥1| ≤ UOTS ≤ 1

N ∥ϕ1 − ϕ2∥1.256

The other hyperparameter q affects the transportation cost per mass. The larger257

the value of q, the more the difference in position is disregarded and the more tolerant258

the score is for small displacement errors. This is because
∥xi1−xi2∥2

L ≤ 1 where γi1i2 >259

0.260

In the actual computation in this study, the minimization problem for this opti-261

mization was solved by using the Sinkhorm algorithm (Cuturi, 2013) with a reservoir of262

dustbin points by incorporating a regularization term λΩ(γ) as in ordinary partial op-263

timal transport. Here, Ω and λ represent the entropy regularization function and its co-264

efficient, respectively, and Ω(γ) =
∑

i1,i2
γi1i2 log(γi1i2). In this study, the parameter265

λ was fine-tuned to the smallest possible value without causing computational divergence.266

The UOTS introduces a novel approach that comprehensively evaluates the sim-267

ilarity between spatial distribution patterns, while having a clear physical interpretation268

of its hyperparameters.269

2.1.2 Extraction of Latent Variables in Dimension-Reduced Space270

Before extracting the latent variables in a reduced space, a distance matrix was con-271

structed from the similarity metric between all pairs of the ensemble members and the272

observational data. In the process of constructing the distance matrix, it is crucial to273

transform metrics into values resembling distances that signify zero for identical distri-274

butions, nonnegatives, and symmetry, as detailed in Table 1.275

2.1.2.1 Multidimensional Scaling MDS allows for the extraction of state vectors276

in Euclidean space while preserving the given distance. It also reveals the relative im-277

portance of each coordinate and the number of effective dimensions based on stress func-278

tions. The state vector in the space can be obtained by solving an eigendecomposition279

problem of the matrix K = − 1
2HDH, where D is the distance matrix and H is the cen-280

tering matrix H = I− 1
N 11T , and I is the identity matrix. The vector vm correspond-281

ing the state of the m-th ensemble member is obtained such that its k-th element is vkm =282 √
λkumk, where λk and umk are the k-th eigenvalue and the m-th element of the k-th283

eigenvector, respectively. Coordinates corresponding to larger eigenvalues are more prin-284

cipal. By considering only a small number of principal eigenvalues/eigenvectors (i.e., prin-285

cipal coordinates), a vector of smaller dimension can be obtained. It is noted that the286

result of the MDS is identical to PCA when the Euclidean distance, i.e., RMSE, in the287

original high-dimensional space is used as the similarity metric (Cox & Cox, 2000).288
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The stress function S is computed as follows:289

S =

√√√√∑
m1<m2

(d̂m1m2
− dm1m2

)2∑
m1<m2

d̂m1m2

, (5)290

where d̂m1m2
represents the distance in the reduced space (d̂m1m2

= ∥vm1
− vm2

∥2),291

and dm1m2
is the distance derived from the similarity metric in the original space be-292

tween members m1 and m2. The stress function changes value depending on how many293

dimensions of the vm are considered when calculating the distance d̂. In other words,294

it is a function of the number of the dimensions δ.295

2.2 Experiments296

2.2.1 Synthetic Data Experiment297

The synthetic data experiment was designed following the methodology detailed298

in Ahijevych et al. (2009) to illustrate the characteristics of various similarity metrics299

for assessing spatial distributions. A prescribed geometric spatial distribution mimick-300

ing the accumulated surface precipitation distribution was utilized. This distribution is301

described as follows:302

ϕ(x, y) =


0,

(
x−x1

a

)2
+
(
y−y1

b

)2 ≥ 1

Φ1,
(
x−x1

a

)2
+
(
y−y1

b

)2
< 1,

(
x−x2

0.4a

)2
+

(
y−y1

0.4b

)2 ≥ 1

Φ2,
(
x−x2

0.4a

)2
+
(
y−y1

0.4b

)2
< 1

, (6)303

where x2 = x1+0.4a,Φ2 = 2Φ1, and x = i∆x and y = j∆x, with i = 0, 1, · · · , 601, j =304

0, 1, · · · , 501 and ∆x = 4 km.305

Six spatial distributions (Fig. 1) were created, including one reference (observa-306

tion) and five target patterns (forecasts). The parameters (x1, a, b) for the reference, pat-307

tern 1, pattern 2, pattern 3, pattern 4, and pattern 5 are (200∆x, 25∆x, 100∆x), (250∆x, 25∆x, 100∆x),308

(400∆x, 25∆x, 100∆x), (325∆x, 100∆x, 100∆x), (325∆x, 100∆x, 25∆x), and (325∆x, 200∆x, 100∆x),309

respectively. In all distributions, y1 = 250∆x and Φ1 = 12.7 mm.310

2.2.2 Synthetic Data Ensemble Experiment311

Furthermore, in this study, the geometric distribution (Section 2.2.1) was extended312

to ensemble forecasts and multiple cases. The observations and ensemble members were313

generated using specific parameters to simulate diverse scenarios, resulting in 100 cases314

with 50 ensemble members each.315

The parameters for the observations are (xobs
1 , yobs1 , aobs, bobs,Φobs

1 ) = (300∆x, 250∆x,
√

A
πα ,

√
Aα
π , 2ϵ3/2),316

where A and α are the area and aspect ratios, respectively, and (A,α) = (2ϵ1/2πa0b0, 4
ϵ2/2 b0

a0
).317

The constants were set as a0 = 25∆x and b0 = 100∆x based on the reference in the318

synthetic data experiment. ϵs are random numbers with a standard normal distribution.319

The parameters for ensemble members are (xfcs
1 , yfcs1 , afcs, bfcs,Φfsc

1 ) = (xobs
1 +50∆xϵ4, y

obs
1 +320

50∆xϵ5,
√

Afcs

παfcs ,
√

Afcsαfcs

π , 2ϵ8/2Φobs
1 ), where, (Afcs, αfcs) = (2ϵ6/2Aobs, 4ϵ7/2αobs). Note321

that, for the location difference, i.e., xfcs
1 −xobs

1 and yfcs1 −yobs1 , 95% of samples (corre-322

sponding to 2 standard deviations) statistically range from −100∆x to 100∆x. For the323

area, aspect ratio, and amplitude, the factors of 2ϵ/2 and 4ϵ/2 were set so that 95% of324

samples statistically ranged from 0.5 to 2, and 0.25 to 4, respectively.325

2.2.3 Real Data Experiment326

In order to examine applicability of the method to practical applications, real pre-327

cipitation data was used. The data had a spatial distribution of radar reflectivity at 2-328
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Figure 1. Spatial pattern of the geometric distributions in the synthetic data experiment.

The top panels display the reference (observation) and five distributions (forecasts). The red

and black color indicates observation and forecasts, respectively. The thin and thick contours

represent the area at which ϕ = 12.7 and 25.4 mm, respectively. The lower panels show the

magnitude of similarity metrics for the five distributions with respect to the reference. The ver-

tical coordinates are oriented such that the bottom (top) is more similar (more different). Solid,

dashed, dotted, and dash-dotted lines indicate L = 200, 400, 800, and 1,600 km for UOTS,

W = 200, 400, 600, and 800 km for FSS, respectively. Solid and dashed lines indicate Dmax = 180,

and 360 km for DAS, respectively.
–9–
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Figure 2. Longitude-latitude cross-section of the radar reflectivity in dBZ in the real data

experiment. The top-left panel display the observation. The other panels are of 11 ensemble

members out of 50 members.

km height at 18:00 UTC, 29 July 2021 obtained in Miyoshi et al. (2023). A real-time 30-329

second-refresh numerical weather prediction was conducted at Kanto region in Japan dur-330

ing Tokyo Olympics and Paralympics in 2021 using supercomputer Fugaku. In the pre-331

diction system, a regional atmospheric model SCALE-RM (Scalable Computing for Ad-332

vanced Library and Environment-Regional Model, Nishizawa et al., 2015; Y. Sato et al.,333

2015) and a data assimilation framework SCALE-LETKF (SCALE-local ensemble trans-334

form Kalman filter, Lien et al., 2017) was utilized and generated analysis data every 30335

seconds with 1,000 ensemble members of 500-m-mesh simulations assimilating 3-D vol-336

ume radar observations obtained by the phased array weather radar installed at Saitama337

University. In this study, data of 50 members out of the 1,000 members was used. The338

data covers about 80 × 80 km2 domain and its spatial resolution is 500 m (161 × 161339

grids). The smaller values less than 5 dBZ were rounded to zero.340

Figure 2 shows the horizontal distribution of the radar reflectivity of the observa-341

tion and some of the ensemble members. The ensemble members have similar patterns342

to the observation with some differences.343

3 Results344

3.1 Synthetic Data Experiment345

The characteristics of the various similarity metrics were examined using geomet-346

ric spatial distributions (Section 2.2.1). The experiment involved multiple metrics and347

the sweeping of their hyperparameters. L and q for UOTS were swept: L = 200, 400,348

800, and 1,600 km, and q = 1 and 2. The FSS also had a hyperparameter W which rep-349

resents the width of neighborhoods, and it was swept for 200, 400, 600, and 800 km. The350
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parameters for DAS were set to Dmax = 180 and 360 km, and I0 were set 15.4 mm ac-351

cording to previous research (Keil & Craig, 2009).352

Figure 1 visually demonstrates the magnitude of various similarity metrics applied353

to the five target patterns (forecasts) with respect to the reference (observation). The354

difference of the forecast of the pattern 1 from the observation is obviously smaller than355

that of other patterns. However, the score for the pattern 1 is not the best with the DAS356

with Dmax = 180, CORR, and ETS. UOTS displayed consistent rankings across pat-357

terns, indicating lower sensitivity against parameter changes. Conversely, DAS and FSS358

exhibited higher sensitivity to their parameters, signifying the necessity for careful pa-359

rameter selection. Although the parameters L,W , and Dmax for the UOTS, FSS, and360

DAS, respectively, all indicate the limit distance for location difference, dependency of361

the scores on the parameter exhibits such significant difference. The lower sensitivity,362

or higher robustness, is a favorable trait to determine single value representing similar-363

ity. Traditional scores, such as RMSE, MAE, CORR, ETS, and FB, as previously re-364

ported by Ahijevych et al. (2009), showed limitations in distinguishing between patterns365

1, 2, and 4, i.e., different location and aspect-ratio errors. These outcomes emphasize the366

advantages of UOTS as a more robust similarity metric.367

3.2 Synthetic Data Ensemble Experiment368

To demonstrate the extraction of latent variables and advantages of the UOTS, a369

synthetic data ensemble experiment was conducted (Section 2.2.2). Figure 3 presents the370

distributions of the estimated latent variables in two-dimensional space with the two lead-371

ing coordinates. With the independent parameters given in the distribution generation,372

the two coordinates are anticipated to be independent if the latent variables are success-373

fully extracted. When utilizing UOTS, DAS, and FSS with a moderate W , the first and374

second coordinates appear to be independent. Conversely, in cases employing RMSE,375

MAE, ETS, CORR, FB, and FSS with small and large W , these two coordinates exhibit376

a relationship. The FB and FSS with a large W are nearly one-dimensional, relying solely377

on the first coordinate. FB and FSS with large W depend solely on the area difference378

and disregard other errors, leading to a one-dimensional latent variable distribution. The379

dependency on the parameter with UOTS is much lower than with FSS, which is con-380

sistent with the result in the previous experiment (Section 3.1). Despite the lower de-381

pendency, it is relatively larger with q = 2 than with q = 1. UOTS with L = 1, 600382

and q = 2 shows a relatively one-dimensional structure, since UOTS depend solely on383

the area difference in the case of L = ∞. ETS, CORR, and FSS with small W were384

distributed in a two-dimensional space however exhibited a rather one-dimensional struc-385

ture. Reasons for this may be considered as follows: The metrics reach the upper bound386

value even with a low location error, and many pairs of the ensemble members tend to387

have the same value, i.e., the upper bound value. In fact, in the synthetic data exper-388

iment, these metrics have the value near the upper bound for most of the patterns (Fig.389

1). In the two-dimensional latent variable space, they try to locate to have an equal dis-390

tance, resulting the circular structure. The distributions using MAE and RMSE display391

intermediate characteristics between the two-dimensional independent structure (e.g.,392

with UOTS) and one-dimensional structure (e.g., ETS). Furthermore, as the ensemble393

members were generated by adding or multiplying a normal random number to the ob-394

servation parameters, the observation state was expected to be located near the origin395

in the latent variable space. With UOTS, FSS with a medium W , and FB, the obser-396

vation was located near the origin, as expected. However, the observations are not po-397

sitioned near the origin for the other cases. From this perspective, UOTS and FSS with398

medium W emerged as favorable similarity metrics among those investigated. Although399

Fig. 3 represents distributions in a single case, their qualitative characteristics described400

above are consistent across all the cases.401
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Figure 3. (Scatter plot) Locations of the individual ensemble member and observation in

the leading two-dimensional latent variable space and (tone) their two-dimensional histograms.

The black dots and blue x symbol indicate the ensemble member and observation, respectively.

The numbers in parentheses represent L and q for UOTS, W for FSS, and Dmax for DAS. The

number under the metric name is the mean distance of the observation from the origin in the

two-dimensional space normalized by the standard deviation of the distance of ensemble members

from the origin averaged over all the 100 cases.
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Figure 4. Dependency of the stress on the number of dimension δ. Different color and line

types indicate different metrics and parameters. The number in parentheses represent L and q for

UOTS, W for FSS, and Dmax for DAS. The x symbols indicate the dimension at which the stress

is less than the minimum value plus 0.02.

In this experiment, the latent variable was expected to be five dimensions, since402

the distributions were generated with five independent parameters: the amplitude, two-403

dimensional location, area, and aspect ratio. The effective dimensionality of the estimated404

latent variables is explored using the stress function (Fig. 4). The effective dimension-405

ality is estimated as the dimension δ at which the stress becomes constant, i.e., minimum406

value: For example, when the effective dimension is five, the stress will decrease for δ ≤407

5, and remain constant for δ ≥ 5. UOTS with L = 400 and q = 1 exhibited an effec-408

tive dimensionality of five, aligned with the expectations. However, the effective dimen-409

sionality depends on L: it is tend to be smaller as L becomes large. This tendency can410

be seen for both q = 1 and 2. This indicates that some information was being discarded411

for larger L, since UOTS solely depends on the area in the limit of L → ∞. This in-412

formation loss is remarkable for the FSS with W = 800 and FB, and the stress was al-413

most constant for all δ, corresponding to a one-dimensional structure. On the other hand,414

some metrics displayed a continuous stress reduction even beyond five dimensions, sug-415

gesting an overestimation of dimensionality: UOTS with L = 200 and q = 1, DAS,416

RMSE, MAE, ETS, and CORR. With FSS of W = 200 and 400, it becomes constant417

at δ = 4 and 3, respectively. The fact that FSS does not consider the amplitude error418

is related to this underestimation of the dimensionality. Conversely, the stress increases419

as δ increases with UOTS with L = 400, 600, 800 and q = 2, and FSS with W = 600.420

This implies that these metrics are not appropriate for representing the Euclidean dis-421

tance. These results suggests that a moderate L and q = 1 are suitable to obtain di-422

mensionality reasonably.423
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To investigate the relationship between the five given parameters (x, y,A, α and424

Φ) and the extracted coordinates, a correlation analysis was performed. In this exper-425

iment, if the latent variable is correctly extracted, information of all five parameters should426

be contained in the five leading coordinates. In each case, the correlation coefficients be-427

tween the parameters and the elements of the extracted vector corresponding to the five428

leading coordinates were computed. As the order of the leading coordinates can vary de-429

pending on the case, the highest correlation coefficient among the five leading coordi-430

nates was selected for each parameter in each case. Figure 5 displays the averaged cor-431

relation coefficient in all cases with error bars indicating the 99% confidence level for each432

parameter. The correlation coefficients for all five parameters were mostly higher than433

0.36 for UOTS with larger Ls. The value of 0.36 is the threshold of the correlation co-434

efficient calculated with 50 samples to be statistically significant at the 99% significance435

level. For other metrics, some of the correlation coefficients are lower than the thresh-436

old, indicating that the extracted latent variables do not have information of some given437

parameters, that is, the metrics lost some information. This confirms that UOTS suc-438

cessfully extracted information of the five parameters.439

Overall, UOTS with L =400–800 and q = 1 emerged as the most preferred sim-440

ilarity metrics among those investigated, providing insights into the latent variable dis-441

tribution.442

Furthermore, the linearity constraints inherited in MDS were considered. The dis-443

tributions in two-dimensional space displays a one-dimensional structure with ETS, CORR,444

and FSS with W = 200. This can be attributed to the limitations of linearity inher-445

ent to MDS. To address this limitation, the nonlinear method Isomap was employed. How-446

ever, the distributions in two-dimensional space obtained with Isomap are similar to those447

obtained using conventional MDS with ETS and CORR. For FSS with W = 200, al-448

though the shape changed significantly, it still exhibited a one-dimensional structure. This449

implies that the dimensionality constraint is inherent to the characteristics of the sim-450

ilarity metric. On the other hand, the obtained distributions with UOTS using Isomap451

are almost identical to that using MDS. Therefore, when UOTS is used as similarity met-452

ric, MDS can be used to extract latent variables.453

3.3 Real Data Experiment454

The synthetic data ensemble experiment in Section 3.2 considers distributions with455

a single nonzero area, i.e., single phenomena, and practical scenarios involving multiple456

nonzero areas may require further consideration of the effectiveness of UOTS and ap-457

propriate L values. Therefore, in addition to the synthetic data, real application data458

(Section 2.2.3) was used to examine the applicability of this method. In the real data459

experiment, we do not know information about the true latent variables. Therefore, in460

this experiment, consistency of characteristics and dependency on the metric and param-461

eters with those in the synthetic data ensemble experiment was considered.462

As in the synthetic data ensemble experiment, the latent variables were extracted463

by the MDS with variety of similarity metrics. Figure 6 shows the spatial distributions464

of the extracted latent variables in the leading two-dimensional space. The character-465

istics are similar to those in the synthetic data ensemble experiment. As shown in the466

synthetic data ensemble experiment, it is almost one-dimensional with FB and FSS with467

large W . Sensitivity of the distribution on the parameter is much smaller with UOTS468

with q = 1 than with UOTS with q = 2 and FSS. As L becomes larger, the distribu-469

tion becomes nearly one-dimensional and this is more remarkable for q = 2. On the other470

hand, the one-dimensional structure seen with ETS, CORR, and FSS with small W in471

the synthetic data ensemble experiment is not clearly seen in the real data experiment.472

This may be because small-scale noises existing in the original data act as an spatial scat-473

ter or smoothing filter in the latent variable space.474
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Figure 5. Correlation coefficient between the extracted latent variables and the prescribed

five parameters, x, y,A, α and Φ, for each metrics averaged over the 100 cases in the synthetic

data ensemble experiment. The error bar represents the 99% confidence interval. The dotted line

shows the level above which the correlation calculated from 50 samples is statistically significant

at 99% significance level.

–15–



manuscript submitted to JGR: Machine Learning and Computation

Figure 6. The same figure as Fig. 3 but in the real data experiment.

The dependency of the stress on the dimensionality also shows similar character-475

istics to the synthetic data ensemble experiment (Fig. 7). The sensitivity of the stress476

on the parameter is much smaller with UOTS with q = 1 than with UOTS with q =477

2 and FSS. Although the true value of the dimensionality is unknown in this experiment,478

UOTS with q = 1 shows that the effective dimensionality is about 10. The stress show479

continuous reduction with UOTS with L = 5 and q = 2, DAS, RMSE, MAE, ETS,480

and CORR. It increases for large δ with FSS with W = 10, 20 and 40. It is almost con-481

stant with FB and FSS with W = 5.482

These consistency of the results support the advantages of UOTS and also suggest483

that UOTS can be applied to practical data.484

4 Conclusions485

This study proposes a novel methodology for extracting meaningful latent variables486

in low-dimensional space from high-dimensional, sparse data, primarily focusing on spa-487

tial distributions. The application of multidimensional scaling with a new similarity met-488

ric, namely, the UOTS, proves highly effective in achieving this goal. UOTS offers sev-489

eral advantages over traditional metrics, including incorporating amplitude and location490

errors and preserving physical meaning within its latent variables.491

The estimation of probability distributions from these latent variables using den-492

sity estimation methods, such as histogram or kernel density estimation, offers substan-493

tial analytical advantages over the original high-dimensional space. This approach of-494

fers several potential advantages for various applications. For example, it enables the de-495

termination of the ensemble mean and spread while considering crucial factors such as496

location differences, which are vital in numerous meteorological applications. The en-497

semble mean can be determined as the barycenter using the unbalanced optimal trans-498
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Figure 7. The same figure as Fig. 4 in for the real data experiment.

port theory, whereas the ensemble spread can be derived from the square root of the sum499

of the eigenvalues obtained by multidimensional scaling. To evaluate the probability dis-500

tribution and compare distributions in different cases, it is crucial that the Euclidean dis-501

tance in the latent variable space closely matches the distance in the original high-dimensional502

space. The UOTS has the same units as the original physical quantity and MDS pre-503

serves the units. Therefore, the method using the UOTS and MDS is preferable to con-504

sider the probability distribution in low-dimensional space.505

The efficacy of this methodology is underscored by its ability to handle discrepan-506

cies in spatial distributions by considering the amplitude, location, area, and shape er-507

rors. However, the UOTS has two hyperparameters L and q and the efficacy of UOTS508

depends on these parameters. Therefore, determination of these parameters is one of the509

challenges of UOTS. Too small L waken the ability to collect the location error, since510

transport is allowed only within distance of L. On the other hand, too large L makes511

the score less sensitive to location errors and also creates the danger of equating differ-512

ent phenomena that are far apart. In the limit where L goes to zero and infinity, UOTS513

is equal to the MAE and the mean mass difference, respectively, and loses its advantages.514

The synthetic and real-data experiments suggest that a moderate L (around 400 km and515

20–40 km in the synthetic data ensemble and real data experiments, respectively) and516

q = 1 lead to the most informative latent variable distribution. Magnitude of the pa-517

rameter could be guessed based on physical properties of the phenomena of interest such518

as the spatial extent and typical distance of different phenomena. In the synthetic data519

ensemble experiment, the standard deviation of center position difference of two ensem-520

ble members is 400 km, since the variance of difference in xfcs
1 and yfcs1 is 2(50∆x)2 and521

∆x = 4 km. This is almost same scale with the estimated appropriate value of L. In522

the real data experiment, typical spatial scale of the distribution of the reflectivity (Fig.523

2) is estimated to roughly be 10–20 km. From this physical scale, an appropriate L is524

estimated around 20 km. This is consistent the result of the sweep experiment. These525
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support the validity of choosing L based on the characteristics of physical phenomena526

of interest.527

With q=1, the UOTS is linearly related to the distance between two patterns to528

be compared, i.e., the location error. This implies that the UOTS with q=1 has simi-529

lar characteristics to that of the Euclidean distance and would be better matched for the530

MDS.531

Despite of these intuitive consideration, sweep experiment of these parameters may532

be required to determine the appropriate value in practical cases as well as other sim-533

ilarity metrics having hyperparameters, such as FSS. However, the number of trials for534

the sweep can be much smaller for UOTS than that for FSS and DAS because of less535

sensitivity of UOTS to the parameter. Even though the parameters of L, W , and Dmax536

all indicate distance limit for location error or displacement, this smaller sensitivity, in537

other word stronger robustness, is a preferable feature of UOTS in terms of parameter538

determination. Furthermore, in the parameter sweep of L, the result of MAE and the539

mean mass difference may give a hint because they are the limit of the UOTS as L goes540

to zero and infinity.541

One limitation of UOTS is its computational cost compared to conventional met-542

rics. UOTS is obtained by iterative solver, thus the computation time highly depends543

on input data and parameters. On average, the computation time for the UOTS in the544

synthetic data experiment was about 5.3 seconds, while it is about 0.06 seconds for FSS545

on my standard Intel CPU workstation. However, active research in optimal transport546

is developing faster algorithms (for example, R. Sato et al., 2020). In addition, these al-547

gorithms are know to be suitable for graphics processing unit computers. Therefore, these548

promise future improvement in computational cost of UOTS.549

Although the primary focus of this study was on the spatial distributions, this method550

readily adapts to spatiotemporal distributions with minimal modifications. Incorporat-551

ing factors, such as advection speed in the temporal direction, into the transport cost552

of UOTS allows for a seamless extension while maintaining the core methodology.553

The versatility of this approach extends to various meteorological applications, for554

example, comparison of spatial distribution of aerosol and chemical species emitted from555

specific locations such as Y. Sato et al. (2018). Moreover, this approach is not limited556

to meteorology and it is also applicable to various fields dealing with sparse spatiotem-557

poral distributions beyond meteorology. Its adaptability to diverse domains and robust-558

ness in handling errors makes it a promising tool across scientific disciplines.559
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