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	9 
Abstract	10 

	11 
A	 linear	 non-diffusive	 algorithm	 for	 advective	 transport	 is	 developed	 that	 greatly	12 

improves	the	level	of	detail	at	which	aerosols	and	clouds	can	be	represented	in	atmospheric	13 

models.	Linear	advection	schemes	preserve	tracer	correlations	but	the	basic	linear	scheme,	14 

employing	 zeroth-order	 finite	 differencing,	 is	 rarely	 used	 by	 atmospheric	 modelers	 on	15 

account	of	its	excessive	numerical	diffusion.	Higher-order	schemes	are	in	widespread	use,	16 

but	these	present	new	problems	as	nonlinear	adjustments	are	required	to	avoid	occurrences	17 

of	negative	concentrations,	spurious	oscillations,	and	other	non-physical	effects.	Generally	18 

successful	 at	 reducing	numerical	diffusion	during	 the	advection	of	 individual	 tracers,	 e.g.	19 

particle	 number	 or	 mass,	 the	 higher-order	 schemes	 fail	 to	 preserve	 even	 the	 simplest	20 

correlations	between	interrelated	tracers.	As	a	result,	important	tracer	attributes	of	aerosol	21 

and	 cloud	 populations	 including	 radial	moments	 of	 particle	 size	 distributions,	molecular	22 

precursors	 related	 through	 chemical	 equilibria,	 aerosol	mixing	 state,	 and	 distribution	 of	23 

cloud	phase	are	all	poorly	represented	in	models.	We	introduce	a	new	scheme,	minVAR,	that	24 

is	 both	non-diffusive	 and	preservative	of	 tracer	 correlations,	 thereby	 combining	 the	best	25 

features	 of	 the	 basic	 and	 higher-order	 schemes	while	 enabling	 new	 features	 such	 as	 the	26 

tracking	of	sub-grid	information	at	arbitrarily	fine	scales	with	high	computational	efficiency.		27 

	28 

Plain	 Language	 Summary:	 In	 this	 paper	 we	 resolve	 a	 long-standing	 bottleneck	 to	 the	29 

representation	 of	 aerosols	 and	 clouds	 in	 atmospheric	 models	 beyond	 the	 two-moment	30 

microphysical	schemes	currently	in	use.	The	bottleneck	is	caused	by	the	failure	of	higher-31 

order	 advection	 schemes	 to	 preserve	 correlations	 between	 interrelated	 tracers	 during	32 

transport	–	a	task	for	which	they	were	never	designed.	The	paper	was	motivated	in	part	by	33 

our	recent	convective	cloud	chamber	study	[Yang	et	al.,	2022],	which	employed	a	second-34 
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order	advection	scheme	and	a	two-moment	cloud	microphysical	scheme	limited	to	tracking	35 

particle	number	and	mass.	The	new	approach	introduces	a	diffusion	limiter,	under	the	idea	36 

that	 achieving	 minimal	 spatial	 variance	 on	 an	 Eulerian	 model	 grid	 implies	 maximal	37 

resolution	 and	 elimination	 of	 numerical	 diffusion.	 By	 preserving	 tracer	 correlations	 and	38 

eliminating	numerical	diffusion,	minVAR	–	short	for	minimum	variance	–	includes	the	best	39 

features	 of	 the	 basic	 linear	 and	higher-order	 schemes.	 This	 innovation	 resolves	 the	 two-40 

moment	 bottleneck,	 a	 necessary	 step	 for	 high-fidelity,	 multi-moment	 representation	 of	41 

aerosols	and	clouds	in	atmospheric	models.	42 

	43 

1.	Introduction	44 
	45 

The	 present	 study	 was	 motivated	 by	 the	 need	 to	 preserve	 correlations	 between	46 

interrelated	 tracers	 throughout	 the	 advection	 process	 as	 it	 is	 represented	 in	 Eulerian	47 

models.	Such	correlations	affect	the	sequences	of	radial	moments	used	to	track	particle	size	48 

distributions,	apportionment	of	reactive	chemical	species	affecting	aerosol	composition	and	49 

mixing	 state,	 and	 tracking	 of	 cloud	 phase.	 Fully-linear	 advection	 schemes	 rigorously	50 

preserve	 these	 correlations,	 but	 on	 account	 of	 extensive	 numerical	 diffusion	 find	 their	51 

application	 limited	 to	 the	 modeling	 of	 laboratory-	 and	 industrial-scale	 reactors,	 cloud	52 

chambers,	 and	 other	 systems	 where	 high-resolution	 grids	 and	 fine	 time	 stepping	 can	53 

affordably	be	used.			54 

	55 

The	 basic	 linear	 scheme,	 which	 employs	 zeroth-order	 finite	 differencing,	 has	56 

advantages,	 not	 the	 least	 of	 which	 are	 linear	 superposition,	 preservation	 of	 correlation,	57 

freedom	 from	dispersion,	and	high	computational	efficiency,	but	 is	generally	deemed	 too	58 

diffusive	by	the	atmospheric	community	for	use,	especially	with	the	coarse	grids	of	models	59 

operating	at	regional	to	global	scales.	Instead,	higher-order	finite-differencing	schemes	are	60 

in	widespread	used.	Examples	include	the	Bott	scheme,	based	on	polynomial	interpolation	61 

of	 concentrations	 in	 neighboring	 grid	 cells	 [Bott,	 1989a,	 b],	 the	 slopes	 method,	 which	62 

preserves	 the	 zeroth	and	 first-order	 spatial	moments	 [Russell	 and	Lerner,	 1981],	 and	 its	63 

successor	 the	quadratic	upstream	(QUS)	advection	scheme,	which	conserves	zeroth,	 first,	64 

and	 second-order	 spatial	 moments	 [Prather,	 1986].	 These	 higher-order	 schemes	 do	 an	65 
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excellent	job	reducing	numerical	diffusion	during	the	advection	of	independent	tracers,	but	66 

were	never	designed	to	preserve	correlations	between	the	tracers	from	an	interrelated	set.		67 

Moreover,	 the	higher-order	 schemes	 tend	 to	be	 complex,	 tedious	 to	 follow,	 and	prone	 to	68 

numerical	artifacts.	The	latter	can	include	failure	to	preserve	positivity,	monotonicity,	and	69 

stability.	Nonlinear	fixes	can	serve	to	eliminate	these	artifacts,	but	such	modifications	only	70 

worsen	the	tracer	correlation	problem,	increase	code	complexity,	and	reduce	computational	71 

speed.		72 

	73 

Sources	of	the	failure	to	preserve	physically-based	correlations	between	the	lower-74 

order	 radial	 moments	 of	 a	 particle	 population	 were	 analyzed	 by	 Wright	 [2007]	 and	75 

attributed	largely	to	the	fact	that	the	higher-order	advection	schemes	track	spatial	gradients	76 

that	differ	for	different	moments,	resulting	in	dispersion,	unphysical	size	distributions,	and	77 

corruption	of	moment	sets.	Wright	examined	moment	failures	for	the	Bott	[1989a,	b]	and	78 

QUS	[Prather,	1986]	advection	schemes	using	ensembles	of	104	test	cases	spanning	a	range	79 

of	initial	conditions	and	flow	velocities.	The	Prather	scheme	performed	somewhat	better	in	80 

this	 regard,	 but	 both	 gave	 rise	 to	 unphysical	 moment	 sets	 at	 frequencies	≥ 0.7%.	 The	81 

problem	is	not	limited	to	moments.	For	example,	when	three	species	initially	with	constant	82 

sum	were	advected	separately	in	a	one-dimensional	constant	velocity	flow,	local	errors	in	83 

the	 sum	 ranged	 from	 order	 10%	 and	 up	 to	 30%	 when	 cloud-like	 interactions	 were	84 

considered	 [Ovtchinnikov	 and	 Easter,	 2009].	 	 The	 aforementioned	 limitations	 have	 huge	85 

impact	on	the	representation	of	aerosol	and	cloud	properties	and	processes	in	atmospheric	86 

models.	 They	 are	 largely	 responsible	 for	 two-moment	 aerosol	 and	 cloud	 microphysical	87 

schemes,	and	modal	methods,	currently	limited	to	tracking	aerosol	number	and	mass	while	88 

having	 to	 prescribe	 variance,	 remaining	 state	 of	 the	 art.	 	 As	 a	 result,	 process-level	89 

understanding	 gained	 through	 laboratory	measurements	 and	 field	 observations	 remains	90 

largely	underutilized	due	to	the	limited	capacity	of	the	models	to	include	it.		91 

	92 

There	 have	 been	 a	 few	 attempts,	 none	 entirely	 successful,	 aimed	 at	 correcting	93 

corrupted	moment	sequences	[Wright,	2007;	McGraw,	2007,	2012;	Ovtchinnikov	and	Easter,	94 

2009].	 	 The	 present	 study	 shifts	 focus	 from	 correcting	miscalculated	moment	 sequences	95 

produced	by	the	higher-order	schemes	to	limiting	numerical	diffusion	in	the	basic	scheme.	96 
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This	paper	was	motivated	in	part	by	our	recent	convective	cloud	chamber	study	[Yang	et	al.,	97 

2022],	 which	 employed	 a	 second-order	 advection	 scheme	 and	 a	 two-moment	 cloud	98 

microphysical	 scheme	 limited	 to	 tracking	 particle	 number	 and	mass.	 The	 new	 approach	99 

introduces	 a	 diffusion	 limiter	 to	 the	 basic	 scheme,	with	 the	 idea	 that	 achieving	minimal	100 

spatial	variance	on	Eulerian	grids	achieves	maximal	resolution	and	elimination	of	numerical	101 

diffusion.	By	preserving	 tracer	correlations	and	eliminating	numerical	diffusion,	minVAR,	102 

short	for	minimum	variance,	blends	the	best	features	of	the	basic	and	higher-order	schemes	103 

thereby	breaking	 the	 two-moment	bottleneck	necessary	 for	high-fidelity	 (multi-moment)	104 

representation	of	aerosols	and	clouds	in	atmospheric	models.		105 

	106 

	Section	2	gives	a	brief	preview	of	the	proposed	scheme,	minVAR	and	its	comparison	107 

to	 two	 others,	 the	 basic	 and	 QUS	 schemes.	 Section	 3	 focuses	 on	 methods,	 introducing	108 

optimization	 theory	 in	 the	 form	of	an	 intuitive	 linear	program	(LP)	 to	develop	minVAR’s	109 

minimal	spatial	variance	solutions	on	an	Eulerian	grid.	This	is	followed	by	presentation	of	a	110 

closed-form	analytic	solution	that	is	computationally	faster	and	fully	LP-equivalent.	Section	111 

4	 focuses	 on	 applications.	 Calculations	 illustrate	 the	 encoding	 of	 arbitrarily	 fine	 scale	112 

features	from	a	spatially-dispersed	particle	cloud	onto	the	coarse	grid,	while	tracking	such	113 

features	 at	 scale	 with	 particle-by-particle	 resolution.	 A	 sparse,	 four-point	 adaptive	114 

quadrature	representation	of	the	same	cloud	is	also	presented.	Most	importantly,	it	is	shown	115 

that	contributions	to	spatial	variance	from	physical	processes	add	linearly	to	minVAR	and	116 

are	(to	within	numerical	precision)	separable	from	it.	In	other	words	the	two	variances,	one	117 

inherent	to	the	mathematical	representation	of	points	on	a	grid	(Sec.	3),	the	other	physical	118 

(Sec.	4),	can	be	separately	identified	and	individually	tracked.	Finally,	minVAR	is	applied	to	119 

the	advection	of	interrelated	tracer	sets	from	an	external	mixture	of	three	distinct	aerosol	120 

types	following	a	test	case	introduced	by	Wright	[2007].	Recovery	of	each	aerosol	type	at	121 

any	stage	of	 the	calculation	 is	obtained	by	 least-squares	projection	onto	 the	vector	space	122 

spanned	by	the	identifying	moment	sequence	vectors,	one	for	each	aerosol	type,	with	zero	123 

residual.	Section	5	presents	a	summary	and	discussion	of	the	new	approach.		 	124 
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2.	Preview	of	minVAR	and	comparison	with	the	basic	and	QUS	advection	schemes	125 
		126 

															This	 section	 presents	 a	 graphical	 preview	 of	 minVAR	 showing	 similarities	 and	127 

contrasts	between	it	and	the	basic	and	QUS	schemes.	The	details	of	how		minVAR	works	are	128 

covered	in	Sec.	3.	129 

	130 

Advection	of	a	pulse.	Consider	the	advection	of	a	pulse,	consisting	initially	of	a	unit	amount	of	131 

tracer	material	in	a	single	grid	cell	in	a	constant	velocity	one-dimensional	flow.	The	Courant	132 

number	is	set	at:	133 

																																																																																𝑐 = !D"
D#

= 0.15,																																																																																							(1)	134 

	135 
where	u	is	wind												speed	in	the	positive	x	direction,	D𝑡	is	timestep,	and	D𝑋	is	the	uniform	width	136 

of	each	grid	cell	along	the	x	coordinate.	For	rational	Courant	numbers	and	linear	non-	137 

		 	
Fig.	1.		Comparing	results	from	the	advection	of	a	single	pulse	according	to	the	two	linear	advection	
schemes.	 Initial	 condition:	 Grid	 cell	 1	 filled,	 others	 empty.	 The	 figure	 shows	 results	 through	 20	
advection	steps	with	wind	direction	to	the	right	and	c	=	0.15.	Left	panel,	basic	zeroth-order	finite	
difference	scheme.	Right	panel,	minVAR	scheme	with	the	new	diffusion	limiter	in	place.	Distributions	
are	normalized	to	unity	with	grayscale	values	indicated	in	the	legend.	
	
diffusive	advection,	the	perfect-shift	property	is	encountered	after	an	integer	number	of	grid	138 

spacings,	resulting	in	exact	pulse	recovery.	For	example,	for	c	=	0.15,	an	integer	shift	of	3	grid	139 

spacings	is	obtained	after	twenty	time	steps	(20 × 0.15 = 3)	as	illustrated,	in	the		 	140 



 6 

mean,	 for	 the	 basic	 scheme,	 and	 with	 exact	 pulse	 recovery	 for	 the	 non-diffusive,	 non-141 

dispersive	minVAR	scheme	in	Fig.	1.	142 

	
Density	profiles	in	the	basic	scheme	follow	a	normalized	Bernoulli	distribution	having	143 

mean	travel	distance	 	µ!(𝑛) = 𝑛	𝑐,	with	µ!(0) = 1	 in	the	present	example	(cf.	Fig.	1),	and	144 

variance,	var" 	= 	𝑛	𝑐	(1	 − 	𝑐).	n	is	the	number	of	completed	advection	such	that	n	=	k	–	1	for	145 

step	 number	 k	 as	 plotted	 in	 Fig.	 1.	With	 increasing	 n,	 the	 Bernoulli	 distribution	 rapidly	146 

approximates	 a	 normalized	 Gaussian	 having	 these	 same	 formulaic	 values	 for	 mean	 and	147 

variance	[Chandrasekhar,	1943].	The	minVAR	solution	has	the	same	mean		µ! = 𝑛	𝑐,	and	an	148 

analytic	expression	for	its	variance	is	developed	in	Sec.	3.	The	minVAR	solution	exhibits	exact	149 

pulse	recovery	at	n	=	20	(k	=	21)	and	an	evenly	split	pulse	of	maximal	minVAR	between	grid	150 

cells	2	and	3	at	n	=	10	(k	=	11).		151 

	152 

																The	exact	position	after	n	completed	advection	steps,	µ!(𝑛),	is	given	correctly	in	both	153 

linear	schemes	by	the	centroid	of	the	distributions	shown	in	Fig.	1.	From	exact	pulse	recovery	154 

seen	 in	 the	 figure	 it	 is	 evident	 that	 minVAR	 is	 completely	 non-diffusive.	 Moreover	 the	155 

minVAR	distributions	 are	 reversable	with	 reversal	 of	wind	 speed	 and	 direction,	 yielding	156 

recovery	of	the	original	pulse	in	grid	cell	1.	This	is	not	the	case	with	the	basic	scheme	as	the	157 

variance	continues	its	linear	increase	with	n	irrespective	of	the	change	in	wind	direction	due	158 

to	the	irreversibility	of	numerical	diffusion	in	the	basic	scheme.		Nevertheless,	the	centroids	159 

of	the	distributions	track	perfectly	and	are	restored	to	their	original	value	in	both	schemes.			160 

	161 

Figure	2	shows	application	to	a	frontal	distribution.	The	frontal	distribution,	which	162 

results	 from	 advection	 of	 a	 train	 of	 pulses	 arriving	 from	 the	 left,	 serves	 to	 illustrate	 the	163 

superposition	 principal	 for	 linear	 advection	 schemes,	 here	 the	 diffusive	 basic	 and	 non-164 

diffusive	minVAR	schemes,	solid	and	dashed	histograms,	respectively.			 	165 
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Fig.	2.		Comparing	results	from	advection	of	a	tracer	front.	Initial	condition:	Grid	cells	1-5	filled	others	
empty.	Results	after	25	advection	steps	with	replacement	from	the	left.	Curves:	Linear	advection	with	
(dashed),	and	without	(solid)	the	minVAR	diffusion	limiter	in	place.	Both	curves	average	to	give	the	
exact	travel	distance	of	the	front,	equal	to	3.75	cell	widths	for	c	=	0.15.	
	

Figure	3a	shows	a	direct	comparison	of	the	minVAR	and	QUS	advection	results	after	166 

70	advection	steps	for	the	same	initial	unit	pulse	as	Fig.	1.	The	minVAR	solution,	dashed,	is		167 

an	evenly	split	pulse	of	maximal	minVAR	between	grid	cells	11	and	12		after	an	average	travel	168 

distance	of	10.5	cell	widths.	QUS	and	minVAR	each	performed	well	in	this	single-tracer	test,	169 

with	QUS	showing	only	a	small	amount	of	numerical	diffusion	in	the	wings	of	its	histogram.	170 

Figure	3b	is	a	comparison	of	the	three	methods.	A	rapid	and	linearly	increasing	variance	with	171 

step	number	is	seen	for	the	basic	scheme,	as	expected	from	the	binomial	distribution.	The		172 

	
Fig.	3.	(a)	Comparison	of	pulse	shape	after	70	advection	steps.	Histograms	of	cell	occupation	fraction	
for	 the	QUS	 (solid)	 and	minVAR	 (dashed)	 advection	 schemes.	 (b)	Comparing	 evolution	of	 spatial	
variance	for	the	three	models	from	0	to	20	advection	steps:	dashed	black	line	(basic	scheme),	solid	
curve	(QUS),	dashed	red	curve	(minVAR).	The	Courant	number	is	unchanged	from	Figs.	1	and	2.	 	
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Solid	and	dashed	curves	 for	QUS	and	minVAR,	respectively,	 tend	to	 flatten	out,	 indicating	173 

that	numerical	diffusion	is	controlled	in	both	schemes.		All	three	models	agree	after	the	first	174 

time	step,	before	higher-order	QUS	gradient	terms	are	evaluated.		175 

	

As	reversibility	and	exact	pulse	recovery	imply,	minVAR	is	completely	non-diffusive.	176 

Consequently,	the	vertical	distance	between	the	QUS	and	minVAR	curves	of	Fig.	3b	provides	177 

a	measure	of	numerical	diffusion	in	the	QUS	scheme	at	each	advection	step.	Similarly	for	the	178 

basic	scheme,	with	its	much	higher	and	growing	level	of	numerical	diffusion,	reflected	in	the	179 

difference	between	the	line	and	minVAR	curve.	The	minVAR	variance	itself	is	attributed	to	a	180 

purely	mathematical	effect	innate	to	the	Eulerian	representation	of	the	coordinates	of	a	zero-181 

dimensional	point	as	it	moves	across	the	grid.	This	requires	a	minimum	of	two	adjacent	grid	182 

cells	per	coordinate	to	precisely	 locate	the	point’s	position	within	 its	home	cell,	except	 in	183 

special	 cases	 of	 perfect	 reconstruction	 where	 fewer	 cells	 are	 required.	 Whereas	 innate	184 

variance	 is	 solely	 responsible	 for	 shaping	 the	 minVAR	 curve,	 the	 QUS	 scheme	 carries	 a	185 

vestige	of	this	mathematical	effect	seen	in	the	smaller	oscillations	with	step	number	visible	186 

in	the	solid	curve.		A	small	phase	shift	with	respect	to	the	minVAR	oscillation	is	also	evident	187 

and	 is	 due	 to	 dispersion	 in	 the	 QUS	 scheme.	 Dispersion,	 together	with	 the	 conditionally	188 

switched-on	nonlinearities	associated	with	flux	limitation	and	filling,	are	largely	responsible	189 

for	destroying	tracer	correlations	in	the	higher-order	models	—	not	numerical	diffusion.	The	190 

basic	scheme,	though	most	diffusive	of	the	three,	fully	preserves	tracer	correlations.		191 

	192 
3.	The	minVAR	diffusion	limiter	for	advection	on	Eulerian	grids			193 
	194 
3.1	 Optimization	 approach	 based	 on	 linear	 programming	 (LP).	 The	 problem	 of	 finding	195 

minimal	 variance	 representations	 for	 locating	 points	 on	 a	 grid	 has	 a	 simple	 and	 unique	196 

solution	obtainable	by	 linear	optimization	methods.	Tables	1	and	2	give	 linear	programs	197 

(LPs)	 for	 limiting	numerical	diffusion	 through	constrained	variance	minimization	on	one	198 

and	two	dimensional	grids.	Time-dependent	point	coordinates	{x,	y	}	are	indicated	in	vector	199 

form	as	pulse-mean	values		{µ!(𝑡),µ#(𝑡)	}	on	the	grid.	For	advection	schemes	based	on	finite	200 

differencing,	calculations	are	performed	on	a	stencil	moved	across	the	grid.	minVAR	employs	201 

finite	volumes	with	calculations	carried	out	on	a	three	by	three	plaquette	of	nine	grid	cells	202 



 9 

moved	across	the	grid	(Fig.	4).		Solutions	in	one	dimension	may	be	obtained	by	projecting	203 

the	plaquette	onto	the	x-	or	y-	coordinate	axis,	or	directly	using	three-grid-cell	central	slices	204 

parallel	 to	 the	 x-	 or	 y-	 	 coordinate	 axis	 of	 the	 plaquette.	 The	method	 is	 quite	 flexible:	 A	205 

calculation	of	Fig.	1,	linked	to	in	the	open	research	statement,	employs	eight	grid	cells	along	206 

the	x-	axis	instead	of	the	three	shown	in	Table	1.					207 

	208 

															The	 two-coordinate	 LP	 of	 Table	 2	 is	 a	 natural	 extension	 of	 the	 one-coordinate	209 

program	of	Table	1.	The	number	of	occupied	grid	cells	in	the	solution	plaquette	equals	the	210 

number	of	equality	constraints	(except	in	special	cases	of	perfect	reconstruction	where	it	is	211 

less).	In	one	dimension	these	are	the	normalization	and	position	constraints	and	the	solution	212 

_______________________________________________________________________________________________________	
Table	1.	Linear	Program	for	one-dimensional	grids:		𝐿𝑃!"[µ	#(𝑡)]	213 
p[𝑖]	is	the	occupation		fraction	of	normalized	material	in	grid	cell	i		centered	at	𝑥$ .	214 
	215 
Minimize	variance	cost	function:		∑ 𝑥$%&

$'! 𝑝[𝑖] 	−	µ#
%(𝑡)	216 

subject	to:	217 
normalization	constraint:		∑ 𝑝[𝑖] = 1%

$&' 	218 
x-position	constraint:										∑ 𝑥$%

$&' 𝑝[𝑖] = µ	!(𝑡)	219 
	220 
inequality	constraints:		0≤ 𝑝[𝑖]	for	each	𝑖.		221 
________________________________________________________________________________________________________	222 
	223 
________________________________________________________________________________________________________	224 
Table	2.	Linear	Program	for	two-dimensional	grids:		𝐿𝑃%"[µ	#(𝑡),µ	((𝑡)\	225 
p[𝑖]	is	the	occupation	fraction	of	normalized	material	in	grid	cell	i		centered	at	{𝑥$ 	, 𝑦$}.	226 
	227 
Minimize	variance:		∑ (𝑥$()

$&' + 𝑦$()𝑝[𝑖] 	− 	(µ!
((𝑡) + µ#

((𝑡))	228 

subject	to:	229 
normalization	constraint:					∑ 𝑝[𝑖] = 1)

$&' 	230 
x-position		constraint:												∑ 𝑥$)

$&' 𝑝[𝑖] = µ	!(𝑡)				231 
y-	position	constraint:							∑ 	𝑦$)

$&' 𝑝[𝑖] = µ	#(𝑡)			232 
zero	covariance	constraint:	 ∑ 𝑥$)

$&' 𝑦$	𝑝[𝑖] = µ	!(𝑡)µ	#(𝑡) 233 
	234 
inequality	constraints:		0≤ 𝑝[𝑖]	for	each	𝑖.			235 
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		is	 unique.	 In	 two	 dimensions	 the	 zero	 covariance	 condition	 has	 been	 added	 as	 a	 fourth	236 

equality	constraint.	This	choice	yields	four	occupied	grid	cells	making	the	solution	unique	237 

while,	at	the	same	time,	recovering	the	results	from	orthogonal	back	projections	of	the	1D	x		238 

and	 y	 solutions	 (Fig.	 4).	 Quadratic	 terms	 µ!
((𝑡),	 appearing	 in	 the	 cost	 function,	 and	239 

µ	!(𝑡)µ	#(𝑡)	in	the	covariance	constraint,	are	constant	point-position	arguments	for	each	call	240 

to	the	program	and	do	not	affect	linearity	of	the	method.		241 

	242 

																Figure	 4a	 shows	 our	 convention	 for	 the	 plaquette-square	 occupation	 fractions	243 

appearing	in	the	program.	The	nine	square	centers	used	in	the	2D	program	take	on	integer	244 

coordinate	values	{𝑥$} = {0,1,2,0,1,2,0,1,2},	{𝑦$} = {0,0,0,1,1,1,2,2,2},	covariance	coefficients	245 

{𝑥$𝑦$} =	{0,0,0,0,1,2,0,2,4},	and	second	moment	coefficients	{𝑥$( + 𝑦$(} =	{0,1,4,1,2,5,4,5,8}.			246 

Solutions	are	reported	using	the	convention:		247 

	248 

			𝐿𝑃(+mµ	!(𝑡),µ	#(𝑡)n 	= o𝑚𝑖𝑛𝑉𝐴𝑅, {𝑝[1], 𝑝[2], 𝑝[3], 𝑝[4], 𝑝[5], 𝑝[6], 𝑝[7], [8], 𝑝[9]}v											(2a)	249 

	250 

where	minVAR	is	the	sought	for	minimum	variance	and	p[1]	thru	p[9]	are	the	minVAR	grid	251 

occupation	numbers	normalized	to	unity.		252 

	253 

Figure	4b	illustrates	a	specific	solution.	The	lower	right	corner	cells	of	the	plaquette,	254 

(cells	 2,3,5	 and	 6)	 contain	 minVAR’s	 Eulerian	 representation	 of	 the	 selected	 point,	255 

coordinates	of	which	are	indicated	by	the	red	marker,		along	a	hypothetical	wind	trajectory	256 

(red	 curve).	 Grid	 occupation	 numbers	 are	 illustrated	 using	 the	 grayscale	 of	 Fig.	 1	 with	257 

numerical	values	given	in	Eq.	2b.	Cell	3,	with	p[3]	=	0.014,	appears	empty	in	grayscale	as	its	258 

value	is	below	the	shading	threshold.	The	trajectory	is	representative	of	one	that	might	be	259 

input	 to	 the	 advection	 routine	 from	 a	 separate	 computational	 fluid	 dynamics	 code	 or	260 

meteorological	model.	Using	coordinates	of	the	selected	point	as	an	example,	𝑥 = µ	!(𝑡) 	=261 

	1.07292, 	𝑦 = µ	#(𝑡) 	= 	0.808117,	the	solution	from	Table	2	is:	262 

	263 

𝐿𝑃(+[𝑥, 𝑦] = 𝐿𝑃(+[1.07292, 0.808117] 	=	264 
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									{0.222667, {0, 0.177891, 0.0139921, 0, 0.749189, 0.0589279, 0, 0, 0}}.																										(2b)	265 

	266 

														The	 𝑝[𝑖]’s	 listed	 in	 2b,	 satisfy	 the	 four	 equality	 and	 nine	 inequality	 constraints	 of	267 

Table	2,	as	do	many	other	solutions.	What	makes	this	solution	unique	is	that	it	also	minimizes	268 

the	cost	function	to	give	the	minimum	possible	variance	representation	of	the	test	point’s	269 

location	on	the	grid.	The	centroid,	or	center	of	mass	of	the	spread,	matches	the	arguments	of	270 

the	LP,	its	minVar	variance	(0.222663)	is	consistent	with	the	𝑝[𝑖]	values	listed	in	2b.	While	271 

a	single	point	by	itself	has	no	intrinsic	variance,	its	Eulerian	representation	does.	Section	4	272 

generalizes	this	idea	from	single	points	to	clouds	of	points	having	physical	variance	added	to	273 

but	separable	from	minVAR.	274 

	
Fig.	4.	(a)	The	basic	three	by	three	plaquette	showing	orientation	of	x-	and	y-	axis	and	numbering	of	
grid	 squares.	 (b)	 grayscale	 representation	 of	 densities/occupation	 number	 fractions	 within	 the	
plaquette.	 The	 red	 curve	 depicts	 a	 wind	 trajectory,	 and	 a	 point	 along	 that	 trajectory	 having	
coordinates	given	in	Eq.	2b	corresponding	to	the	centroid	of	the	densities	shown.	Row	and	column	
projections	(red	arrows)	and	back	projections	are	discussed	in	the	text.	
	

Finally	it	should	be	noted	that	central	slices	from	the	2D	result	recover	the	1D	forward	275 

projections	depicted	by	 the	arrows	 in	Fig,	4b.	Specifically,	 in	notation	of	Eq.	2,	LP',(𝑥) =276 

LP(,(𝑥, 1)	 and	 LP',(𝑦) = LP(,(1, 𝑦).	 More	 generally	 LP(,(𝑥, 𝑦) 	= 	 LP',(𝑥) +	LP',(𝑦).	277 

Results	of	this	type	are	trivial	to	prove	using	a	closed-form	analytic	solution	that	will	now	be	278 

derived.	In	contrast	to	the	LP	instruction	set,		the	analytic	solution,	though	simpler	and	much	279 

faster	to	compute,	is	less	intuitive	and	far	less	general.	Derivation	of	the	analytic	result	was	280 
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motivated	 by	 the	 LP-generated	 contour	 plots	 of	 Fig.	 5,	 suggesting	 the	 use	 of	 LP	 as	 a	281 

development	 tool.	Both	 solutions,	while	numerically	 equivalent	 are	 computationally	 very	282 

different.	For	these	reasons	it	 is	of	value	to	retain	both	derivations	for	perspective	on	the	283 

new	approach.	284 

	

	
Fig.	 5.	 Contours	 of	 constant	minVAR	 in	 2D.	 Left,	 center	 square	 of	 a	 9-square	 plaquette	 showing	
contours	as	a	function	of		point	position	{x	,	y}=	{µx	,	µy}.	Contour	values	from	center	to	corners	are	
0.01,	0.05,	0.10,	0.15,	0.20,	0.25,	0.30,	0.35,	0.40,	0.45,	0.499.	The	first	and	last	entries	mark	the	near	
center	 and	 near	 corner	 positions,	 respectively.	 	 Horizontal	 and	 vertical	 lines	 through	 the	 center	
having	coordinates	{x,	1}	and	{1,	y}	(not	shown)	recover	variances	along	the	1D	x	and	y	coordinates,	
as	 special	 cases	of	 the	2D	 solution.	Right,	 stacking	of	 four	 adjacent	 cells	 showing	periodicity	 and	
continuity	 across	 grid	 cell	 boundaries.	 Red	 square,	 corners	 and	 boundaries	 of	 the	 center	 square	
shown	on	the	left.		
	

	3.2	 LP-equivalent	 analytic	 solution	 and	 extension	 to	 three	 coordinate	 dimensions:	The	 left	285 

panel	of	Fig.	5	shows	contours	of	constant	minVAR	(see	caption)	for	the	center	square	of	the	286 

plaquette	as	computed	from	LP(,.	The	right	panel	shows	the	center	square,	highlighted	in	287 

red,	imbedded	in	a	larger	area	of	four	cells	illustrating	translational	symmetry	and	toroidal	288 

boundary	conditions	of	the	underlying	grid.		289 

	290 

Guided	by	the	radial	symmetries	exhibited	in	the	minVAR	contours	of	Fig.	5,	a	closed-291 

form	analytic	solution	for	computing	minVAR	was	developed	and	is	presented	in	Table	3.	292 

One	sees	immediately	the	importance	of	the	corners	of	each	cell,	o𝑎! , 𝑎#v,	serving	as	centers	293 
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for	the	circles	of	constant	minVAR.	The	lead	coefficient	on	the	right	for	the	1D	case,	1/4,	is	294 

the	squared	distance	from	the	nearest	edge	of	the	grid	cell	to	its	center	for	one	coordinate.	295 

For	two	and	three	coordinates	it’s	the	squared	distance	from	the	nearest	corner	of	the	grid	296 

cell	to	its	center.	In	three	dimensions	the	squared	distance	corner	to	center	is	(√3/2)% = 3/4.	297 

The	subtracted	term	is	the	squared	Euclidean	distance	from	the	nearest	edge	(or	corner)	to	298 

the	point	being	represented.		299 

________________________________________________________________________________________________________	300 
Table	3.	Closed-form	analytic	formulae	for	minVAR	values	and	back	projected	densities.		301 

minVAR	values	in	one,	two,	and	three	dimensions			302 
	303 
1D:			𝑚𝑉'+(𝑥) = 1/4 − D!

( 																												where			D!( = (𝑎! − 	𝑥)(	304 
2D:			𝑚𝑉(+(𝑥, 𝑦) = 1/2 − (D!( + D#

()																								D#( = �𝑎# − 	𝑦�
(				305 

3D:			𝑚𝑉%+(𝑥, 𝑦, 𝑧) = 3/4 − (D!( + D#
( + D-

()									D-( = 	(𝑎- − 	𝑧)(	306 
	307 
o𝑎! , 𝑎# , 𝑎-v = 	 {𝐹𝑙𝑜𝑜𝑟[𝑥] 	+ 1/2, 𝐹𝑙𝑜𝑜𝑟[𝑦] 	+ 1/2, 𝐹𝑙𝑜𝑜𝑟[𝑧] 	+ 1/2}	308 
𝐹𝑙𝑜𝑜𝑟[𝑥]	gives	the	greatest	integer	less	than	or	equal	to	𝑥		309 
	310 
Back-projection	formula	for	plaquette	densities	in	2D	311 
	312 
mat = {{1, 1, 1}, {0, 1, 2}, {0, 1, 4}}		(3	×	3	moment	matrix	for	the	reference	plaquette	of	4a)	313 
mat.' = {{1, −3/2, 1/2}, {0, 2, −1}, {0, −1/2, 1/2}}	(mat	inverse)	314 
	315 
𝑣1𝐷(𝑥) = {1, 𝑥	, 𝑚𝑉'+(𝑥) + 	𝑥	𝑥}		(zeroth,	first	and	second	moments,	here	along	𝑥)	316 
𝑝1𝐷(𝑥) = 𝑚𝑎𝑡.' ∙ 	𝑣1𝐷(𝑥)			(projected	densities	onto	coordinate	axes,	here	𝑥	)	317 
	318 
𝐸𝑥𝑎𝑚𝑝𝑙𝑒	𝑓𝑟𝑜𝑚	𝐹𝑖𝑔. 4𝑏:					𝑝1𝐷(1.07292) = {0, 0.92708, 0.07292}	º	{𝑝𝑥', 𝑝𝑥(, 𝑝𝑥%	}	319 
																																																					𝑝1𝐷(0.808117) = {0.191883, 0.808117, 0}	º	{𝑝𝑦', 𝑝𝑦(, 𝑝𝑦%	}		320 
	321 
𝑏𝑎𝑐𝑘	𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑		𝑝𝑙𝑎𝑞𝑢𝑒𝑡𝑡𝑒	𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠:			322 
𝑏𝑝(𝑥, 𝑦) = {𝑝𝑥'𝑝𝑦', 𝑝𝑥(𝑝𝑦', 𝑝𝑥%𝑝𝑦', 𝑝𝑥'𝑝𝑦(, 𝑝𝑥(𝑝𝑦(, 𝑝𝑥%𝑝𝑦(, 𝑝𝑥'𝑝𝑦%, 𝑝𝑥(𝑝𝑦%, 𝑝𝑥%𝑝𝑦%} =	323 

Outer	(p1𝐷(𝑦), 𝑝1𝐷(𝑥))	324 
(numerical	values	in	this	example	are	identical	to	the	results	from	LP	shown	in	Eq.	2b)	325 
	326 
Full	result	in	2D	:	𝑓𝑚𝑉(+(𝑥, 𝑦) 	=	{𝑚𝑉(+(𝑥, 𝑦),	𝑏𝑝(𝑥, 𝑦)}	327 
	328 
	329 

Table	3	 lists	 the	steps	used	to	get	Eulerian	grid	densities	beginning	with	𝑚𝑉'+(𝑥),	330 

followed	by	computation	of	spatial	moments	0,	1,	2	along	the	coordinate	axes,	𝑣1𝐷(𝑥)	and	331 

𝑣1𝐷(𝑦),	 forward	projections	of	density	onto	the	coordinate	axes	𝑝1𝐷(𝑥)	º	{𝑝𝑥', 𝑝𝑥(, 𝑝𝑥%	}	332 



 14 

and	 𝑝1𝐷(𝑦)	º	{𝑝𝑦', 𝑝𝑦(, 𝑝𝑦%	},	 and	 finally	 the	 back	 projected	 densities	 obtained	 using	 an	333 

outer	 product	 of	 forward	 projections.	 The	 full	 result,	 𝑓𝑚𝑉(+(𝑥, 𝑦)	 in	 two	 dimensions,		334 

outputs	both	the	minVAR	values	and	back	projected	cell	densities,	 	𝑏𝑝(𝑥, 𝑦),	following	the		335 

convention	 of	 Eq.	 2a.	 LP(,(𝑥, 𝑦)	 and	 𝑓𝑚𝑉(+(𝑥, 𝑦)	 give	 identical	 results,	 with	 the	 latter	336 

showing	a	1000-fold	gain	in	computational	speed.	337 

	

Two	properties	of	the	minVAR	function	(mV	for	short)	are	worth	noting	here:	(1)	the	338 

expression	for	𝑚𝑉'+(𝑥)	is	easily	recovered	from		𝑚𝑉(+(𝑥, 𝑦)	upon	noticing	that	the	squared	339 

vertical	 distance	 from	 a	 corner	 to	 the	midpoint	 of	 one	 of	 its	 vertical	 edges	 is	D#( = 0.25.	340 

Substituting	this	value	into	the	expression	for	𝑚𝑉(+(𝑥, 𝑦)	gives	𝑚𝑉'+(𝑥)	by	the	Pythagorean	341 

theorem.	A	similar	argument	applies	to	the	recovery	of	𝑚𝑉'+(𝑦).	By	extension,	𝑚𝑉'+(𝑥)	is	342 

recovered	 from	𝑚𝑉%+(𝑥, 𝑦, 𝑧)	 using	D#( = D-
( = 0.25.	 (2)	𝑚𝑉%+(𝑥, 𝑦, 𝑧) 	= 	𝑚𝑉%+(𝑥 + 𝑛, 𝑦 +343 

𝑚, 𝑧	 + 𝑙),	and	similarly	for	lower	dimensions,	where	n,	m,	and	l	are	any	positive	or	negative	344 

integers.	 This	 identity,	 especially	 useful	 when	working	with	 large	 grids,	 is	 based	 on	 the	345 

translational	 symmetry	 previously	 described,	 and	 captured	 here	 by	 the	 𝐹𝑙𝑜𝑜𝑟	 function	346 

defined	 in	 the	 table.	 Finally,	 it’s	 clear	 by	 inspection	 that	 𝑚𝑉%+(𝑥, 𝑦, 𝑧) = 	𝑚𝑉'+(𝑥) +347 

	𝑚𝑉'+(𝑦) +	𝑚𝑉'+(𝑧)	=	𝑚𝑉(+(𝑥, 𝑦) + 𝑚𝑉'+(𝑧),	etc.	Solutions	need	only	be	computed	in	1D	348 

and	back	projected	for	results	in	higher	dimension.	The	analytic	process	here	is	equivalent	349 

to	time/operator	splitting	in	QUS.	On	the	other	hand,	minVAR	doesn’t	require	time	splitting	350 

to	work	in	higher	dimension.	It	is	applied	directly	to	random	points	at	sub-grid	scale	in	Sec.	351 

4.1,	and	can	equally	well	be	applied	to	a	non-uniform	sequence	of	points	along	a	curved	wind	352 

trajectory	as	suggested	in	Fig.	4.	In	this	last	sense,	minVAR	can	be	thought	of	as	providing	a	353 

unique	 one-to-one	 mapping	 from	 Lagrangian	 trajectories	 to	 Eulerian	 grid	 densities.	354 

Quantities	not	easily	captured	by	the	trajectories,	e.g.	sub-grid	turbulence	and	entrainment,	355 

may	be	better	captured	by	mapping	to	the	grid	–	and	vice	versa.	356 

	357 

When	referring	to	minVAR	in	the	following	sections,	unless	specified,	we	are	referring	358 

to	 either	 method	 LP	 or	 mV.	 LP	 is	 more	 general	 and	 will	 likely	 have	 advantages	 as	 a	359 

development	tool	in	future	applications	of	the	method,	as	it	did	here.	Numeric	and	analytic	360 
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calculations	presented	in	the	following	section	rely	mostly	on	the	closed-form	mV	and	fmV	361 

algorithms	of	Table	3	both	for	their	ease	of	implementation	and	great	computational	speed.		362 

	363 

4.	Applications	364 

																	The	 previous	 section	 described	 minVAR’s	 Eulerian	 representations	 of	 point	365 

singularities	located	on	one,	two,	and	three	dimensional	grids.	These	representations,	being	366 

purely	 mathematical	 in	 nature,	 are	 devoid	 of	 physical	 content.	 That	 will	 change	 with	367 

consideration	of		multi-point	physical	representations	of	aerosols	and	clouds	developed	at	368 

arbitrarily	fine	sub-grid	scales	in	Sec.	4.1.	Dual	LP,	equivalently	dual	minVAR,	is	introduced	369 

to	obtain	 the	sensitivity	of	minVAR	values	 to	particle	motions	across	 the	grid	 in	Sec.	4.2.	370 

Finally,	 the	problem	of	advecting	a	mixture	of	distinct	aerosol	 types,	each	having	 its	own	371 

identifiable	 sequence	 of	 interrelated	 moments	 is	 described	 in	 Sec.	 4.3.	 Similarities	 and	372 

differences	between	the	minVAR,	basic,	and	QUS	schemes	in	this	regard	are	also	discussed.	373 

	374 

4.1	 Separation	 and	 tracking	 of	 variance	 from	 physical	 processes	 using	 minVAR:	 This	375 

subsection	 illustrates	 how	 sub-grid	 information	 can	 be	 represented	 in	 minVAR		376 

parameterically,	 or	 on	 a	 particle-by-particle	 basis,	 the	 latter	 using	 spatially-distributed,	377 

multi-point	configurations	that	can	represent	individual	aerosol	particles	and	cloud	droplets	378 

or	sparse	representations	of	their	distributions	using	adaptive	quadrature.	Such	extended	379 

systems	 carry	 their	 own	 physical	 variance	 and	 covariance	 in	 addition	 to	 their	 pointwise	380 

innate	variance	contained	 in	minVAR	 itself.	The	 linearity	 feature	of	minVAR	allows	 these	381 

different	contributions	to	be	tracked	separately	through	multiple	grid	boxes	of	volume	D𝑉 =382 

D𝑋D𝑌D𝑍	using	the	methods	developed	here	and	in	Sec.	4.2.	383 

	384 

Figure	6	shows	a	collection	of	1000	particles	(black	dots)	sampled	from	a	binormal	385 

distribution	having	mean,	oµ',µ(v = {1.2, 0.88},	and	covariance	matrix	elements	from	Eq.	3	386 

																																																									387 

																																											�
s'( rs's(

rs's( s((
� = � 0.0625 0.05625

0.05625 0.0625 �																																						(3a)	388 

	389 
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where	r	is	any	number	between	-1	and	1,	here		r	=0.9.	The	parameters	on	the	left	of	Eq.	3a,	390 

generally	time	dependent,	may	be	tracked	directly,	without	sampling	the	distribution,	using	391 

adaptive	 sigma-point	 quadrature	 [Yoon	 and	 McGraw,	 2004a,	 b].	 The	 limitation	 of	392 

parameterization,	though	extremely	efficient,	is	that	the	distribution	shape	may	morph	from	393 

binormal	to	a	very	different	form,	necessitating	reparameterizations	over	time.	The	use	of	394 

many	 more	 points	 affords	 much	 greater	 accuracy	 and	 flexibility	 in	 this	 regard,	 as	 does	395 

quadrature.	Both	approaches	are	remarkably	fast,	when	minVAR	is	used.	Quadrature,	with	396 

significantly	fewer	points,	is	of	course	much	faster.	Both	particle-by-particle	aerosol/cloud	397 

tracking	and	adaptive	sigma-point	quadrature	employ	the	same	sets	of	lower-order	mixed	398 

moments,	and	these	evolve	over	time	with	closure	independent	of	any	parameterized	form.		399 

	

	
Fig.	6.	Sampled	set	of	1000	points	from	the	parameterized	binormal	distribution	of	Eq.	3a	(black	dots)	
and	 four	 adaptive	 quadrature	 points	 (red	 dots)	 having	 the	 same	 six	 lower-order	 moments	
{𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 〈𝑥〉, 〈𝑦〉, 〈𝑥𝑥〉, 〈𝑦𝑦〉, 〈𝑥𝑦〉}.	The	quadrature	points	have	equal	weights,	¼	each,	and	lie	
at	corners	of	a	rectangle,	distorted	here	by	the	different	x	-	and	y	-	axes	scales	used	in	the	figure.		
	

		The	1000-point	sample	from	the	binormal	distribution	of	Eq.	3a	has	slightly	different	400 

mean	 and	 covariance	 values	 due	 to	 the	 random	 nature	 of	 the	 sampling:	 oµ',µ(v =401 

{1.19263, 0.872259}	and	covariance	matrix:	402 

	403 

																																														�
s'( rs's(

rs's( s((
� = �0.0592442 0.0530498

0.0530498 0.0598873�																													(3b)	404 

		405 
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The	 1000	 particle	 sample	 (black	 points),	 and	 its	 4-point	 quadrature	 representation	 (red	406 

points),	 shown	 in	 Fig.	 6,	 have	 the	 same	 six	 lower-order	moments	 (normalization,	 mean	407 

values,	and	covariance	matrix	elements).	The	sparse	quadrature	representation	is	generated	408 

in	the	principal	frame	and	transformed	back	to	the	original	frame	of	the	sampled	distribution	409 

using	 sigma-point	 quadrature.	 Here	 the	 form	 of	 the	 distribution	 doesn’t	matter,	 only	 its	410 

moments	matter.	 As	 the	 1000	 particles	 evolve	 spatially	 over	 time,	 so	 do	 the	 quadrature	411 

points,	 which	 continue	 to	 follow	 the	 same	 lower-order	 moments,	 independent	 of	 how	412 

location	and	shape	of	the	distribution	change	over	time	[Yoon	and	McGraw,	2004a,	b].	Figure	413 

6	represents	a	snapshot	of	what	the	distribution	and	its	sparse	representation	might	look	414 

like	at	a	snapshot	in	time.	415 

	416 

																	For	a	single	point	the	difference	between	minVAR	values	calculated	directly	from	417 

𝑚𝑉(+(𝑥, 𝑦)	 and	 from	 the	 plaquette	 densities	 on	 the	 Eulerian	 grid	 vanishes.	 This	 can	 be	418 

checked	using	the	numbers	in	Eq.	2b,	which	apply	to	a	single	point.	Substitution	gives:	419 

																																		∑ (𝑥$()
$&' + 𝑦$()𝑝[𝑖] 	− 	(µ!

((𝑡) + µ#
((𝑡)) 	−		𝑚𝑉(+(𝑥, 𝑦)			=	0,																										(4)	420 

which	is	consistent	with	the	physical	variance	of	the	point	being	zero.	The	averaged	minVAR	421 

over	2	or	more	points	no	 longer	equates	to	 the	correspondingly	averaged	back	projected	422 

densities.	The	latter	is	always	larger.		423 

															To	 demonstrate,	 it	 is	 instructive	 to	 look	 at	 𝑓𝑚𝑉(+(𝑥, 𝑦) = {𝑚𝑉(+(𝑥, 𝑦)	, 𝑏𝑝(𝑥, 𝑦}	424 

averaged	over	the	thousand	point	sample	of	Fig.	6,	425 

																																																〈𝑓𝑚𝑉(+(𝑥, 𝑦)〉 = (∑ 𝑓𝑚𝑉(+(𝑥$ , 𝑦$)'///
$&' )/1000.																																									(5)	426 

The	centroid	of	 the	1000-particle	sample,	corresponding	to	the	black	points	of	Fig.	6,	has	427 

coordinates	oµ',µ(v = {1.19263, 0.872259}	and	a	physical		variance	(s'( + s(()	=	0.0119131	428 

given	by	the	sum	of	the	diagonal	elements	of	Eq.	3b.	The	aim	here	is	to	demonstrate	recovery	429 

of	this	physical	variance	using	minVAR.	The	1000-point	averaging	yields	averages	over	the	430 

point-by-point	 minVAR	 values,	 〈𝑚𝑉(+(𝑥, 𝑦)〉,	 and	 over	 the	 back	 projected	 densities	431 

〈𝑏𝑝(𝑥, 𝑦)〉.	For	the	former,	averaging	over	the	black	points	gives:	432 

																											〈𝑚𝑉(+(𝑥, 𝑦)〉 = (∑ 𝑚𝑉(+(𝑥$ , 𝑦$)'///
$&' )/1000 = 〈𝑚𝑖𝑛𝑉𝐴𝑅〉 	= 0.30007												(6a)	433 
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For	the	latter,	averaging	over	the	plaquette	densities	point-by-point	gives:	434 

																				〈𝑏𝑝(𝑥, 𝑦)〉 =	{0.016,	0.145,	0.0126,	0.0141,	0.581,	0.185,	0,	0.021,	0.025}								(6b)	435 

Using	these	averaged	p[i]	values	from	6b	and	subtracting	the	point-averaged	minVAR	from	436 

6a	gives:	437 

																					〈∑ (𝑥$()
$&' + 𝑦$()𝑝[𝑖] 	− 	(µ!

((𝑡) + µ#
((𝑡))〉 −	〈𝑚𝑉(+(𝑥, 𝑦)〉 =	0.0119131.											(6c)	438 

Unlike	with	the	single-point	case	of	Eq.	4,	this	difference	is	always	positive.	Here	it’s	values	439 

precisely	equal	 to	 the	physical	variance	associated	with	 the	spatial	distribution	of	points,	440 

which	was	 obtained	 previously	 from	 the	 sampled	 distribution	 by	 summing	 the	 diagonal	441 

elements	of	the	variance-covariance	matrix	of	Eq.	3b.	442 

Regarding	the	covariance,	note	that	taking	the	inner	product	of	the	9-element	array,	443 

{𝑥𝑦} = {0, 0, 0, 0, 1, 2, 0, 2, 4}	and	〈𝑏𝑝(𝑥, 𝑦)〉,	and	subtracting	from	this	the	product	of	the	x-	444 

and	 y-	 mean	 values	 of	 the	 1000-point	 distribution,	 gives	 exactly	 the	 covariance	 of	 the	445 

averaged	 plaquette	 densities,	 0.0530498	 as	 previously	 obtained	 from	 the	 sampled	446 

distribution	by	noting	its	equivalence	to	the	off-diagonal	elements	of	Eq.	3b.	In	this	case	no	447 

subtraction	of	the	averaged	minVAR	covariance,	which	vanishes	due	to	the	zero	covariance	448 

condition	invoked	in	Table	2,	is	required.	449 

	450 

Collectively,	 these	 features	 enable	 the	 separation	 and	 tracking	 of	 the	 physical	451 

variance	 and	 covariance	 arising	 from	 aerosol	 and	 cloud	 processes	 that	 may	 include	452 

dissipation	from	wind	shear	and/or	physical	diffusion	associated	with	turbulent	mixing	and	453 

entrainment,	independent	of	minVAR’s	innate	variance,	a	mathematical	quantity	essential	to	454 

development	of	the	new	advection	scheme	but	devoid	of	physical	content.	Additionally,	each	455 

point	from	the	distribution	maintains	its	individual	properties	recorded	in	and	recoverable	456 

from	the	coarse	grid.	Summing	these	together	they	represent	the	distribution	itself	–	a	nice	457 

illustration	of	the	superposition	principle	that	holds	for	non-dispersive	linear	models.	The	458 

4-point	quadrature	approximation	not	only	speeds	up	the	calculation,	by	an	additional	30x	459 

as	 compared	with	 the	 1000-point	 calculation,	 it	 produces	 the	 same	 numerical	 values	 as	460 
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averaging	over	the	1000-point	distribution	itself,	shown	in	Eqs.	6,		due	to	the	fact	that	the	461 

four	adaptive	quadrature	points	are	tracking	the	same	spatial	moments.	462 

	463 

4.2	Dual	LP	and	dual	minVAR:		Each	LP	comes	with	its	unique	dual	program,	constructed	from	464 

it	using	the	same	I/O,	see	for	example	[Bazaraa,	et.	al.,	2010]	for	rules	of	construction.	For	465 

present	purposes,	the	most	important	result	from	the	dual	LP	is	sensitivity	of	the	minVAR	466 

cost	 function	 to	 changes	 in	 location	as	 individual	point	particles	 follow	wind	 trajectories	467 

across	the	grid.	Figure	7	shows	the	minVAR	contours	from	Fig.	5	superposed	with	the	dual	468 

minVAR	solution	described	below.		469 

	

																							

	

	

	

	

	

	

	

	

	

	

	

Fig.	7.	Primal-dual	solutions	to	minVAR.	Comparing	the	primal	solution	for	minVAR	(black	contours	
as	 in	 Fig.	 5)	 with	 the	 dual	 solution	 for	 sensitivities	 (gradient	 vector	 field)	 superposed.	 Colors	
represent	the	vector	norm,	which	is	smallest,	equal	to	zero,	at	the	corners	(purple)	and	largest,	equal	
to	 √2	 at	 the	 center	 (yellow).	 Horizontal	 and	 vertical	 lines	 highlight	 the	 four	 quadrants	 and	
symmetries	of	the	minVAR	solutions.	

	

Analytic	 solution	 for	 the	dual:	The	simplicity	of	 the	analytic	 forms	 for	minVAR,	evident	 in	470 

Table	3,	make	it	unnecessary	to	go	through	the	dual	LP,	as	the	desired	sensitivities	are	easily	471 
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obtained	directly	from	the	analytic	result.	Denoting	these	sensitivities	as		𝑣! =
0	12#$(!,#)

0	!
	and	472 

𝑣# =
0	12#$(!,#)

0	#
	,	and	taking	derivatives	of	the	expressions	in	Table	3	gives:	473 

																																													𝑣! = 	2(1/2	 − 	𝑥 + 𝐹𝑙𝑜𝑜𝑟[𝑥]) = 2(𝑎! − 	𝑥)	474 

																																													𝑣# = 	2(1/2	 − 	𝑦 + 𝐹𝑙𝑜𝑜𝑟[𝑦]) = 2(𝑎# − 	𝑦)																																													(7)	475 

for	components	of	the	contour	gradient	vector	in	2D.	𝐹𝑙𝑜𝑜𝑟[𝑥]	changes	discontinuously	at	476 

integer	values	of	x,	a	feature	responsible	for	the	piecewise	parabolic	structure	of	minVAR,	477 

seen	in	the	red	dashed	curve	of	Fig.	3b,	and	discontinuous	changes	in	𝑣!	and	similarly,	in	2D,	478 

for	𝑣# .	The	minVAR	curves	are	in	fact	obtainable	by	integration	over	the	gradient	vector	field	479 

described	by	Eq.	7.	Sensitivity	vectors	having	components	given	by	Eq.	7	are	plotted	using	480 

the	StreamPlot	feature	of	Mathematica	 in	Fig.	7	and	superposed	on	the	minVAR	contours.	481 

One	sees	that	the	gradient	field	and	minVAR	circles	are	mutually	orthogonal	to	each	other.	482 

They	are	in	fact	each	other’s	dual,	reflective	of	the	textbook	property	that	the	dual	of	the	dual	483 

program	gives	the	“primal”	or	original	program	back	again	[Bazaraa,	et	al.,	2010].	From	Eq.	484 

7	and	definition	of	the	sensitivities	given	above:	485 

	486 

																																																											𝑑	𝑚𝑉(+(𝑥, 𝑦) = 𝑣!𝑑𝑥	 +	𝑣#𝑑𝑦	,																																																		(8)	487 

	488 

which	vanishes	along	the	circular	contours	of	constant	minVAR.	For	if	r	is	the	radial	distance	489 

from	the	nearest	corner	{	𝑎! , 𝑎#},	the	directional	derivative	along	line	r(q	)	has	the	form:	490 

	491 

																																																												6	12#$(!,#)
67

=	𝑣!		𝑠𝑖𝑛q	 + 	𝑣#		𝑐𝑜𝑠q																																																(9)	492 

	493 

where		q		is		the	angle	the	line	makes	with	the	vertical	axis.	Equations	8	and	9	are	equivalent	494 

to	the	result	that	𝑑	𝑚𝑉(+(𝑥, 𝑦)		vanishes	along	any	circular	contour,	dr	=	0.	This	demonstrates	495 

that	 properties	 of	 the	 primal	 (circular	 contours	 of	 constant	 minVAR	 centered	 on	 the	496 

staggered	network	of	cell	corners)	can	be	deduced	from	the	conjugate	properties	of	the	dual	497 

(sensitivities)	and	vice	versa.	498 

	499 
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																	Restoring	dimensionality	to	the	grid	coordinates,	x	and	y,	gives	the	true	distances	500 

(meters)	from	the	grid	origin	to	{𝑥D𝑋, 𝑦D𝑌}	where		D𝑋	and	D𝑌	are	the	actual	grid	spacings.	501 

The	time	derivative	of	minVAR	is	then:	502 

		503 

																																				𝑑	𝑚𝑉(+(𝑥, 𝑦) =
0	12#$(!,#)

0	!
	𝑢	𝑑𝑡	 +	0	12#$(!,#)

0	#
	𝑣	𝑑𝑡,																																			(10)	504 

	505 

where	𝑢 = D𝑋𝑑𝑥/𝑑𝑡	 	and	𝑣 = D𝑌𝑑𝑦/𝑑𝑡	 are	 the	 corresponding	wind	velocity	 components	506 

taken	at	each	sampled	point	along	a	wind	trajectory	and		inputted	to	the	advection	algorithm	507 

at	time	intervals	dt.			508 

	509 

																			Figure	7	shows	primal-dual	results	for	the	center	grid	cell.	The	gradient	vector	field	510 

for	neighboring	cells	follows	the	same	translational	symmetry	as	the	grid	itself.	The	gradient	511 

vectors	point	from	the	least	diffuse	state	at	cell	center	(minVAR	=	0)	to	the	most	diffused	512 

states	located	at	the	cell	corners	(minVAR	=	½	in	2D).	Though	of	purely	mathematical	origin,	513 

the	direction	these	vectors	take	is	the	same	as		would	any	physical	variance	increasing	with	514 

time	according	to	the	second	law	(increased	variance	corresponding	to	increased	entropy	in	515 

the	 physical	 case).	 Time-dependent	 increases	 in	 physical	 variance	 due	 to	 irreversible	516 

microphysical	and	fluid-dynamical	processes,	such	as	diffusive	mixing	from	entrainment	and	517 

energy	dissipation	from	shear,	are	separable	from	the	minVAR	gradients	shown	in	the	figure,	518 

in	much	the	same	way	that	mathematical	and	physical	contributions	to	the	variance	itself	519 

were	separated	in	Sec.	4.1.	Development	of	the	most	efficient	ways	to	represent	dissipative	520 

processes	in	sub-grid	models	based	on	this	separation	will	be	considered	in	future	studies.	521 

	522 

4.3	 Preserving	 moment	 sequence	 correlations	 during	 advection:	 The	 testing	 of	 tracer	523 

advection	 schemes	 typically	 involves	 the	 transport	 of	 individual	 tracers	 in	 one	 or	 two	524 

dimensions,	often	with	periodic	boundary	conditions	[Rood,	1987]	-	a	reasonable	approach	525 

given	 that	 the	 schemes	 undergoing	 such	 testing	 were	 never	 designed	 to	 preserve	526 

correlations	 between	 a	 sequence	 of	 tracers	 from	 an	 interrelated	 set.	 The	 QUS	 scheme,	527 

discussed	in	Sec.	2	has	been	subject	to	tests	of	this	type	including	simple	clock	rotation	and	528 

pure	advection	in	2D	[Shia	et	al.,	1990].	Testing	for	preservation	of	correlations	between	sets	529 



 22 

of	 interrelated	 tracers	 during	 advection,	 has	 been	 limited	 largely	 to	 those	 few	 papers	530 

mentioned	in	Sec.	1.	Here	we	apply	a	test	devised	by	Wright	(2007),	originally	to	assess	the	531 

integrity	of	correlated	moments	under	vector	transport	involving	one	or	two	lead	moments.	532 

McGraw	 (2007)	 used	 non-negative	 least	 squares	 (NNLS)	 [Lawson	 and	Hanson,	 1995]	 to	533 

assess	the	effect	of	transporting	four	moments	from	identifiable	sequences	associated	with	534 

each	of	three	distinct	aerosol	types	employed	in	the	test.	Not	surprisingly	NNLS	performed	535 

better	 than	 vector	 transport	 using	 just	 one	 or	 two	 lead	moments,	 but	 all	 of	 these	 tests	536 

showed	levels	of	moment	set	reconstruction	far	from	perfect	[Wright,	2007;	McGraw,	2007,	537 

2012].	The	goal	of	 the	Wright	and	McGraw	studies	was	 to	 identify	and	correct	corrupted	538 

moment	 sequences.	 The	 aim	 in	 this	 section	 is	 to	 showcase	 minVAR	 as	 an	 entirely	 new	539 

transport	algorithm,	designed	explicitly	to	preserve	tracer	correlation,	and	thereby	obviate	540 

any	need	for	moment	correction.		541 

	542 

													Wright’s	correlation	test	considered	an	external	mixture	of	three	aerosol	types	each	543 

characterized	by	a	unique	lognormal	distribution	and	corresponding	sequence	of	four	radial	544 

moments	oµ/,µ',µ(,µ%v	where	µ8 = ∫ 𝑟8𝑓(𝑟)𝑑𝑟9
/ .		In	vector	form	these	sequences	are:	545 

	546 
																												v1	(red)	=	{1.0x106,	30802.2,	9001.71,	24959.3}T				547 
																												v2	(green)	=	{1.0x104,	10106.2,	260788.0,	1.71832x108}T																																											(11)		548 
																												v3	(blue)	=	{1.0x103,	151.593,	586.774,	57993.2}T.	549 
	550 
where	the	superscript	T	stands	for	transpose.	Colors	refer	to	the	histogram	plots	of	Figs.	9	551 

and	10.	As	this	a	pure	advection	test	case	(without	microphysical	processes)	the	moments	552 

for	each	aerosol	type,	though	they	mix,	remain	proportional	throughout	the	simulation.	For	553 

the	initial	condition	(M0),	20	grid	cells	are	populated	with	just	one	aerosol	type	in	each	cell.	554 

The	types	are	distributed	according	to	the	following	4x20	matrix:	555 

	556 

																								M0	=	{	v3,	v3,	v1,	v2,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3,	v3}.													(12)	557 

	558 

	Advection	 is	 carried	 out	 using	 periodic	 boundary	 conditions	 and	 the	wind	 direction	 and	559 

Courant	number	are	as	in	Fig.	1.	Thus	with	each	advection	step	15%	of	the	tracers	of	cell	20	560 

get	transferred	to	cell	1	and	85%	stays	in	cell	20.		Throughout	the	calculation	each	moment	561 



 23 

is	transported	as	an	independent	tracer	before	going	on	to	the	next	moment	and	the	results	562 

are	combined	to	update	M	after	each	step.		563 

	564 

															Wright’s	 test	 is	now	employed	 to	 test	 advection	of	moments	both	as	 independent	565 

tracers	and	for	loss	of	correlation.		The	four	panels	of	Fig.	8	show	the	advection	test	applied	566 

to	 each	 of	 the	 four	 radial	 moments	 µ/,µ',µ(,µ%	 advected	 separately	 across	 the	 grid	 as	567 

independent	tracers.	The	two	histograms	in	each	panel	are	results	for	advection	using	QUS,	568 

solid	 black,	 and	minVAR,	 dashed	 red.	 As	with	 the	 pulse	 test	 comparison	 of	 Fig.	 3a,	 both	569 

models	show	numerical	diffusion	well	under	control.	The	absence	of	any	broadening	near	570 

baseline	reflects	the	complete	absence	of	numerical	diffusion	using	minVAR.	571 

	

	
Fig.	8.	Individual	transport	of	each	of	the	four	radial	moment	tracers	under	QUS	(solid	black)	and	
minVAR	 (dashed	 red)	histograms	each	 representing	 the	 full	 externally	mixed	aerosol	population.	
Results	are	shown	after	completion	of	70	advection	steps.	Upper	row:	particle	number,	µ0,	and	µ&,	
proportional	 to	particle	 volume.	 Lower	 row:	 	µ!,	 radial	moment,	 and	µ%,	 proportional	 to	particle	
surface	area.	
	

															The	quantification	of	dispersion	is	more	difficult	to	assess	for	the	tracer	mixture	than	572 

it	was	for	the	single-tracer	pulse	test	comparison	of	Fig.	3b.	The	histogram	shapes	in	Fig.	8	573 

tend	to	differ	 for	each	moment.	An	exception	 is	seen	 in	moments	µ/	and	µ%	 ,	which	have	574 

similar	 shapes	 irrespective	 of	 whether	 they	 were	 advected	 by	 QUS	 or	 minVAR.	 	 These	575 
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moments	turn	out	to	be	spatially	shifted	from	each	other	by	almost	exactly	one	grid	spacing	576 

—	equivalent	to	the	one	full	cycle	shift	in	phase	expected	from	Fig.	3b.	This	suggests	strong	577 

linkages	between	dispersion,	phase	shift,	and	distribution	shape.	Fig.	3b	also	shows	a	nearly	578 

constant	shift	in	phase	between	the	two	advection	schemes	that	could	well	be	responsible	579 

for	the	different	histogram	shapes	within	each	of	the	moment	panels	of	Fig.	8.		580 

	581 

															Correlation	 loss	 is	 examined	 next.	 This	 test	 requires	 projecting	 each	 of	 the	 three	582 

aerosol	types	from	the	advected	columns	of	M70,	the	updated	version	of	M0	after	70	advection	583 

steps.	Let	A	=	[v1,	v2,	v3]	be	the	4	by	3	matrix	consisting	of	the	length	4	moment	arrays	for	584 

each	of	the	3	pure	aerosol	type	as	columns,	and	b	j		the		jth	column	vector	of	the	moments	in	585 

cell	j	after	any	given	number	of	advection	steps	(here	70).	NNLS	can	be	used	to	do	a	forensic	586 

analysis	to	project	out	the	different	types	of	aerosol	present	in	each	of	the	columns	of	M70.	587 

Errors	due	to	loss	of	moment	correlation	will	also	be	uncovered	during	this	process	when	588 

higher-order	 advection	 schemes	 are	 employed.	 The	method,	 originally	 used	 as	 a	way	 to	589 

correct	 corrupted	 moment	 sequences,	 was	 applied	 to	 QUS	 previously	 [McGraw,	 2007].	590 

Figures	similar	to	those	shown	in	the	first	row	and	lower	left	quadrant	of	Fig.	9	were	also	591 

given	in	that	paper.	NNLS	solves	the	following	linear	system:	592 

	593 

																																																																						A	c	=	b	j		+	e,																																																																															(13)	594 

	595 

obtaining	the	coefficient	vector	c	=	(c1,	c2,	c3)T	 	 that	minimizes	the	Euclidean	norm	of	the	596 

error	residual,	e.	Use	of	NNLS	insures	non-negative	coefficients	ci	.		597 

	598 

																Ideally,	as	the	aerosols	and	their	moment	sequences	mix	but	are	not	changed	in	the	599 

test,	error	residuals	should	vanish	to	give	the	fraction	of	each	aerosol	type	present	in	each	600 

cell.	 This	 is	 the	 case	 for	 the	 two	 linear	 models,	 basic	 and	 minVAR,	 and	 the	 aerosol	601 

composition	in	each	cell	is	completely	resolved	into	the	original	aerosol	types	(e	=0):	602 

																																																												bj	=	A	c	=	c1	v1	+	c2	v2	+	c3	v3.																																																							(14)		603 

In	 this	 case	 a	 simpler	 least-squares	 error	 procedure,	 based	 on	 the	 pseudoinverse	 of	 A,	604 

suffices	to	do	the	decomposition	[Strang,	1988].	With	the	higher-order	advection	schemes,	605 
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including	 QUS,	 negative	 coefficients	 occur	 often	 and	 NNLS	must	 be	 used	 to	 insure	 non-606 

negative	coefficients.		607 

															For	 the	 present	 analysis	 NNLS	 and	 pseudoinverse	 gave	 identical	 results	 for	 the	608 

minVAR	scheme.	For	QUS	the	pseudoinverse	was	inapplicable	and	NNLS	was	required.	The	609 

R,	G,	 and	B	histograms	of	Fig.	9	plot	 the	 coefficients,	 c1,	 c2,,	and	c3	 ,	 respectively,	 for	each	610 

column	of	M70,	as	obtained	from	advection	using	QUS.	611 

	

Fig.	9.	Results	from	QUS	after	70	advection	steps.	The	coefficient	distributions,	c1	–	c3		refer	to	use	of	
normalized	 moments.	 These	 were	 projected	 from	 the	 mixture	 in	 each	 grid	 cell	 using	 NNLS	
decomposition	 following	McGraw	 (2007).	 The	 lower	 right	 quadrant	 shows	 distribution	 of	 mean	
squared	error,	divided	by	4	to	average	over	the	4	moments	per	column,	following	advection	of	the	
original	(unnormalized)	distributions.	The	wrap-around	effect	from	the	period	boundary	conditions	
is	evident	in	the	panels.	
	612 

The	lower	right	quadrant	of	the	figure	shows	the	mean	squared	error	residuals	from	Eq.	13	613 

plotted	 on	 a	 logarithmic	 scale.	 These	 coefficients	 are	 seen	 to	 be	 dispersed	 over	 an	614 

unphysically	wide	swath	of	the	grid.	This	and	the	significant	level	of	mean-squared	error	are	615 

indicative	of	significant	loss	of	moment	sequence	preservation.			616 
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															A	 test	 for	 unphysical	moment	 sequences	was	 also	 carried	 out	 for	 each	 of	 the	 20	617 

columns	of	M70	and	none	were	 found.	 It	should	be	noted,	 though,	 that	 finding	unphysical	618 

moments	 in	 even	 a	 single	 column	of	 the	20	would	be	 a	5%	 failure	 rate,	whereas	Wright	619 

reported	failure	rates	closer	to	1%	for	QUS,	based	on	his	analysis	of	an	ensemble	of	104	test	620 

cases	 [Wright,	 2007].	 The	moment	 sequence	 viability	 test	 is	 as	 follows:	A	 necessary	 and	621 

sufficient	condition	for	physicality	of	a	moment	sequence	is	that	certain	Hankel-Hadamard	622 

determinants	 constructed	 from	 the	 moments	 be	 positive	 [Shohat	 and	 Tamarkin,	 1943;	623 

McGraw,	2012].	For	physicality	of	the	sequence	{µ/,µ',µ(,µ%},	the	requirement	is	that	each	624 

of	the	four	elements	of	the	following	determinant	sequence	be	positive:	625 

	626 

																																																											£µ/, ¤
µ/ µ'
µ' µ(

¤ ,µ', ¤
µ' µ(
µ( µ%

¤¥ ≥ 0					.																																														(15)	627 

		

	
	
Fig.	10.	Results	from	minVAR	after	70	advection	steps.	The	coefficient	distributions,	c1	–	c3		refer	to	
use	of	normalized	moments	as	in	Fig.	9.	These	were	projected	from	the	mixture	in	each	grid	cell	using	
NNLS	decomposition	following	McGraw	(2007),	but	in	this	case	the	pseudoinverse	is	simpler	to	use	
and	gave	equivalent	results.	The	lower	right	panel	shows	the	unnormalized	distributions.	
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																Figure	10	shows	results	from	a	similar	calculation,	with	M70	computed	from	the	same	628 

initial	condition,	M0,	but	updated	at	each	time	step	according	to	the	new	minVAR	scheme.	629 

The	R,	G,	and	B	histograms	of	Fig.	10	again	show	the	coefficients,	c1,	c2,,	and	c3	plotted	for	630 

each	grid	cell.	In	this	case	there	is	minimal	coefficient	dispersal	over	the	grid	and	zero	mean	631 

square	error	(e	=0)	indicative	of	full	moment	sequence	preservation.		Consistent	with	linear	632 

superposition,	the	red	and	green	fractions	each	sum	to	unity	as	each	occupied	single	grid	633 

cells	 (3	and	4	 respectively)	at	 t=0.	The	blue	 fractions	 sum	 to	18	as	blue	occupied	 the	18	634 

remaining	 cells	 initially.	 The	 lower	 right	 quadrant	 shows	 results	 for	 the	 original	635 

(unnormalized)	distributions.	Red	is	off	scale	at	5.0	x	105.	Extension	to	80	or	any	multiple	of	636 

20	advection	steps	would	show	a	shifted	but	perfectly	reconstructed	version	of	the	initial	637 

condition.	Advection	was	carried	out	using	the	same	periodic	boundary	conditions	as	in	Figs.	638 

8	and	9	and	under	the	same	wind	direction	and	Courant	condition	as	in	Figs.	1-3.	639 

	640 

5.	Summary	and	discussion	641 

Key	features	of	the	minVAR	limiter	discussed	in	this	paper	may	be	summarized	as	642 

follows:	(1)	As	applied	to	the	linear	basic	advection	scheme,	minVAR	was	found	to	eliminate	643 

numerical	diffusion	completely	while	preserving	the	best	features	of	that	scheme	including	644 

linearity	 and	 lack	 of	 dispersion	 (Sec.	 2).	 The	 latter	 feature,	 achieved	 by	 not	 having	 to	645 

reference	 higher-order	 gradients,	 which	 will	 typically	 differ	 for	 different	 tracers	 of	 an	646 

interrelated	set,	is	key	to	the	preservation	of	tracer	correlation	(Sec.	4).	(2)	The	minimum	647 

variance	property	of	minVAR	makes	the	new	method	optimal	for	advection	of	independent	648 

tracers	as	well	as	correlated	ones	(cf.	Figs.	3	and	8	for	a	comparison	with	QUS	in	this	regard).	649 

As	 minimal	 spatial	 variance	 implies	 maximal	 spatial	 resolution,	 this	 feature	 suggests	650 

minVAR,	 which	 preserves	 resolution	 at	 just	 1-2	 grid	 spacings	 throughout	 the	 coarse	 a	651 

simulation,	could	well	replace	the	more	slowly	convergent	basic	scheme	for	modeling	at	the	652 

fine	 scales	 of	 laboratory	 and	 engineering	 simulation.	 (3)	 As	 a	 point-by-point	 method,	653 

minVAR	establishes	a	unique	one-to-one	correspondence	between	points	along	a	Lagrangian	654 

trajectory	and	their	representation	on	an	Eulerian	grid.	This	direct	correspondence	allows	655 

the	best	features	of	Lagrangian	and	Eulerian	methods	to	reinforce	each	other	in	simulations.	656 

(4)	The	extension	from	single	points	to	multi-point	representations	of	aerosol	and	clouds	657 
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enables	 a	 rigorous	 and	 complete	 separation	 of	 physical	 variance	 from	 the	 innate	658 

mathematical	variance	associated	with	minVAR’s	representation	of	points	on	the	Eulerian	659 

grid.	 (5)	 minVAR’s	 maximum	 of	 two	 adjacent	 occupied	 cells	 per	 dimension	 were	 found	660 

sufficient	 to	pinpoint	 the	coordinates	of	 the	point	being	represented	(Sec.	3)	at	a	 level	of	661 

resolution	limited	only	by	numerical	precision.	662 

	663 

The	 last	 property	 is	 reminiscent	 of	 an	 early	 method	 developed	 for	 analyzing	 the	664 

numerical	 calculation	 of	 hydrodynamic	 shocks	 in	 one	 dimension	 [von	 Neumann	 and	665 

Richtmyer,	1950].	Their	idea	was	to	add	artificial	(and	nonlinear)	dissipative	terms	to	the	666 

hydrodynamic	equations	so	as	to	broaden	the	shock	front	discontinuity,	a	point	singularity	667 

in	1D,	to	“a	thickness	comparable	to,	but	preferably	somewhat	larger	than	the	spacing	of	the	668 

points	 of	 the	 network”	 used	 in	 their	 model.	 The	 effect	 was	 to	 made	 locating	 the	 shock	669 

singularity	immediately	evident	as	it	moved	through	the	fluid.			670 

	671 

Most	advection	schemes	in	common	use	introduce	nonlinearity	at	some	stage	of	the	672 

process	(Sec.	1).	Errors	during	advection	of	independent	tracers	for	which	these	schemes	673 

were	designed	are	usually	tolerable,	but	once	even	a	small	error	enters	into	an	interrelated	674 

tracer	set	it	grows	exponentially	to	infect	other	members	of	the	set	and	information	available	675 

at	the	start	of	 the	simulation	is	destroyed.	The	problem	is	discussed	in	Lanczos	[Lanczos,	676 

1988]	and	gets	worse	the	higher	the	order	of	the	scheme	[Wright,	2004].	Exponential	error	677 

amplification	during	finite	differencing	is	illustrated	for	a	sequence	of	six	moments	from	a	678 

lognormal	 distribution	 in	 [McGraw,	 2012].	 Similar	 considerations	 are	 important	 when	679 

selecting	a	microphysical	module	to	update	aerosol	and	cloud	particle	properties	between	680 

advection	 steps.	Modal,	moment,	 particle-resolved,	 and	quadrature-based	methods,	 all	 of	681 

which	perform	well	as	box	models	for	updating	the	contents	of	a	grid	cell	between	steps,	682 

should	 be	 fully	 compatible	 with	 minVAR.	 An	 interesting	 question	 for	 future	 research	683 

concerns	the	extent	to	which	minVAR	can	be	used	to	eliminate	numerical	diffusion	in	bin-684 

sectional	 models	 of	 aerosol	 and	 cloud	 microphysical	 processes,	 a	 well-known	 problem	685 

especially	for	particles	undergoing	condensational	growth.		686 
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																In	summary,	a	linear	diffusion	limiter	has	been	developed	and	applied	to	the	basic	687 

advection	scheme.	The	new	result	(minVAR)	has	been	shown	here	to	be	non-diffusive,	non-688 

dispersive,	 preserving	 of	 tracer	 set	 correlations,	 and	 capable	 of	 tracking	 sub-grid	689 

information	at	arbitrarily	 fine	scales	with	high	computational	efficiency.	We	expect	 these	690 

new	capabilities,	 fully	 implemented,	 to	 considerably	advance	progress	 towards	achieving	691 

high-fidelity	representations	of	aerosols	and	clouds	in	atmospheric		transport	models.		692 
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