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Abstract

Quantifying floodplain flows is critical to multiple river management objectives, yet how vegetation within floodplains dissipates

flow energy lacks comprehensive characterization. Utilizing over 3.4 million discharge measurements, in conjunction with

aboveground biomass and canopy height measurements from NASA’s Global Ecosystem Dynamics Investigation (GEDI), this

study characterizes the floodplain roughness coefficient Manning’s n and its determinates across the continental United States.

Estimated values of n show that flow resistance in floodplains decreases as flow velocity increases but increases with the fraction

of vegetation inundated. A new function (RMSE = 0.024, r2 = 0.74) is proposed for predicting n based on GEDI vegetation

characteristics and flow velocity, with GEDI derived n values improving predictions of discharge relative to those based only

on land cover. This analysis provides evidence of key hydraulic patterns of energy dissipation in floodplains, and integration of

the proposed function into flood and habitat models may reduce uncertainty.
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Key Points: 9 

• 4,927 estimates of floodplain roughness were calculated using flow observations and 10 

compared to LiDAR vegetation data. 11 

• Floodplain roughness increases with increasing biomass and inundation depths and 12 

decreases with increasing flow velocity. 13 

• Our model's Manning's n estimates yield lower errors in reach-scale floodplain flow 14 

predictions than n based solely on land cover. 15 
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Abstract 17 

Quantifying floodplain flows is critical to multiple river management objectives, yet how 18 

vegetation within floodplains dissipates flow energy lacks comprehensive characterization. 19 

Utilizing over 3.4 million discharge measurements, in conjunction with aboveground biomass 20 

and canopy height measurements from NASA’s Global Ecosystem Dynamics Investigation 21 

(GEDI), this study characterizes the floodplain roughness coefficient Manning’s n and its 22 

determinates across the continental United States. Estimated values of n show that flow 23 

resistance in floodplains decreases as flow velocity increases but increases with the fraction of 24 

vegetation inundated. A new function (RMSE = 0.024, r2 = 0.74) is proposed for predicting n 25 

based on GEDI vegetation characteristics and flow velocity, with GEDI derived n values 26 

improving predictions of discharge relative to those based only on land cover. This analysis 27 

provides evidence of key hydraulic patterns of energy dissipation in floodplains, and integration 28 

of the proposed function into flood and habitat models may reduce uncertainty.  29 

 30 

Plain Language Summary 31 

Quantifying the capacity of floodplains to dissipate energy from flowing water is important in 32 

managing rivers, restoring habitats, and reducing flood risks. By integrating overbank flood 33 

characteristics measured at USGS gauging stations with vegetation properties of floodplains 34 

measured by NASA, this study analyzed how energy dissipation in the floodplain, via a 35 

hydraulic roughness coefficient, varies with vegetation biomass and flood depths. Results 36 

indicate that floodplain roughness increases with the density of vegetation and decreases with 37 

flow velocity. A new mathematical function is presented to estimate floodplain roughness based 38 

on remotely sensed vegetation properties for various velocities.  39 
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1 Introduction 40 

Floods are one of the most damaging natural disasters affecting society, costing billions 41 

of dollars in damages every year (Smith, 2020). Understanding these events is important for the 42 

protection of urban and agricultural development, risk management, and ecosystem restoration 43 

actions (Bulti & Abebe, 2020). Accordingly, a wide variety of hydraulic models have been 44 

developed for prediction and forecasting of river response to flood events and restoration actions, 45 

with the vast majority of these model predictions dependent on how a floodplain roughness 46 

attenuates flow (Hunter et al., 2007). Manning’s equation (Manning, 1891) is the most widely 47 

used hydraulic formula relating roughness to discharge and velocities in river channels and 48 

floodplains (Yen, 1992). Its application requires knowledge of the geometric characteristics of 49 

the channel (area, hydraulic radius, and slope) as well as a key roughness coefficient, n. This 50 

empirical coefficient is used to account for energy dissipated due to friction losses, but it is rarely 51 

measured directly in the field (R. Ferguson, 2013) due to logistics and safety concerns, and it is 52 

difficult to predict for a future land use policy or engineering design. As a result, Manning’s n is 53 

typically specified from simplified lookup tables (Chow, 1959; Cowan, 1956), and studies have 54 

demonstrated that uncertainties in n can lead to large errors in depth and discharge estimates 55 

(Durand et al., 2016; Lee & Mays, 1986).  56 

Manning's equation in irrigation canals (Manning, 1891) has traditionally attributed 57 

energy losses in open channels primarily to vegetation. Lookup tables, such as those by (Chow, 58 

1959), include specific n values for different land cover types, indicating the influence of 59 

vegetation on Manning's n. While most studies focus on flow resistance of vegetation in the main 60 

channel, limited attention has been given to variations in floodplain vegetation resistance during 61 

inundation events (R. Ferguson, 2013; Yen, 2002). Prior models (Fathi-Maghadam & Kouwen, 62 
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1997; Kouwen & Fathi-Moghadam, 2000; Petryk, 1975) of flow resistance for emergent 63 

vegetation, highlighted vegetation density as the most important factor contributing to Manning's 64 

n, and suggest n varies with the square root of the vegetation inundation fraction and inversely 65 

with flow velocity. However, these models were developed spanning limited conditions, e.g. 66 

only four individual trees of different types tested in (Kouwen & Fathi-Moghadam, 2000), and 67 

remain difficult to parametrize in practice. Furthermore, human modifications to floodplains, 68 

including the replacement of vegetation with agricultural fields, roads, and urban development, 69 

have altered floodplain roughness. Artificial structures like levees further decrease floodplain 70 

extent and disrupt land cover, reducing energy dissipation in the remaining floodplain (Knox et 71 

al., 2022). Consequently, the original vegetation classes developed for canals may no longer 72 

adequately explain floodplain roughness in overbank areas. 73 

The main goal of this study was to characterize roughness in floodplains across the 74 

continental US and its relationship with flow and vegetation characteristics. Specially, we 75 

examined how floodplain roughness varied with flow velocity, vegetation inundation fraction, 76 

and floodplain biomass. Direct estimates of floodplain Manning’s n were produced using field 77 

measurements collected by the United States Geological Survey (USGS) during overbank flows. 78 

Estimated n values were then related to remotely sensed vegetation height and biomass data to 79 

quantify their influence on energy dissipation in floodplains. Finally, an empirical function was 80 

developed to characterize interactions between floodplain roughness, velocity, and vegetation 81 

properties. Additionally, we conducted cross-validation analyses to validate our methodology 82 

and compared our results with existing approaches for estimating floodplain roughness. 83 

 84 
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2 Materials and Methods 85 

In this study, Manning's equation is applied specifically to the floodplain, separate from 86 

the main river channel. The floodplain discharge is isolated by subtracting the discharge within 87 

the main channel from the total measured discharge (see Supporting Information Figure S1 for a 88 

schematic of the floodplain as defined in this study). Values of Manning’s n are then derived by 89 

inverting Manning's equation and solving for the floodplain roughness (see Supporting 90 

Information) during periods of overbank flow (Reclamation, 2001). The necessary parameters 91 

for calculation of n are obtained from field measurements datasets provided by the USGS 92 

(USGS, 2021a). The flood stage height is determined by the National Weather Service (NWS, 93 

2021; Slater et al., 2015), and friction slope estimates are obtained from the National 94 

Hydrography Dataset (NHD) (USGS, 2021b). Estimates of n were constrained to those sites 95 

meeting strict quality control metrics including consistency with current USGS rating curves and 96 

observed channel geometries (Liu, 2011; Vinutha et al., 2018). 97 

𝑄 =
𝑘

𝑛
 𝑆1/2𝑅2/3 𝐴      (eq. 1) 98 

where 𝑄 is discharge [L3 t-1], 𝑆 is the friction slope, defining the energy loss along a reach [L L-
99 

1], 𝑅 the hydraulic radius [L], 𝐴 is cross-sectional area [L2], 𝑘 is a unit conversion factor, and 𝑛 is 100 

Manning’s roughness coefficient. 101 

At USGS gauging stations where n values are estimated, vegetation characteristics, such 102 

as aboveground biomass density and vegetation canopy height, are obtained from NASA's 103 

Global Ecosystem Dynamics Investigation (GEDI) (Potapov et al., 2021). GEDI is a LiDAR 104 

system mounted on the International Space Station that provides calibrated values of vegetation 105 

height and biomass globally at a 25m base resolution and gridded final products at 1km 106 
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resolution (Dubayah et al., 2021, 2022; Milenković et al., 2022) . Previous research suggests that 107 

Manning's roughness coefficient is related to vegetation inundation fraction, flow velocity, and 108 

vegetation properties (Chow, 1959; Yen, 1992; Rob Ferguson, 2013). A semi-empirical function 109 

of n is formulated, based on prior models, that incorporates GEDI-derived vegetation properties. 110 

The function parameters are determined by fitting a linearized equation to values of Manning's 111 

roughness coefficient, flow velocity, and aboveground biomass at USGS sites. For a detailed 112 

explanation of the methodology please refer to the Extended Methodology section S1 in the 113 

supplementary information document. 114 

To assess the performance of our newly developed function, we conducted a cross-115 

validation analysis, which involved the application of Manning's equation to compute floodplain 116 

flow during observed overbank events. This process utilized the same measurements acquired by 117 

the USGS, along with Manning's n values estimated through a five-fold cross-validation 118 

approach (detailed in the Supplementary Information). Importantly, the Manning's n values used 119 

for fitting our function were distinct from those employed to validate discharge calculations at 120 

these sites. 121 

To comprehensively evaluate our method, we compared the results not only against the 122 

directly measured discharge but also against discharges calculated using estimated roughness 123 

coefficients from other studies. These alternative approaches include the Geospatial Stream Flow 124 

Model (GeoSFM) proposed by (Asante et al., 2008), which parameterizes Manning's n values for 125 

different land cover classes for use in a distributed hydrologic model. This model integrates 126 

geospatial and time-series data in near-real time, generating daily forcing evapotranspiration and 127 

precipitation data from various remote sensing and ground-based sources. GeoSFM employs 128 

widely available terrain, soil, and land cover datasets for initial model setup and parameter 129 
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estimation, making it adaptable for data-scarce environments. The model performs geospatial 130 

preprocessing and postprocessing tasks and hydrologic modeling within an ArcView GIS 131 

environment, offering seamless integration of GIS routines and time series processing. It 132 

identifies and maps wide-area streamflow anomalies, disseminating daily results, including 133 

streamflow and soil water maps, through various channels (Internet map servers, flood hazard 134 

bulletins, and more). 135 

Additionally, Kalyanapu et al., (2009) determined Manning's n values by land cover class 136 

in a hydrologic modeling study focused on understanding the effects of land cover use on runoff 137 

and peak discharge. This research assesses the sensitivity of hydrologic models to Manning's n 138 

changes, a parameter crucial for representing surface roughness. Large watershed models often 139 

rely on land use/land cover datasets to assign Manning's n values based on land use or cover 140 

classes. While this approach is convenient, it introduces potential errors. Kalyanapu's study 141 

compared Manning's n values derived from manual inspection of aerial photos to those estimated 142 

using the National Land Cover Dataset (Homer et al., 2012). The results revealed significant 143 

differences in the magnitude and spatial distribution of Manning's n values, particularly at 144 

subcatchment levels. These differences, while not significantly altering runoff responses at the 145 

watershed outlet for large-scale models, became pronounced with increasing Manning's n 146 

deviation. 147 

To ensure a fair and consistent comparison, we standardized our analysis using the 148 

International Geosphere-Biosphere Programme (IGBP) land cover classification (Loveland et al., 149 

1999). Within this framework, we calculated the median velocity and median flow depth for each 150 

land cover class and subsequently derived the Manning's n value using our model. This approach 151 

allowed us to assess the performance of our function in relation to established methodologies and 152 
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gain valuable insights into its efficacy in estimating floodplain roughness. We use medians 153 

instead of raw values to address the potential bias introduced by the inherent relationship 154 

between velocity and roughness, allowing for a fairer comparison against methodologies that do 155 

not consider velocity during the selection process. 156 

 157 

3 Results 158 

After data processing and quality control, a total of 4,927 estimates of floodplain 159 

Manning’s n were calculated successfully at 804 sites, based on the analysis of 3,379,166 total 160 

measurements obtained from 31,142 unique gauge sites (Barinas et al., 2023). Included with this 161 

dataset of generated n values (see dataset in Supporting Information) are all the necessary 162 

variables measured by the USGS that were used when inverting Manning’s equation to solve for 163 

n: measured discharge (Q), width (w), depth (z) obtained from USGS field measurements, and 164 

friction slope (S) from the NHD datasets. Intermediate variables are also included in this dataset: 165 

discharge, velocity, width, and depth, for both the main channel (𝑄𝑚𝑐, Vmc, 𝑤𝑚𝑐, 𝑧𝑚𝑐) and the 166 

floodplain (𝑄𝑓𝑝, Vfp,  𝑤𝑓𝑝, 𝑧𝑓𝑝). Complementary information included in the dataset are the USGS 167 

site ID, date of measurement, coordinates, and number of values of n calculated at that site. 168 

Examining all floodplain roughness estimates over the continental United States, the 169 

national median of the estimated floodplain Manning’s n values was 0.021, with a 5th and 95th 170 

percentile of 0.001 and 0.326, respectively. On average, a mean of 18 values of n were obtained 171 

per site, with an average of 155 values per state. Site-averaged n values revealed consistent 172 

spatial patterns across the continental United States (see Supporting Information Figure S2). 173 

These patterns are influenced by factors like vegetation biomass and velocities (Figure 1). 174 
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Vegetation biomass was shown to drive variability in floodplain roughness, with values 175 

of n for different vegetation classes and heights complied in Table S1 in the Supplementary 176 

Information). Areas dominated by Grasses, Shrubs, and Woodland, the most common vegetation 177 

classification in the GEDI dataset, tended to have a median Manning's n value of 0.017 for a 178 

median biomass on the analyzed sites of 18 Mg/Ha. Deciduous Broadleaf Trees, the second most 179 

common class, exhibited slightly higher roughness with a median Manning's n value of 0.025, 180 

having a median biomass of 77 Mg/Ha. Evergreen Broadleaf and Evergreen Needleleaf, despite 181 

having similar biomass densities (95 Mg/Ha and 106 Mg/Ha, respectively) contributed to 182 

different roughness values, with median Manning's n values of 0.030 and 0.010, respectively. 183 

Due to a limited number of samples, there were not enough observations to draw conclusions 184 

about the impact of Deciduous Needleleaf Trees on floodplain roughness (see Supplementary 185 

Information Table 1). 186 

Even at a broad scale with the relatively low-resolution, remotely-sensed vegetation 187 

(GEDI) datasets used in this project, clear patterns were found between the floodplain Manning’s 188 

n values and features (i.e. biomass, submergence) expected to predict n values at various velocity 189 

ranges (Figure 1). The values of n were inversely related to flow velocity and positively related 190 

to vegetation inundation fraction. Velocities were lowest at locations where Manning’s n was 191 

highest. Within three velocity ranges, Manning’s n varied with inundation fraction and 192 

vegetation biomass. Median Manning’s n values ranged from 0.001-0.009 for the highest 193 

velocities (V > 3 m/s), whereas median n values ranged between 0.008 and 0.053 for mid-range 194 

velocity flows (1-3m/s). Under these mid to high velocities (V > 1m), Manning’s n increased 195 

consistently with the inundation fraction and inconsistently with vegetative biomass. For low 196 
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velocity flows (<1m/s), n ranged from 0.030 up to 0.388 and increases in roughness were 197 

associated inconsistently with both inundation fraction and vegetative biomass. 198 

 199 
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Figure 1. Median floodplain Manning's n values for different levels of floodplain aboveground 200 

biomass and vegetation inundation fraction. Numerical values within each box represent the 201 

median n value for the corresponding range of vegetation inundation fraction and aboveground 202 

biomass and results shown only when at least five values are available. 203 

Based on calculated n values, observed flow velocities (𝑉) and depths within the 204 

floodplain (𝑧𝑓𝑝), as well as GEDI estimated vegetation height (ℎ𝑣𝑒𝑔) and biomass (𝐵), an 205 

empirical function relating Manning’s 𝑛 (See Extended Methodology S1) provided a reasonable 206 

fit to observed data (r2 = 0.74):  207 

𝑛 =  0.0321 
𝐵0.20

𝑉0.99  (
𝑧𝑓𝑝

ℎ𝑣𝑒𝑔
)

0.5

      (eq. 2) 208 

This function, visualized across observed conditions in Figure 2, predicted n with a root 209 

mean squared error (RMSE) of 0.024 (see scripts in Supporting Information). It further 210 

illustrated how Manning’s n varies with flow and vegetation properties, with an inverse 211 

proportionality between Manning’s n and flow velocity. A difference in roughness of nearly one 212 

order of magnitude was found between low velocities (<1m/s) and very high velocities (up to 213 

5m/s) (Figure 2). Within specific velocity ranges, the values of n are notably influenced by 214 

vegetation inundation fraction, with greater roughness associated with higher levels of inundated 215 

vegetation. Furthermore, the data and function demonstrated that biomass tended to increase 216 

roughness more at low biomass levels (visually inspecting tangent lines revealed the inflection 217 

point to be approximately 30 Mg/Ha), whereas its influence decreased at higher biomass levels. 218 

This could explain why the function had less predictive power with biomass at higher levels of 219 

vegetation inundation fractions; High inundation fractions were not frequently observed at high 220 

biomass levels. 221 
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 222 

Figure 2 – Manning’s n modelled as a function of aboveground biomass, B, and flow velocity, 223 

V, modeled for different levels of vegetation inundation fraction (zfp/hveg). Lines extend up to 224 

biomass levels of 50, 80 and 150 Mg/ha for fractions of inundation of 1.0, 0.5 and 0.1, 225 

respectively based on the total number of values within each range as depicted in Figure 1. 226 

The cross-validation analysis conducted in this study reveals the performance of the 227 

proposed function in estimating USGS measured flows (Figure 3). Our findings indicate that this 228 

function offers higher accuracy and less dispersion, as evidenced by a Kling-Gupta efficiency 229 

(KGE) of 0.38 and a percent bias (PBIAS) of -16%. In comparison, alternative methods for 230 

determining roughness coefficients yielded less accurate results, with KGE values of 0.33 and 231 

0.10, and PBIAS values of -43% and -85% for GeoSFM and Kalyanapu et al. (2009), 232 

respectively. 233 
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 234 

235 

Figure 3 - Measured vs. estimated discharge based on three approaches to estimating floodplain 236 

roughness: (a) the Geospatial Stream Flow Model (GeoSFM), (b) Kalyanapu et al’s study (2009) 237 

on land-use effects on model outputs, and (c) from the function developed in this study (eq. 2). 238 

These were calculated with median velocities and median flow depths per land cover class. 239 

Kling-Gupta efficiency (KGE) and percent bias (PBIAS) are reported across all vegetation 240 

classes. 241 

 242 

4 Discussion 243 

Floodplains serve critical functions for society through dissipation of flood energy, 244 

among other functions, but understanding of floodplain hydraulics contains large uncertainties 245 

due in part to limited field observations of floodplain roughness. This study produced new 246 
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estimates of floodplain roughness coefficients that span the range of the continental United 247 

States. The average estimates of floodplain Manning’s n calculated in this study were similar to n 248 

values modeled from field measurements of vegetation features (Kouwen & Fathi-Moghadam, 249 

2000) and the values in Chow’s look-up table (Chow, 1959). Chow identified the range of 250 

average n values for floodplains as being from 0.040 (in cleared land with stumps) up to 0.150 251 

(for dense willows). In comparison, the average n estimates in this dataset were 0.060 for low 252 

canopy height and low levels of biomass, and 0.090 for high canopy height and biomass. 253 

Kouwen and Fathi-Moghadam’s (2000) study also presented mean values of n for four tree types 254 

that range between 0.100 for high velocity flows (2 m/s) and 0.200 for very low velocity flows 255 

(0.1 m/s) for submerged conditions (zpf/hveg=1), dropping down to a range of 0.030 to 0.070 for 256 

low inundation (zpf/hveg=0.1). A similar pattern was observed in mean values of floodplain n in 257 

this study (Figure 2), ranging from 0.030 for low inundation and comparable velocity (V = 1-3 258 

m/s), up to an average of 0.250 for low velocity (V < 1 m/s) and high inundation fraction. The 259 

approach presented here has the advantage of applying global, remotely sensed biomass datasets, 260 

compared with Kouwen and Fathi-Moghadam’s vegetation index, which requires local 261 

measurements of frequency, mass, and height of the trees. 262 

Field observations revealed that Manning’s n in floodplains was generally lower at higher 263 

velocities than at lower velocities. Even though in practice Manning’s n is often assumed to be a 264 

constant value solely determined based on the characteristics of the surface, in reality it has been 265 

demonstrated that n varies with discharge (Box et al., 2021; Chow, 1959; R. Ferguson, 2013). In 266 

most river channels, Manning’s n decreases as discharge and stage increase due to lower 267 

roughness along the banks and the submergence of bed forms with increasing flow depths 268 

(USGS, 2012). This phenomenon is also consistent with the long history of roughness in pipe 269 
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flow studies (Rouse, 1943). Like river channels, where previous research has shown that flow 270 

and velocity tend to have an inverse relationship with flow resistance, our calculations 271 

demonstrate a similar pattern in floodplains. This alignment with existing research suggests that 272 

flow and velocity in both river channels and floodplains exhibit an inverse relationship with flow 273 

resistance (Chow, 1959; R. Ferguson, 2013). Mechanistically, the inverse relationship could be a 274 

result of higher roughness reducing velocities, or the bending of flexible vegetation that reduces 275 

roughness at higher velocities. Datasets presented herein are inadequate for determining the 276 

source of the relationship.   277 

This work demonstrated that GEDI’s vegetation characteristics can be used to estimate 278 

floodplain roughness. Vegetation inundation fraction was an important predictor of Manning’s n, 279 

as demonstrated in other settings (Nepf, 2012). In addition, this national Manning’s n database 280 

reflects how floodplain roughness increases with aboveground biomass, though relative 281 

inundation demonstrated a stronger influence on roughness than biomass. This makes sense 282 

given that a key factor influencing Manning’s n is the total vegetation cross section obstructing 283 

flow, not just the height of the canopy (Chow, 1959). Furthermore, previous studies have found 284 

that the density of vegetation in channels was a dominant parameter for Mannings’s n in 285 

emergent conditions (Fathi-Maghadam & Kouwen, 1997) and the analysis here demonstrated 286 

that this finding translated to the floodplain as well. Since GEDI measures these vegetation 287 

properties globally, estimations of floodplain roughness can be extended worldwide with this 288 

method, with some caveats discussed below. 289 

As previously outlined in the methodology section, our assessment involved a cross-290 

validation analysis of the function defined in Equation 2. This process included the application of 291 

Manning's equation (eq. 1) to calculate floodplain flow during observed overbank events, using 292 
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measurements from the US Geological Survey (USGS) and Manning's n coefficients estimated 293 

by our function. We also compared our findings with discharge estimates obtained from previous 294 

studies by Asante et al. (2008) and Kalyanapu et al. (2009), offering valuable insights into the 295 

robustness of our approach.  296 

Our cross-validation analysis reveals notable advantages of the proposed function, which 297 

is rooted in US Geological Survey (USGS) gage data. This function demonstrated superior 298 

performance with a Kling-Gupta efficiency (KGE) of 0.38 and a percent bias (PBIAS) of -16% 299 

in estimating USGS measured flows. In comparison, alternative methods for determining 300 

roughness coefficients, such as GeoSFM (KGE = 0.33, PBIAS = -43%) and Kalyanapu's 301 

approach (KGE = 0.10, PBIAS = -85%), yielded less accurate results. Importantly, the other 302 

methods consistently underestimated flow rates across various land cover types when relying on 303 

constant roughness coefficients. This artifact is due to land cover –roughness coefficient 304 

classifications being defined based on steady and uniform flow conditions in channels (Chow, 305 

1959) and not accounting for variation of resistance with changing flow, especially during flood 306 

events with higher flow rates. This is evident in the fact that the hydrologic models analyzed in 307 

these works utilized hydrographs, which involve unsteady flow characterized by changing flow 308 

over time. As a consequence, the roughness coefficient becomes variable in reality but not in the 309 

models. By incorporating a vegetation- and submergence-dependent Manning's n coefficient, the 310 

proposed function captured varying hydraulic conditions, leading to improved flow estimates 311 

when compared to methods that rely on a roughness coefficient that is independent of hydraulic 312 

conditions. Supporting this interpretation, both the GeoSFM and Kalyanapu et al. (2009) 313 

methods demonstrated relatively accurate estimates for short vegetation classes such as urban 314 
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areas, built-up lands, and croplands, although they still lacked the precision displayed by our 315 

function in this study. 316 

The Manning’s n dataset and the function proposed in Eq. 2 have the potential to improve 317 

the performance of large-scale models such as the National Water Model (NWM). Many 318 

attempts are currently being made to reduce uncertainty in nationwide models (Johnson et al., 319 

2019; Rojas et al., 2020), but have been focused on improving its performance by updating the 320 

geometry and roughness parameters of the main channel, without extending improvements to the 321 

floodplain (Heldmyer et al., 2022). Integrating the results from this work on floodplain 322 

roughness at USGS gauge locations into the NWM could be a logical next step. 323 

Our study introduces a novel approach to enhance the NWM, especially during flood 324 

events, by incorporating dynamic floodplain roughness values. These values account for 325 

variations in flow velocity and vegetation properties, essential factors that are traditionally 326 

treated as constants in large-scale models. This integration offers the potential for more accurate 327 

flood predictions, improved flood risk assessments, and enhanced river management strategies. 328 

It's important to acknowledge the possibility of adjustments to other key parameters, such as 329 

channel roughness. While our study doesn't prescribe a specific approach for these adjustments, 330 

it opens an intriguing avenue for future research and collaboration. 331 

The study datasets were subject to some limitations, including those inherent to the USGS 332 

monitoring network (Kiang et al., 2013; Tu et al., 2023), as discussed in the SI. Gaging 333 

limitations may narrow the generalizability of the results to LULCs (Land Use Land Cover) and 334 

geographic regions included in this gaging network. Further, assumptions about the geometry of 335 

a river’s cross-section were made that could be inconsistent in some channels, such as where the 336 

local slope is too high or width too narrow to maintain that a hydraulic radius that is 337 
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approximately equal to the hydraulic depth. Furthermore, the vegetation phenology is a snapshot 338 

in time, though it has been established that considerable differences exist in vegetation 339 

characteristics between seasons that can impact flow (Bond et al., 2020). To provide high-quality 340 

biomass and height estimates, the GEDI averages measurements. The resulting derived products 341 

do not represent a specific time of year, in contrast with USGS field measurements that were 342 

made on a specific date. Finally, vegetation data were sampled from GEDI’s 1 km2 gridded 343 

product for the area around each USGS gauge site, which leads to questions regarding what area 344 

influences Manning’s roughness. Energy dissipation occurs via multiple processes during a flood 345 

(R. Ferguson, 2013), but the area of influence that has a direct effect on flow is poorly 346 

understood and is worthy of further study. The assumption made for these calculations is that the 347 

1 km2 average for the vegetation characteristics taken from GEDI measurements is representative 348 

of the actual area influencing energy dissipation during a flood. This assumption may not be 349 

valid at sites where there is a large variation in land cover within a 1 km2 grid. 350 

 351 

5 Conclusions 352 

Floodplain roughness is a critical aspect of managing floodplains, and its societal 353 

relevance will rise with rising floodwaters under climate change, expanding floodplain 354 

development, aging flood infrastructure, and rising emphasis on floodplain reconnection for 355 

nature-based flood infrastructure and ecological restoration. While Manning’s n is typically 356 

assumed to be a constant value in floodplain analysis and engineering applications, this study 357 

demonstrated that accurate estimation of current and modified floodplain roughness should rely 358 

on vegetation submergence and velocities, with biomass playing a smaller role. 359 
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 The dataset of floodplain Manning’s n generated in this work, and its correlation with 360 

flow and vegetation characteristics, further supported prior findings that flow resistance during a 361 

flood increases with submergence depth and biomass, and that resistance is inversely related to 362 

flow velocity. This work utilized a unique coupling of existing datasets, considering tall 363 

vegetation biomes, and demonstrated how flow and vegetation properties influence roughness 364 

across a wide range of regions and climates in the continental United States, rather than limited 365 

to a specific site or sites. Results should be generalizable across scales and landscapes that align 366 

with the input datasets and should support the management and restoration community in 367 

establishing sustainable floodplains. 368 
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Extended Methodology S1 25 

1. Floodplain roughness definition 26 

Manning’s equation (Manning, 1891) is extensively applied in hydraulic modeling and is 27 

written as: 28 

𝑄 =
𝑘

𝑛
 𝑆1/2𝑅2/3 𝐴,      (S1) 29 

where 𝑄 is discharge [L3 t-1], 𝑆 is the friction slope, defining the energy loss along a 30 

reach [L L-1], 𝑅 the hydraulic radius [L], 𝐴 is cross-sectional area [L2], 𝑘 is a unit 31 

conversion factor, and 𝑛 is Manning’s roughness coefficient. The coefficient n is a 32 

representation of the roughness of the surface over which water is flowing and 33 

incorporates surface characteristics such as smoothness, grain size, vegetation and/or 34 

obstructions (Chow, 1959). 35 

Here we conceptualize the floodplain as a wide, rectangular, cross-sectional area (see 36 

Figure S1) and apply Manning’s equation explicitly to the floodplain alone, separate from 37 

the main river channel. The floodplain discharge, 𝑄𝑓𝑝, is isolated by taking the total 38 

measured discharge, 𝑄𝑡, and subtracting the discharge within the main channel, 𝑄𝑚𝑐. The 39 

width of water in the floodplain, 𝑤𝑓𝑝 = 𝑤𝑡- 𝑤𝑚𝑐, is assumed to be much greater than flow 40 

depth, 𝑧𝑓𝑝, and therefore the hydraulic radius of flow in the floodplain is approximately 41 

equal to the floodplain flow depth (Reclamation, 2001). Rearranging Manning’s equation 42 

(eq. S1) for the floodplain and solving for floodplain roughness, 𝑛𝑓𝑝, yields the following 43 

relationship: 44 

𝑛𝑓𝑝 =  
𝑘 𝑤𝑓𝑝 𝑧𝑓𝑝

5/3 𝑆1/2

𝑄𝑡−𝑄𝑚𝑐
      (S2) 45 

2. Bankfull width estimation 46 

Parameters corresponding to the total flow (𝑄𝑡, 𝑤𝑡) are collected during overbank 47 

discharge measurements made by the United States Geological Survey (USGS) at 48 

gauging stations. These total parameters were used to derive floodplain specific 49 

parameters necessary to solve for the floodplain roughness. At bankfull depth, 𝑧𝑏𝑓 , the 50 

width of the main channel, 𝑤𝑚𝑐, is not specified or measured, and must be estimated by 51 

determining the cross-sectional geometry of the main channel and floodplain. A 52 

piecewise function based on measurements of 𝑤 and 𝑧 was used to determine 𝑤𝑚𝑐 , with 53 

the main channel depth assumed a power function of the width, i.e. 𝑧 ∝ 𝑤 (Durand et al., 54 

2016), and the floodplain as sloping linearly away from bankfull stage. The piecewise 55 

form of 𝑤 as a function of 𝑧 was then expressed as: 56 

𝑤 =  
(𝑧−𝑧0)

𝑢

1/𝑠
     when 𝑧 < 𝑧𝑏𝑓  (S3a) 57 
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𝑤 =  𝑚(𝑧 − 𝑧𝑏𝑓) +
(𝑧𝑏𝑓−𝑧0)

𝑢

1/𝑠

,  when 𝑧 ≥ 𝑧𝑏𝑓  (S3b) 58 

where 𝑚 is the cross-sectional up-slope of the floodplain, 𝑢 and 𝑠 are parameters that 59 

define the shape of the main channel curvature, and 𝑧0 defines its starting point. 60 

Discharge in the main channel above flood stage was represented as a rectangular cross-61 

section, as such flow in the main channel 𝑄𝑚𝑐 should assumed to be proportional to 62 

(𝑧)5/3, following Manning’s function (eq S1). When the flow reaches bankfull condition 63 

i.e. 𝑧 = 𝑧𝑏𝑓, 𝑄𝑚𝑐 =  𝑄𝑏𝑓, and thus the constant of proportionality is equal to 𝑄𝑏𝑓 𝑧𝑏𝑓
5/3⁄ , 64 

and Manning’s function (eq. S1) for the main channel flow above bankfull was simplified 65 

as: 66 

   𝑄𝑚𝑐 =  (
𝑄𝑏𝑓

𝑧𝑏𝑓
5/3) 𝑧5/3      (S4) 67 

where 𝑄𝑏𝑓 is the flow at flood stage given that 𝑄𝑚𝑐= 𝑄𝑡 when 𝑧 = 𝑧𝑏𝑓. 68 

3. Data sources and quality control 69 

Most of the parameters (𝑄𝑡 , 𝑤𝑡, 𝑧) required for the calculation of Manning’s 𝑛 with Eq. 70 

S2-S4, were obtained from the field measurements datasets available from the USGS 71 

WaterData platform (USGS, 2021a). The WaterData platform is part of the USGS efforts 72 

to monitor, assess, and deliver information about streamflow quality, use and availability. 73 

The platform provides access to field measurements at nearly 73,000 sites under USGS 74 

management. Consistent with Slater et al., (2015), the flood stage height (𝑧𝑏𝑓) was 75 

obtained from the WaterWatch platform (NWS, 2021). These values were determined by 76 

the National Weather Service by defining the flood stage as the lowest bank at which 77 

inundation of the surrounding area begins to cause damage. Friction slope estimates 78 

were obtained from the National Hydrography Dataset (USGS, 2021b), a database of 79 

features that includes a drainage network of US waterbodies. 80 

Quality control measures on the floodplain data involved multiple steps. The rating 81 

curves at USGS sites are regularly adjusted to adapt the relationship to geometry 82 

changes associated with erosion or deposition at a gauging location. To account for this 83 

effect, only river discharge and geometry measurements where the measured values 84 

were within 10% of the respective rating curve value were included in the analysis. 85 

Additionally, sites with a low number of measurements over the flood stage (< 3) were 86 

also removed. As a way of avoiding the calculation of n with measurements with a high 87 

level of uncertainty in the width-depth relationship (eq. 3), as evidenced by regression 88 

curves with a high root mean squared error (RMSE), only samples with width 89 

measurements higher than 1.96 times the RMSE of the fit in eq. 3 were considered (Liu, 90 

2011). Furthermore, a large percentage of sites from the resulting dataset (27%) had a 91 

slope set at a value of 0.0001 within the National Hydrography Dataset, representing a 92 
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minimum fixed value within the database. Due to the high uncertainty and potential 93 

error from including the fixed minimum slopes, these 298 sites were also excluded from 94 

analysis. 95 

In addition, the results of this work are subject to limitations of the USGS gaging network 96 

and to uncertainties inherent in gaging stochastic and modified systems. The lack of 97 

representation of certain geographic areas within the USGS gaging network have been 98 

reported elsewhere (Kiang et al., 2013), as have some of the drivers of temporal noise 99 

and uncertainty in streamflow over time (Tu et al., 2023). Application of the results 100 

outside the geographic areas and LULC (Land Use Land Cover) conditions from which 101 

these data were derived may generate uncertainties that we were unable to quantify with 102 

this analysis.  103 

4. Remote sensed vegetation datasets 104 

Flow in floodplains is expected to be strongly influenced by the vegetation in the 105 

floodplain (Box et al., 2021) but vegetation characteristics (density, height, etc.) are not 106 

typically measured in the field during flood conditions. Here we used aboveground 107 

biomass density, 𝐵 [M L-2], and vegetation canopy height, ℎ𝑣𝑒𝑔, as characterized by the 108 

NASA Global Ecosystem Dynamics Investigation (GEDI). GEDI utilizes a full waveform 109 

Light Detection and Ranging (LiDAR) system to make measurements of vegetation 110 

structure at 25m resolution (Potapov et al., 2021), which are then aggregated to a 1km 111 

spatial resolution grid. In this work, for each USGS site, we obtained the canopy height 112 

estimates from the L3B version 2 gridded product (Dubayah et al., 2021) and the 113 

aboveground biomass estimates from the L4B version 2 gridded product (Dubayah et al., 114 

2022).  115 

Within GEDI’s L4B dataset, there is a Prediction Stratum (PS) classification, determined by 116 

plant functional types described as: Deciduous Broadleaf Trees, Evergreen Broadleaf 117 

Trees, Evergreen Needleleaf Trees, Deciduous Needleleaf Trees, and Grasses, Shrubs, and 118 

Woodlands grouped as one class. This classification was used to categorize our dataset 119 

based on the level of biomass and canopy height by extracting the GEDI data from the 120 

pixel where each gauge location fell within (See Table S1). It is important to note that 121 

Gridded GEDI datasets, while providing unique information about vegetation height and 122 

biomass, is limited by its 1km resolution, capable of measuring only vegetation above a 123 

certain height. 124 

5. Theoretical modeling 125 

Prior research suggests that n is proportional to the square-root of the vegetation 126 

inundation fraction, i.e. n ∝ (𝑧𝑓𝑝/ℎ𝑣𝑒𝑔)1/2, and that it is also related to flow velocity and 127 

vegetation properties (Kouwen & Fathi-Moghadam, 2000). A mathematical model by 128 
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Kouwen was based on data from four tree species: 129 

    𝑛 = 0.228 (
𝑉

√
𝜉𝐸

𝜌

)

−0.23

(
𝑦𝑛

ℎ
)

0.5
     (eq. 5) 130 

where 𝑉 is flow velocity, 𝜉𝐸 is a vegetation index, 𝜌 is the density of the fluid, and 𝑦𝑛/ℎ is 131 

the depth of submergence (𝑧𝑓𝑝/ℎ𝑣𝑒𝑔), and 0.228 and -0.23 empirically fit. Based on this 132 

approach, we formulate an analogous expression incorporating GEDI derived vegetation 133 

properties as 𝑐 = 𝑎1𝑉𝑎2𝐵−𝑎3 , where 𝑎1, 𝑎2 and 𝑎3 are model parameters, 𝐵 is 134 

aboveground biomass, V is flow velocity, and c is Manning’s n normalized by the square 135 

root of vegetation inundation fraction, i.e. 𝑐 = 𝑛/(𝑧𝑓𝑝/ℎ𝑣𝑒𝑔)1/2. To ensure positive 𝑐 (and 136 

𝑛) values, the linearized equation: 137 

   ln(𝑐) = 𝑎1 + 𝑎2ln(𝑉) + 𝑎3 ln(𝐵)    (eq. 6) 138 

was fit to values of 𝑐, 𝑉, and 𝐵 at USGS sites in our dataset to determine 𝑎1, 𝑎2 and 𝑎3. 139 

To limit the uncertainty caused by outliers in the dataset during the development of the 140 

model, the range of c values was restricted with the use of the interquartile range (IQR) 141 

(Vinutha et al., 2018). The minimum c value included in the analysis was the first quartile 142 

minus 1.5 times the IQR and the maximum value was the third quartile plus 1.5 times the 143 

IQR, where the IQR is equal to the difference between the third and the first quartile. 144 

The developed function underwent cross-validation by splitting the USGS dataset, after 145 

quality control, into five randomized equal subsets, with each subset serving as 146 

validation during separate simulations. Subsequently, we combined all five validation 147 

subsets to create a comprehensive validation dataset that includes all of the original 148 

USGS gauge locations. This approach enables us to thoroughly assess the applicability 149 

and representativeness of our empirical function across the entire set of gauge locations. 150 

This new validation set was then used to compare the performance of our model against 151 

other works.  152 
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Figures S1 and S2153 

 154 

Figure S1 – Cross section diagram showing the variables used in the analysis. Wmc is the 155 

width of the main channel, Wfp is the width of the floodplain, Zmc and Zbf are the depth of 156 

the main channel during bankfull conditions, and hveg is the height of the vegetation. 157 

 158 

 159 

Figure S2 - Floodplain roughness (Manning's n) estimates for USGS sites.  160 
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Table S1 161 

Mean floodplain Manning’s n and Aboveground Biomass (B) [Mg/Ha] classified by tree 162 

structure and ranges of vegetation height. Values given are the median ± one median 163 

absolute deviation and the (samples count). The median vegetation height for these sites 164 

was 10m, while the 33rd and 66th percentiles were 7.4m and 13.5m. Values of 7.5m and 165 

14m for vegetation height were selected for the ranges in order to have roughly the 166 

same number of total samples in each range. 167 

Land Cover 

Floodplain Vegetation Biomass, B [Mg/Ha], 
floodplain n, and (sample count) 

hVeg <7.5m hVeg 7.5-14m hVeg >14m All heights 

B n B n B n B n 

Deciduous 
Broadleaf Trees 

25 
±6 

0.023 
±0.022 

63 
±20 

0.026 
±0.022 

130 
±29 

0.026 
±0.020 

77  
±45 

0.025  
±0.022 

(340) (518) (652) (1514) 

Evergreen 
Broadleaf Trees 

37 
±0 

0.005 
±0.004 

50 
 ±0 

0.025 
±0.022 

98  
±28 

0.032 
±0.022 

95  
±25 

0.030 
 ±0.022 

(5) (15) (150) (170) 

Evergreen 
Needleleaf Trees 

62  
±32 

0.007 
±0.006 

44 
 ±5 

0.011 
±0.009 

108  
±2 

0.011 
±0.009 

106 
±19 

0.010 
±0.008 

(10) (37) (79) (126) 

Grasses, Shrubs 
and Woodlands 

12 
±8 

0.012 
±0.010 

28 
±16 

0.038 
±0.034 

51  
±2 

0.022 
±0.013 

18 
±12 

0.017  
±0.014 

(976) (540) (196) (1737) 

Unclassified 

6  
±2 

0.021 
±0.017 

44  
±15 

0.025 
±0.021 

106  
±36 

0.020 
±0.016 

44 
±36 

0.023 
±0.018 

(141) (264) (279) (787) 

All GEDI land 
cover classes 

15  
±10 

0.014 
±0.012 

44  
±20 

0.028 
±0.024 

110  
±38 

0.023 
±0.017 

38  
±27 

0.021  
±0.018 

(1472) (1374) (1356) (4927) 
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Dataset 169 

The dataset included as part of the Supplementary Information document is the result of 170 

the analysis that took place during this study. The dataset file named ‘fp_mannings.csv’, 171 

consists of 4,927 calculations of Manning’s 𝑛 at each of the 804 USGS gauge sites that 172 

remained after quality control. The file also includes all variables collected and derived 173 

from USGS field measurements: discharge, width, depth (total, main channel, and 174 

floodplain), channel slope, site ID, coordinates, and number of estimates on that site. 175 

Scripts 176 

Included as supplementary information there are two scripts: dataset.py and figures.py. 177 

The dataset.py script automates the process of calculating the Manning’s n 178 

fp_mannings.csv file. It is divided into 3 sections: a SETUP section for module and file 179 

imports, a RUN section for defining the main function and running it for each state, and 180 

a MERGE section that puts together the results of each state into a single file. This script 181 

requires the NHDFlowline.csv and measurements.csv files which are included in Barinas et 182 

al., (2023). Other necessary files are downloaded automatically from USGS websites for 183 

each site: https://nwis.waterdata.usgs.gov/ for site coordinates; 184 

https://waterdata.usgs.gov/ for rating curves; and https://waterwatch.usgs.gov/ for flood 185 

stages. 186 

The figures.py script creates the figures included in the main paper and in this document. 187 

This script is divided into 4 sections: IMPORTS loads the necessary modules and files 188 

required; MAP corresponds to Figure S2 in this document; MODEL corresponds to Figure 189 

2 in the main manuscript; HEATMAP corresponds to figure 1 in the main manuscript, and 190 

VALIDATION corresponds to figure 3 in the main manuscript. This script requires remote 191 

sensed data by the Ecosystem Dynamics Investigation Mission GEDI. All GEDI data 192 

included in the gedi_L3L4.csv file refers to the pixel value where all USGS sites in the 193 

fp_mannings.csv file fell within and the data collected corresponds to the L3 and L4B 194 

version 2 gridded products (Dubayah et al., 2022). Finally, for the validation section of 195 

the script, the file ModisLC.csv, which contains the MODIS land cover classification 196 

corresponding to each gauge location, and the files geosfm.csv and kalyanapu.csv, which 197 

contains the values of n for each land cover type as presented in the original papers 198 

(Asante et al., 2008; Kalyanapu et al., 2009). 199 

 200 
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