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Abstract

We present a method for forecasting the foF2 and hmF2 parameters using modal decompositions from measured ionospheric
electron density profiles. Our method is based on Dynamic Mode Decomposition (DMD), which provides a means of determining
spatiotemporal modes from measurements alone. Our proposed extensions to DMD use wavelet decompositions that provide
separation of a wide range of high-intensity, transient temporal scales in the measured data. This scale separation allows for
DMD models to be fit on each scale individually, and we show that together they generate a more accurate forecast of the
time-evolution of the F-layer peak. We call this method the Scale-Separated Dynamic Mode Decomposition (SSDMD). The
approach is shown to produce stable modes that can be used as a time-stepping model to predict the state of foF2 and hmF2
at a high time resolution. We demonstrate the SSDMD method on data sets covering periods of high and low solar activity as

well as low, mid, and high latitude locations.



Connected comp. 1 Connected comp. 2 Connected comp. 3

_ ~350 2 850
€ € €
= = =
= = =
.g’250 %250 .%250
T I T

150 150 150

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
Time (hours) Time (hours) Time (hours)

Connected comp. 4 Connected comp. 5

. 350“‘ .
150 150

Connected comp. 6

— 350
3 € S
A = 3
g = =
2250 2250
[} ©
T T

150
0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20

Time (hours) Time (hours) Time (hours)
Connected comp. 7

€
=
5
2250
I

150

0 4 8 12 16 20
Time (hours)

11 /esso:

Connected comp. 1 Connected comp. 2 Connected comp. 3

5

] 450 2 450 0.5
® = 05 € ~
£ I £ I I
<350 S <350 0o = 0o =
= 0= - -
g g g g
£250 ) £ 05 ¢ 052
-1
150 -1
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Time (days) Time (days) Time (days)

Connected comp. 4
450

Connected comp. 5
450

Connected comp. 6

450

-1

Height (km)
- N w
a o O
o o o
<) e
Freq. (MH2)
Height (km)
- N w
() o o
o o o
Height (km)
- nN w
() [ o
o o o
L o =
Freq. (MH2)

o
N

4 6 8 10 2 4 6 8 10 2 4 6 8 10
Time (days) Time (days) Time (days)
Connected comp. 7

o

0

Height (km)
- N w B
o [l a a
o o o o
b L O =N '
Freq. (MH2)

o
N

4 6 8 10
Time (days)

The cc

2 Dec 2022




Correlation matrix

Correlation Graph

12 0
11
10 -0.5 |
9 8
3 -1
1 B
= 7
% 6 -1.5 1 5
§ s » 4942
4
3 25 u6 .7 .8 .9
2
2 3 456 7 8 9 10112
Wavelet index
Boulder, CO (2019/10/05 - 2019/10/17)
450
__400
€
<350
-y
5300 i
%250 ‘ \ \ \‘ “‘ | ' ' ‘ ﬁ‘
l‘ | ‘w | “L ARV “ W\
200
150
0 1 2 3 4 5 6 7 8 9 10 1
Time (days)
Hilbert Spectrum
120 P
’5‘100
P
8 80
2 |
>
© 60-
>
2
S 40-
o
o 20-
[T
0’ |
0 2 4 6 8 10 12
Time (days)

<0

y

10

o == N W~ 0o oo N

Instantaneous Energy

Plasma Frequency (MHz)



‘Areuiwijaid aq Aew eyeq "pamainal Jaad usaq jou sey pue juudaid e siyl | TA/OY6.60£8'82869T 9T 1L0SS9/THS22 0T/B10°10p//:sdny | "uoissiwiad Jnoyum asnal ON "panIasal s)ybll ||y “lapunjioyine ayi si Japjoy ybLAdos ayl | zzoz 994 zz uo paisod



foF2 (MHz)

* Measured
-SSDMD (MAE: 0.70)
IRI (MAE: 0.96)

“Measured
SSDMD (MAE: 0.73]
IRI (MAE: 0.86)

s

Measured
SSDMD (MAE: 0.56]
IRI (MAE: 0.76)

T0F2 (MHz)
@

S

hmF2 (km)
y
8
8

2014110129 2014110130
~Measured
|—SSDMD (MAE: 16.91)
[=IRI (MAE: 11.58)

2014/12/07 2014/12/08

“Measured
+ [~SSDMD (MAE: 18.43)
IRI (MAE: 20.20)

~

g

IRI hmF?2 (
N
8

220

350

300

250

SSDMD hmF2 (km), §

9
w
3

IRI hmF?2 (km),
w
8

g

2014110129 2014110130

SSDMD MAE: 16.41

2014/12/07

g

v g o ' 200
150
N 100
50
0
200 300 400
Measured hmF2 (km),y
IRI MAE: 22.65
. ‘ . . g0
: ‘I 150
. 100
50
200 300 400
Measured hmF2 (km),y
SSDMD MAE: 17.20
v 100
80
. 60
* Hao
20
0
200 250 300 350 400
Measured hmF2 (km),y
IRI MAE: 16.80
>r, 100
/{80
. |eo
40
20
200 250 300 350 400

Measured hmF2 (km),y

ly — 4l

ly — 4l

2014/12/08

0.025

0.02

0.015

PDF

0.01

0.018

0.016

0.014

0.012

0.01

PDF

0.008

0.006

0.004

0.002

2014/12/07 2014/12/08

hmF2 Error

-100 0 100 200
Error (km), y — ¢

hmF2 Error

0
-100 -50 0 50 100

Error (km), y — ¢



600

—BC840 hmF2 (2019)

WMWMWWMMMM

—RO041 hmF2 (2014)

MW i

1 31 61 91 121 151 181 211 301 331 361

GA762 hmF2 (2022)

Eao0 (1 i Jl f hi 1) M | *I‘l“w \” » 4‘\” N\
X J (I i off "\ TR TT Ml ;b I ,L‘ p | ‘M'”h‘ i ll‘\'”“ I Ii '
Ty ¥ ,h il 'Ww\w ;;"n i h ‘|’ F ﬂ ] ', U ‘\ | “mi Ll |1 "‘ i & “‘ \Il‘ |

100
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

600 ‘ ——GU513 hmF2 (2022)

i
\ ) i JM
\ \M rﬂ Il! ‘ " f“ { { “ J y\ M |‘ ‘H\‘wﬂ ‘L“/“‘J”ﬂ(' “ I | "‘ “W ’1 \ | \

,. I

A Ak
wr ‘\\ Mli,( / Il‘.h /.‘mmg i »f‘”
\

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
Day of year

Measurement

Height (km)
Plasma Frequency (MHz)

Height (km)
Plasma Frequency (MHz)

o

0 1 2 3 4 5 6 7 8 9 10 1 12
Time (days)



Measu remen t

VAN AN
I?:Z MMA IMM M " ‘Jm

AMWMAWANMA TS

I15°““‘AAAAAAA

23456789101112
me (days)

>0 s
Plasma Frequency (MHz)

N

o

Measur eme t

l Il
l | l‘
\I

’ ]

SSDMD

2 Plasma Frequency (MHz)

‘ |
S—
Plasma Freq y (MH2)




This a preprint and has not been peer reviewed. Data may be preliminary.

940 /v1

169828.83097'

10.22541 /essoar.16

doi.org

https:

All rights reserved. No reuse without permission

The copyright holder is the author/funder

22 Dec 2022

Posted on

Wavelet scale 1

2450
é350
T 8 250

O mANMOITWONON~OD
Time (days)
Wavelet scale 4
§.450
=350
=
2
Ko 250

150

oM 0NON~oD

Time (days)

1500FN<’)<I'IO¢DP-'-'OO’

Time (days)

Wavelet scale 10

A450
= 350
ﬂ! 250

505 -t wor 0o
Time (days)

Wavelet scale 2

€ 450
=
=350
£
=)
2 250
1500FN(’)¢K>¢DI\IDO!
Time (days)
Wavelet scale 5

=450

= 350

=

=)

o 250
150

Or-rNOSON~NOD
Time (days)

Waveiet scaie 8

£ 450

=

=350

=

=

& 250
150

OrANOTIDONOD
Time (days)

Wavelet scale 11

=450

= 350

<

ie)

] 250
150

Or-rAMOITWNOMOD
Time (days)

10

Wavelet scale 3

T 450

x
+= 350
1=

2
£ 250
1500FN(’)<! nOoM~om
Time (days)

Wavelet scale 6
—~450

= 350

£

=

o 250
150,

Or-rANMTWNON~NOD
Time (days)

ie §
E450
ok,
=350
o

©
'5 250

1500?01{")‘“0!0"-&@

Time (days)

Wavelet scale 12
—~450

= 350
=

©
'3 250
Time (days)




© N o o

11

12

13

14

Scale-Separated Dynamic Mode Decomposition and
Ionospheric Forecasting

Daniel J. Alford-Lago!?3, Christopher W. Curtis?, Alexander T. Ihler?,
Katherine A. Zawdie*

L Atmospheric Propagation Branch, Naval Information Warfare Center Pacific, San Diego, California, USA
2Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
3Department of Computer Science, UC Irvine, Irvine, California, USA
4Space Science Division, Naval Research Laboratory, Washington, District of Columbia, USA

Key Points:

« We present a method to adapt the Dynamic Mode Decomposition algorithm to
work on a time series of ionospheric sounder profiles

e The method accounts for multiscale fluctuations in the time series using wavelet
decompositions and builds a dynamical model from data alone

» The method can be used to forecast the foF2 and hmF2 parameters in near-real
time using relatively short measurements from a sounder
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Abstract

We present a method for forecasting the foF2 and hmF2 parameters using modal decom-
positions from measured ionospheric electron density profiles. Our method is based on
Dynamic Mode Decomposition (DMD), which provides a means of determining spatiotem-
poral modes from measurements alone. Our proposed extensions to DMD use wavelet
decompositions that provide separation of a wide range of high-intensity, transient tem-
poral scales in the measured data. This scale separation allows for DMD models to be

fit on each scale individually, and we show that together they generate a more accurate
forecast of the time-evolution of the F-layer peak. We call this method the Scale-Separated
Dynamic Mode Decomposition (SSDMD). The approach is shown to produce stable modes
that can be used as a time-stepping model to predict the state of foF2 and hmF2 at a
high time resolution. We demonstrate the SSDMD method on data sets covering peri-

ods of high and low solar activity as well as low, mid, and high latitude locations.

Plain Language Summary

Understanding the current and future state of Earth’s ionosphere plays an essen-
tial role in many global communications and radar applications. However, generating
accurate forecasts of it is challenging due to the complex physics that drive the dynam-
ics. Additionally, measurements of the ionosphere show that there is a wide frequency
range of fluctuations that occur in those measurements. We overcome both the complex-
ity of the physics and the multiscale phenomena by applying methods from signals pro-
cessing and machine learning to separate the various time scales over which these fluc-
tuations arise. However, we do this in such a way that preserves strong couplings between
the scales. We then demonstrate how to construct a forecast model from these separated
scales. This approach to ionospheric forecasting is both equation-free and data-driven,
and it is shown to have a modest improvement in accuracy over the current state-of-the-
art.

1 Introduction

The need for accurate modeling and forecasting of the prevailing space weather con-
ditions continues to play a critical role in the development and operation of a variety of
radio communications and radar applications. The Earth’s ionosphere is of particular
interest as it provides a medium for the propagation of radio waves far beyond the hori-
zon (Ratcliffe, 1959; Budden, 1985; Davies, 1990). As a result, the ionosphere has been
the subject of intense study for decades, and efforts to enhance our ability to model and
predict the vertical plasma density profile continue to this day. Parameterizations of the
height-dependent structure of the ionosphere include specifying the maximum plasma
density value and the height at which it occurs. This peak in the plasma density pro-
file is known as the F2-layer critical frequency, foF2, and is generally given in units of
megahertz (MHz). The altitude at which the foF2 occurs is called hmF2 and has units
of kilometers (km). Together, these two parameters specify a crucial point in the local
ionosphere that can have a considerable impact on radio propagation. Specifically, foF2
and hmF2 will affect the reflection height and thus ground distance that a radio wave
at a given frequency will reach (Fagre et al., 2019). Therefore, misrepresenting the peak
of the plasma density profile has immediate implications for military, commercial, and
civilian applications. In general, there are two modeling approaches for ionospheric spec-
ification: physics-based and empirical.

In physics-based models, the equations of fluid mechanics and magnetohydrody-
namics are solved. However, the ionosphere is driven by many exogenous systems, in-
cluding solar and geomagnetic activity, tidal forcing from the lower troposphere (H. L. Liu,
2016), and thermospheric general circulation (Killeen, 1987). This means that while the
physics are relatively well-understood, careful specification of these drivers is required
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in order to produce accurate simulations and forecasts. Additionally, even when physics-
based models such as the thermosphere-ionosphere-mesosphere-electrodynamics general
circulation model (TIME-GCM) (Dickinson et al., 1981; Roble & Ridley, 1994; Roble,
1995) and SAMI3 (Huba et al., 2000; Huba & Krall, 2013) offer accurate modeling ca-
pability, they often underestimate the variance observed in the measurements of the iono-
spheric plasma density (Zawdie et al., 2020).

On the other hand, empirical models, such as the International Reference Ionosphere
(IRI), are generally less intensive to run but require large quantities of data from many
different sources to account for the complex interactions between the various space weather
systems. These sources include estimates from Mass Spectrometer Incoherent Scatter
Radar (MSIS) to provide neutral composition derived from years of ground and space-
based observations (Picone et al., 2002), as well as vertical soundings for the bottom-
side, GPS-based observations of the total electron content (TEC), and in situ satellite
measurements for the relevant ion species composition (Bilitza, 2001). Such an under-
taking requires decades of dedicated service with international collaboration and has re-
sulted in IRI becoming the official International Standardization Organization (ISO) stan-
dard for the ionosphere. Nevertheless, IRI provides only statistical estimates of the monthly
average plasma density given several user-defined inputs such as solar activity via the
monthly smoothed sunspot number and geomagnetic activity rather than simulating the
dynamics.

More recently, determining reduced-order models (ROM) from data has been ex-
plored. In (Mehta et al., 2018), a quasi-physical dynamic ROM is obtained for the ther-
mospheric mass density using the thermosphere-ionosphere-electrodynamics general cir-
culation model (TIE-GCM) (Richmond et al., 1992), a precursor to TIME-GCM, as the
source of observations. This ROM is based on a modal decomposition technique known
as Dynamic Mode Decomposition (DMD) in which a set of spatiotemporal modes are
determined via a linear best fit to data snapshots of a dynamical system (Schmid, 2010;
Mezié, 2005; Kutz et al., 2016). DMD has also been shown to be especially useful in many
physics and engineering contexts, such as in (Curtis et al., 2019) where it was used to
help identify structure in weakly turbulent flows. Prior work on adapting DMD to data
with dynamics at multiple scales can be found in (Dylewsky et al., 2019; Kutz et al., 2015),
and building DMD models for nonlinear systems using deep learning in (Alford-Lago et
al., 2022).

Our approach is motivated by the prevalence of vertical ionospheric sounder sta-
tions worldwide. These sounders generate data streams at regular cadences regarding
the height-dependent profile of the ionospheric plasma density. However, plasma irreg-
ularities and traveling ionospheric disturbances manifest as fluctuations in the electron
density profile (EDP) and occur over a range of time scales. Furthermore, the spatial
frequencies of these irregularities are shown to range from the atmospheric scale height,
where fluctuations are driven by gravity, down to the ion gyroradius, where fluctuations
are driven by Earth’s magnetic field (Booker, 1979).

We therefore see that modal analysis and dimensional reduction techniques, which
facilitate the identification of simpler features within relatively complex data, would be
of great utility in the study and use of ionospheric data. Likewise, measurement driven
modeling techniques which bypass the intricate physics modeling that has been neces-
sary to date to develop predictive capabilities would be especially desirable. To this end,
we propose nontrivial extensions of DMD by way of wavelet decompositions that sep-
arate scales in a time series of EDPs. We call this method Scale-Separated DMD (SS-
DMD) and demonstrate its utility in obtaining a dynamic model of the local ionospheric
peak density from a relatively short recording of data.

SSDMD provides a novel approach to predicting the parameters foF2 and hmF2
that does not model their time evolution directly but instead uses the entire EDP time
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series to build a high-dimensional, expressive model for the dynamics. Our key contri-
bution is incorporating a wavelet decomposition step and correlation analysis before ap-
plying DMD to the data. We find that critical couplings between scales that impact the
stable evolution of DMD modes are preserved by grouping certain scales back together.
These groupings are based on a one-step correlation that relates to how DMD is opti-
mized. We find that the complete EDP forecasts from the method produce reasonable
results in the F-region. However, the true utility of the method is the accuracy with which
it predicts the foF2 and hmF2 parameters.

IRI was chosen for model comparison in this study because it is recognized as the

official standard for the ionosphere by ISO, the International Union of Radio Science (URSI),

the Committee on Space Research (COSPAR), and the European Cooperation for Space
Standardization (ECCS) (Bilitza, 2018). While the number of ionospheric forecasting
models seems to grow each year, we chose to use IRI as the gold standard because of its
wide use in the community, (Bilitza, 2001) having over 1,000 citations at the writing of

this paper, and is accessible to the research community through simple programming APIs.

While there are variants of IRI that employ more sophisticated techniques such as as-
similation of real-time data (Galkin et al., 2012), these models are more complex and
generally less accessible to the public. Moreover, the goal of this paper and the SSDMD
model itself is not to outperform the most advanced, high-fidelity ionospheric models.
Instead, we aim to provide a simple approach to forecasting key parameters using min-
imal amounts of data while providing reasonably accurate results that are on par with
the most common and established methods.

Note that many existing ionospheric forecast models require the specification of so-
lar and geomagnetic drivers, often through the sunspot number and the station K and
A indices. In this paper, however, we will show that a short-term forecast of the foF2
and hmF?2 for a single-station sounder is indeed obtainable purely through modeling the
variations observed during a 10-day period. While other attempts at forecasting iono-
spheric parameters without specifying drivers or control variables have seen success, see
(Wang et al., 2020; Grzesiak et al., 2018; Stanislawska & Zbyszynski, 2001), we show that
straightforward scale separation enables the use of powerful data-driven methods such
as DMD. Of course, such an approach will not capture storms or large perturbations to
the EDP that one would see with the appropriate exogenous control variables. Never-
theless, it lifts the burden of also having to forecast the drivers themselves and instead
provides a lightweight, real-time method of forecasting the foF2 and hmF2. Addition-
ally, observations of solar and geomagnetic activity are not widely available at the time
resolution our method is set up to model. Many ionospheric sounding systems can pro-
duce measurements at a cadence of 5-minutes, whereas sunspot number and station in-
dices are only available as averages over several hours.

This paper will provide the necessary background and algorithmic details to per-
form SSDMD on a time series of EDPs, and is organized as follows. In Section 2.1, we
present the DMD algorithm to compute spatial modes with time-evolving dynamics. Then,
in Section 2.2, we demonstrate how we generate a scale-separated expansion of a signal
using wavelet decompositions. Sections 2.3 and 2.4 then describe how we determine strong
couplings across scales in the time series and average across them to produce an SSDMD
model. Finally, Section 3 presents our results from this analysis on measured data from
several Digisonde vertical sounders (Reinisch & Galkin, 2011).

2 Method

The SSDMD method presented here will generate a near-term, e.g., 48-hour, fore-
cast of the local ionospheric conditions using a time series of EDPs from a vertical in-
cidence sounder. In particular, we will use this model to generate a forecast of the peak
plasma density, foF2; and height, hmF2. The method consists of four primary steps:
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1. Use 1-dimensional wavelet decompositions at each fixed height in the data to sep-
arate fluctuations at different time scales and reconstruct the signal with each scale
individually.

2. Compute one-step correlations across each scale reconstruction, determine which
scales are strongly correlated, and add them together to form connected compo-
nents.

3. Average each connected component over 24-hour lags.

4. Perform DMD on the averaged connected components to obtain a set of modes
and eigenvalues for each.

This algorithm will result in a separate DMD model for each of the averaged connected
components. However, all these models will sum coherently to form a final reconstruc-
tion of the profile time series and predictions of its future state. From the forecasted pro-
files, we then compute the foF2 and hmF2 parameters.

Boulder, CO (2019/10/05 - 2019/10/17)
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Figure 1: Dataset 1, a profilogram from the Digisonde Boulder, CO station covering the
days of October 05, 2019 to October 17, 2019. Profiles were measured every 5 minutes.

The data used in this study are time series of ionospheric EDPs and their respec-
tive foF2 and hmF2 parameters gathered from two repositories, the Lowell GIRO Data
Center digital ionogram database (Didbase) and the NOAA National Centers for En-
vironmental Information (NCEI) Mirrion 2 data mirror. We will use a 12-day snippet,
called Dataset 1, from a station in Boulder, Colorado, covering the dates 2019/October/05
to 2019/October/17 to illustrate each of the four steps of the SSDMD method above.

This period of observation occurred near the last solar minimum yet still exhibits a wide
spectrum of oscillations in the profile.

Figure 1 shows Dataset 1 as a profilogram, which we have preprocessed by inter-
polating the raw sounder profiles to a regular 1km resolution height grid and then clipped
below 150km. This is done because our model is intended to capture the dynamics of
the F-layer parameters of the ionosphere. The following sections will now illustrate each
step in SSDMD, starting with a description of the DMD method since it forms the ba-
sis of SSDMD.

2.1 Dynamic Mode Decomposition

DMD provides a method of finding a one-step, linear best-fit transformation from
a time series of data that maps any observation in the series one time-step into the fu-
ture. We start with a series of measurements of the system

Y={yiy2-yn:}, (1)
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where yr = y(tx) € RV is a snapshot of the system at time tz, thus Y € RNs*Nz,

In the case of Dataset 1, each snapshot is a measurement of the vertical profile so each
column in Y is an EDP. We assume a regular measurement cadence with ¢ = két for
some time step dt, though in general this is not a requirement. From this, we create two
new matrices

Y_={y1y2---yne—1} and Y ={y2y3 -yng} (2)
and find a matrix K € RVs*Ns gyuch that

KY_=Y,. (3)
This can be done simply via regression by solving the following optimization problem,

K, = argmin||Y — KY,||§7 =Y, Y, (4)
K

where ||-|| » denotes the Frobenius norm and Y denotes the Moore-Penrose inverse of
Y_. The DMD model is then given by the eigendecomposition of the matrix K,, how-
ever, solving (4) directly can generate highly unstable results due to ill-conditioning in
Y _. To address this, it is common in the DMD literature to use the singular-value de-
composition (SVD) of Y_ and apply a threshold to keep only the most significant sin-
gular values. If the SVD of Y_ is

Y_=UXV™ (5)
then introducing a threshold, csyq > 0, we truncate the columns of U and V correspond-
ing to the singular values, X;;, such that

S
logyo <N> > —Csvd, (6)
X

where X;; are entries along the diagonal of 3 and are ordered such that
Y11 2> Yo 2> - 2> YNgNs- (7)

We label the truncated versions of U, 3, and V as fj, 2, and V respectively. A straight-
forward approximation of Equation (4) can then be given by

K,~ Y, VXU (8)

Note, K, will be an Ngx Ng matrix, so when Ng is very large it may be computation-
ally expensive to compute the eigendecomposition; see (Tu et al., 2014) for alternate for-
mulations of DMD when this is the case. However, we found that the EDP data from
a single sounding station is not high-dimensional enough to require these alternate forms.
Instead, we simply compute the DMD modes and eigenvalues of K, through the diag-
onalization

K, = WAW L, (9)

where W is a matrix whose columns are eigenvectors, or DMD modes, and A is a di-
agonal matrix of DMD eigenvalues. For a given dt representing the amount of time which
has passed from observation yj to yr4+1, we construct a continuous-time model of the

system,
y(t) = WA 'WTy(0), (10)

where y(0) is some initial condition. Note that this decomposition provides a time step-
ping mechanism for reconstructing our time series that we may use for forecasting.

Comparisons of DMD to the well-established Empirical Orthogonal Function (EOF)
analysis may be drawn. In practice, EOF models use Principal Component Analysis (PCA)
to decompose the data into linear combinations of orthogonal functions. Fourier expan-

sions of modulating coefficients for each component then provide variation over monthly
and solar cycle scales; see (C. Liu et al., 2008; Zhang et al., 2009, 2014; Mehta & Linares,
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2017; Li et al., 2021) for in-depth description of EOF analysis for space weather. This
has the advantage of including proxies for external drivers such as the F10.7-cm solar
flux in the forecast. Nevertheless, such indices are not readily available on the time scales
that we are able to measure ionospheric profiles and provide little additional input for

a 24- to 48-hour forecast. Furthermore, EOF models are restricted to an orthogonal ba-
sis of functions for the dynamics due to the use of PCA. The DMD modes have no such
restriction since they are derived from the eigendecomposition of the K, matrix. An-
other major difference between our method and conventional EOF models is we sepa-
rate the various time scales in the data prior to fitting the DMD modes and eigenval-
ues.

Thus, beyond just producing a modal decomposition from data, the DMD method
gives a time-evolving model for said data through the spectra of the K matrix. Further
connections between DMD and dynamical systems analysis can be established through
its relationship with the Koopman operator (Koopman, 1931); see Appendix A. While
a generally successful approach, this straightforward implementation struggles with mul-
tiscale data or any data that has both very small and very large gradients from snap-
shot to snapshot due to the one-step regression in Equation 4. This motivates the use
of some form of temporal scale separation.

2.2 Scale Separation of EDP Time Series

The primary contribution of this paper is to provide a method of adapting the DMD
algorithm to work on data with fluctuations at multiple scales, as is the case when mod-
eling EDP measurements. The need to account for these oscillations is motivated by the
Hilbert spectrum of a slice through Dataset 1 at a vertical height of 400km. At this al-
titude, we see there is a significant degree of instantaneous energy at frequencies much
higher than diurnal variation (1 cycle/day); see Figure 2. These relatively high-frequency,
transient events complicate direct applications of DMD, but do not necessarily repre-
sent noise that should be filtered out.

Hilbert Spectrum
120 10

=100+ >
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o 80 T
Q | 5 @
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0 : ‘ |
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Figure 2: The affiliated Hilbert spectrum for a slice through Dataset 1 at a height of
400km. The Hilbert spectrum plot reveals the instantaneous energy in the data as a func-
tion of time and frequency. The stable diurnal oscillation can be see near 1 cycle/day,
while various time localized, spurious oscillations occur throughout at frequencies that are
an order of magnitude higher.
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We therefore use a multiresolution analysis by way of 1-dimensional wavelet de-
compositions to facilitate DMD; see (Mallat, 2009, 1989) for in-depth theory and appli-
cations of wavelet decompositions. For a given time series y(t) € RYs representing vec-
tor observations of EDPs, we decompose each height in the time series into Nj,; levels,

such that
Niyi+1

v~ Y ). (1)

where d;(t) € R™=, such that

My
dj(t) = Z dj7ﬂwj7n(t)a 1<j< Ny, (12)
n:—Mf
and u
f
levz-‘rl(t) = Z dNLuL+1,n¢szz,n(t)7 (13)
n=—Mjy

where () and ¢(t) are the wavelet and scaling functions of the decomposition, respec-
tively,

Yin(t) = V2 T (279t — ),
() = V2 g (2N ) (14)

The vectors dj,, 1 < j < Ny, denote the detail coefficients at the jt" scale while d,,, +1.n
denotes the approzimation coefficients at the terminal scale.

With the wavelet decompositions performed independently at each height in the
profile, the vector quantities d;(t) represent only parts of the signal at the jth scale at
time ¢t. Given our discrete time series from Equation (1), these vector quantities form
the columns of a new set of data matrices,

Y;={dj1 dj2 -~ djn.}, (15)
which are reconstructions of the original data at each scale and sum coherently, so that
Y = ZNmz,Jrl Y.,
= 2j=1 J

In Figure 3, we have Dataset 1 expanded into 12 scale reconstructions. These scales
further illustrate the multiscale nature of high-resolution EDP measurements, with fluc-
tuations on the order of 1-2MHz in magnitude observed up to the fastest scales. These
sub-diurnal oscillations can appear as broad-spectrum noise in the raw profilogram and
can make modal decompositions like DMD quite challenging. Note that the diurnal os-
cillation itself does not appear until the 5* or 6" scale in Figure 3, and several longer-
period trends are observed before the terminal scale. In the following section we will see
how these oscillations can be highly correlated in terms of an optimal DMD one-step fit.
Fourth-order Coiflets were used for the discrete wavelet transforms. The wavelet type
is a model hyperparameter and may vary for different data sets. However, we found that
this choice worked well for all test cases in this study.

2.3 Computing Correlations Across Scales

Applying DMD to each scale separately does not produce optimal results and can
even produce DMD modes that are unstable and decay to zero or grow to infinity almost
immediately. Instead, we found correlations across each of the scales can indicate strong
dynamical couplings between them, and preserving these has a pronounced impact on
the fidelity and stability of the DMD modes. Identifying the strength of these couplings
required developing a measure of correlation that takes into account the role that the
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Figure 3: Dataset 1 decomposed into 12 scales. Each panel is a reconstruction of the full
EDP time series using only the j** scale coefficients from the wavelet decomposition at
each height, Y ;. The color axis represents plasma frequency in MHz.

matrix K, plays in advancing the data forward in time. To this end, we defined the fol-
lowing correlation matrix C whose entries are given by

1 = = = =
Cin = 3 ‘Yj,+ Oy,-ty;-0© Yz,+‘ ) (16)

with, 5,0 € 1,..., Niy;y + 1, and

y, = =l )
vl

T H[Yj]—

The - and [-] denote taking the mean in the time and space dimensions of the time se-
ries, respectively, ||-[|, , is an Lo-norm over time, and ® is the Hadamard product be-
tween two matrices. Finally, the + and — subscripts indicate shifting the time series for-
ward or backward one time step as in Equation 2. Note that the full-dimensional EDP
is reduced to an average for this correlation coefficient in Equation 17. This works be-



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

cause we have limited the time series to the upper F-region of the profile since we are
concerned with forecasting the F-peak characteristics only.

Because K, is optimized to advance any profile in the data one time step into the
future, this correlation coefficient provides a quantitative means for comparing the time
series across different timescales in the context of fitting optimal DMD modes. Then,
by setting a threshold value, cco.r, we generate an adjacency matrix A with entries

T 17 |C]l| Z Ccorr
Ajl N { Ov |le| < Ccorr (18)

The matrix C is symmetric, and so A is as well. Note, in practice these correlations will
typically be larger for the longer time scales since we are looking at one-step correlations,
with higher frequency oscillations becoming increasingly less correlated. The matrix A
generates a graph G that indicates which of the Y; scale reconstructions should be grouped
back together to preserve their dynamic coupling.

Thus, for a given choice of threshold ceorr, we will have No < Nj,;+1 connected
components within G. We then form N¢ new time series by summing only the Y; which
belong to the same connected component,

YS = Z Yjv (19)

jeGn

where j € G,, denotes the scales that are in the n'® connected component in G, and

Y is the time series for the n” connected component. Figure 4 shows the matrix C
and the graph G for Dataset 1. Note that the first group consists of the bulk of the large
scale features in the time series while the higher frequency scales remain on their own.
However, this may not always be the case, and subgroups within the high frequency com-
ponents could arise depending on the data observed.

12 Correlation matrix 0 Correlation Graph
11
10 _05 L3
9 8
3 -1
13 G
= 7
% 6 -1.5 #1 5
& 5 4142
= 4 -2
3 25 6 <) 8 9 40
2
1 -

1

2 3 4 5 6 7 8 9 10 11 12
Wavelet index

Figure 4: The correlation coefficient matrix C (left) and the corresponding graph G
(right) indicating which scales are highly coupled. The correlation threshold cqorr = —1.95
was used for Dataset 1.

At this point, one could find a corresponding Kom via DMD and generate an af-
filiated expansion for each connected component so that the total time series can be ap-
proximated by

N¢
y(t) = Y WA AWy, (20)
n=1

—10-
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Figure 5: Dataset 1 decomposed into 7 connected components. Each component captures
features of the data with strong correlations according to the one-step spatiotemporal
coeflicients.

However, we note that, using observations that span only several days in time, the EDP
at a single sounding station is essentially memoryless after twenty-four hours have passed
(Araujo-Pradere et al., 2005). This strongly suggests that before naively applying the
DMD method to time series of arbitrary length, instead, we should first average the data
across 24-hour cycles for the duration of our measurement period.

2.4 Averaging for DMD

Having decomposed the EDP time series into correlated time scales, we now have
a collection of time series,
YO, YS, o, YR (21)

that represent scales within the data set whose one-step correlations are relatively weak.
We treat these as being essentially independent with respect to our DMD approxima-
tion.

Denoting the number of time steps in a full day as Tp and assuming that Np +
1 is divisible by T, so that the data set represents the number of days Np where
_ Nr+1
=5
we isolate the mean signal over 24-hour cycles from the fluctuations about the mean for

each Y$. This creates two new affiliated time series for each connected component that
have the properties,

Np (22)

¥$(te +Tp) = §5 (tr), (23)

—11—
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and
Tp

> 95tk +mTp) =0, m=0,...,Np—1, (24)
k=1

where -~ and * denote the 24-hour mean signal and fluctuations about the 24-hour mean,
respectively. The fluctuations in Equation 24 effectively represent the noise signal for each
component. These may prove useful in future experiments to generate nonparametric
error estimates, however, in this paper they are not used further since our goal is to fore-
cast parameters derived from the profile. Taking the vector quantities, < to be columns
of new mean-signal matrices we have

YS = {yS,D }_’S,z, ) yS,TD} . (25)
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Figure 6: Dataset 1 connected components averaged over 24-hour lags, Y.

Figure 6 shows each Y¢ for Dataset 1. These matrices represent the average plasma
frequency oscillation over a given day at various scales in the dynamics. Therefore, this
step acts as a denoising process that has minimal impact on the multiscale nature of the
signal and reduces the amount of information that would be lost by simply filtering the
raw EDP time series.

Finally, using Equation (10) on these 24-hour averaged and scale-correlated data,
we generate a continuous-time DMD model for each connected component,

Vi (t) = WA AWyl (26)

n

—12—
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Note that all of the N components sum coherently and form the final the SSDMD model,

Nc
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Figure 7: SSDMD reconstruction and forecast of Dataset 1. The vertical dotted white
line denotes the transition from data used to fit the model to validation data. Black lines
in each panel trace the hmF2 parameter.

Equation (27) is a model for the dynamics of the average that accounts for non-
linear oscillations at multiple scales while preserving strong couplings between scales. See
Appendix B for pseudocode of the complete SSDMD algorithm. Figure 7 depicts the re-
sult of this model applied to Dataset 1, using the first 10 days of data to generate the
SSDMD model and then advancing the DMD modes via their eigenvalues out an addi-
tional 2 days as a forecast. The figure includes both the original measurement time se-
ries and the SSDMD reconstruction and forecast.

We compute the foF2 and hmF2 parameters by finding the peak frequency and height
in the modeled EDPs. Figure 7 shows the predicted hmF2 and observed hmF2 overlayed
on their respective EDP time series. The reconstruction of the first 10 days, i.e. the fit-
ting data, appears excellent simply because it is advancing each profile a single time step.
The remaining two days, however, illustrate the stability of the modes that have been
determined through SSDMD, since we are iterating the DMD eigenvalues and using the
last observed EDP from the training data as an initial condition. Thus, we have built
a stable time-stepping model of foF2 and hmF2 using a dynamical model that utilizes
the full EDP time series expanded over several time scales. In Section 3.2 we will explore
the accuracy of the resultant foF2 and hmF?2 forecasts in greater detail.
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3 Results
3.1 Data Description

Data sets were gathered from Boulder, Colorado (40°N, -105.3°W) over 2019, and
from Rome, Italy (41.9°N, 12.5°E) over 2014. The years 2019 and 2014 were roughly at
the last solar minimum and solar maximum, respectively. These data sets will provide
statistical estimates of how the proposed method performs at mid-latitudes during pe-
riods of high and low solar activity. Additionally, shorter data sets taken from Gakona,
Alaska (62.38°N, 145°W) and Guam (13.62°N, 144.86°E) and will demonstrate the method’s
application in high-latitude and equatorial environments, respectively. Results presented
for foF2 are in units of megahertz and hmF2 in kilometers unless otherwise labeled.

The sounder located in Boulder, Colorado (station name BC840) had a measure-
ment cadence of 5 minutes in 2019, while the Rome, Italy sounder (station name RO041)
measured profiles every 15 minutes in 2014. The shorter data sets from Gakona, Alaska
(station name GA762) and Guam (station name GU513) both had cadences of 7.5 min-
utes. Table 1 summarizes the locations, times, and lengths of the data sets gathered for
this study, and Figures 8 and 9 show time series of the foF2 and hmF2 parameters as
measured at each station. Each data point in these time series has an affiliated EDP, but
these are not shown for brevity. Missing values in the data are not used in the final er-
ror analysis.

All sounder stations generate estimates of the vertical EDP using the ARTIST5S
algorithm to invert raw ionograms (Galkin & Reinisch, 2008). The EDP time series is
limited to a height range of 150-500km. This is primarily because the plasma frequency
in E-region at night dips low enough that it is outside the measurement bandwidth of
the Digisonde sounders (Bibl et al., 1981). Because of this, the ARTIST5 inversion al-
gorithm will generally output a default value, e.g., 0.2 MHz, in these regions for most
of the nighttime profiles. These periods of constant plasma density complicate the fit-
ting of an SSDMD model since they require inherently oscillatory modes to approximate
a constant value. Above the peak plasma density, echoes from the sounder are no longer
received, and a standard parameterized profile is fit to provide the topside plasma den-
sity. Thus, restricting the profiles to only the F-region helps ensure the SSDMD model
is able to more accurately capture the dynamics of the F-layer parameters and minimizes
the effects of these boundary regions.

Boulder Rome Gakona Guam
Station name BC840 RO041 GAT62 GU513
Year 2019 2014 2022 2022
Lat/Lon 40°N 105.3°W  41.9°N 12.5°E  62.38°N 145°W  13.62°N 144.86°E
Number of days 365 365 12 12
Measurement cadence 5 min. 15 min. 7.5 min. 7.5 min.
Solar cycle min max mid mid

Table 1: Summary of data gathered from Didbase sounder stations.

We used the IRI2016 model in Python with up-to-date solar and magnetic indices.
IRI has many settings that allow the user to tweak parameters or turn certain submod-
els on or off. These settings are known as the JF switches. The version of IRI used in

—14—
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Figure 8: Time series of foF2 from the BC840 (red), RO041 (blue), GAT62 (green), and
GU513 (magenta) sounders. Note that the x-axis (day of year) has been zoomed in for the
shorter data sets GA762 and GU513.

this paper had all the default JF values, which are found on the IRI model website. Time
series of the EDP, foF2, and hmF2 were generated from IRI for each data set, and the
EDPs were interpolated to the same vertical height grid as the sounder data.

There are several hyperparameters of the SSDMD model that must be set prior to
fitting a model. The first is the correlation threshold from Equation 18 that determines
how strongly scales must be correlated in order to form a connected component. This
threshold currently requires manual tuning. We found a value of c.orr = —1.95 achieved
good results for stations BC840, GA762, and GU513, while c.orr = —1.75 performed
better for RO041. Generating more efficient ways of determining the optimal value for
this parameter will be a topic of future research, though its value here was chosen such
that the MAE of the foF2 and hmF2 parameters were minimized.

Another hyperparameter is the number of days used to fit the SSDMD model. Us-
ing long time series will result in more averaging over the 24-hour cycles, thus increas-
ing bias in the forecast. We found that 10 days of EDPs worked reasonably well for all
stations for short-term prediction. If one attempts a longer-term forecast, averaging over
additional time lags may be necessary. The last hyperparameter of SSDMD is the thresh-
old at which to truncate the singular values in the DMD step, Equation 6. This thresh-
old was set to cs,q = 6, which worked well for all data sets. Lowering this threshold
will result in fewer spectral pairs (A;, w;) in the SSDMD model and thus reduces the num-
ber of modes used to generate the forecast. Table 2 summarizes these hyperparameters.
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Figure 9: Time series of hmF2 from the BC840 (red), RO041 (blue), GAT62 (green), and
GU513 (magenta) sounders. Note that the x-axis (day of year) has been zoomed in for the
shorter data sets GA762 and GU513.

SSDMD Parameter Value

Num. days for fit 10

Num. days forecast 2

Ceorr -1.95 (BC840, GA762, GU513) / -1.75 (RO041)
Csud 6

Wavelet type coiflet 4*" order

Table 2: Summary of parameters for the SSDMD model used for each data set.

3.2 SSDMD Model Performance

We tested the SSDMD method on 30 randomly chosen 12-day periods in the BC840
and RO041 data sets. Each of these stations contained several large gaps in their data
which were not used in the random start times as one cannot fit an SSDMD model with-
out contiguous data. Even though standard DMD methods will work for arbitrary snap-
shots of data (x,y), where y = Kx, the wavelet decompositions used in SSDMD re-
quire a regular measurement cadence, i.e., the data snapshots are always dt time apart.
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Figure 11: SSDMD forecasts of foF2 (top panels) and hmF2 (bottom panels) for the
RO041 sounding station for randomly chosen starting times in 2014. The MAE is pro-
vided for both the SSDMD and IRI forecasts.

For each random 12-day period, the first 10 days were used for fitting an SSDMD
model and the remaining 2 days for testing a 48-hour forecast of the foF2 and hmF2 pa-
rameters. Figures 10 and 11 show these test forecast periods for 3 of the 30 randomly
chosen times in each of the BC840 and RO041 data sets. The SSDMD and IRI predic-
tions for the F-layer parameters, along with the measured values from the sounder, are
presented for each. From these, we see that SSDMD captures some smaller-scale fluc-
tuations in the parameters that are commonly lost in climatological models due to ex-
treme averaging over monthly and seasonal variations. The mean absolute error (MAE)
is provided for each forecast. While, in general, the SSDMD MAE shows modest improve-
ments over IRI for BC840 in 2019, it is not always the case, as we can see in the hmF2
forecast for RO041 in 2014. However, in the cases where SSDMD does perform worse
than IRI, it is still relatively close considering how little data is used to generate the fore-
cast.

Figures 12 and 13 provide scatter plots and histograms of the foF2 modeled vs. mea-
sured forecasts for BC840 and RO041, respectively. The histograms are given to illus-
trate the shapes of the total model error distributions. The area of each bin simply rep-
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Figure 12: Forecasted vs. measured foF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the BC840 station in 2019. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.
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Figure 13: Forecasted vs. measured foF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the RO041 station in 2014. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.

resents the relative number of model errors within that interval over all 48-hour forecast
test periods. Note that SSDMD forecasts perform markedly better on the BC840 data
set, with IRI producing a significant bimodal error distribution. This may point toward
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limitations in SSDMD’s applicability during periods of high solar activity. Figure 8 shows
a significant seasonal variation in the foF2 parameter of the RO041 station. Applying
SSDMD to longer time series to capture seasonal and solar cycle trends will be a topic

of future study. Furthermore, in the context of short-term forecasts, SSDMD’s reliance

on the fit of the K, matrix to advance any data point one time-step into the future ben-
efits from higher measurement cadences. In addition, as the time resolution of sounder
measurements increases, a wider spectrum of geophysical noise will be observed, and thus,
SSDMD’s ability to identify couplings between dominant scales becomes more pronounced.
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Figure 14: Forecasted vs. measured hmF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the BC840 station in 2019. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.

Figures 14 and 15 give similar scatter plots and histograms for the hmF2 param-
eter for the BC840 and RO041 stations, respectively. With hmF2, we find the model er-
ror distributions for both SSDMD and standard IRI to be very similar. However, SS-
DMD provides a slight bias correction over IRI for the BC840 data set. While the hmF2
MAE for SSDMD on the RO041 data is worse than IRI, its performance is still quite close,
given the relatively small amount of data used to generate the forecast.

The SSDMD model was run on the GA762 station data set to illustrate its use on
data streams from higher latitudes. GA762 is at a latitude of 62.38°N and is the site of
the High-frequency Active Auroral Research Program (HAARP) (Bailey & Worthing-
ton, 2000), a valuable ionospheric-thermospheric research instrument used in a variety
of fundamental and experimental physics applications (Bell, 2001; Bernhardt et al., 2009).
Improved forecasts of the foF2 and hmF2 parameters continue to play a critical role in
high-frequency radio experimentation and modeling. The use of a lightweight and adap-
tive forecast like SSDMD for real-time operations may be explored in future work, but
in this paper we use this station to provide validation of our method in these high-latitude
regions. Figures 16 and 17 give forecasts of foF2 and hmF2 and visualizations of the full
EDP reconstructions for this station.
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Figure 15: Forecasted vs. measured hmF2 parameter scatter plots for the SSDMD (top
left) and IRI (bottom left) models for the RO041 station in 2014. The total MAE for each
model is given above their respective scatter plot. Histograms (right) provide estimates of
the total model error distributions.
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Figure 16: SSDMD 2-day forecast of the foF2 (top) and hmF2 (bottom) parameters for
the GAT62 station with IRI predictions. MAE values for both models are provided in the

legend.

Lastly, Figures 18 and 19 demonstrate the SSDMD model in a low-latitude envi-

ronment. Figure 19 illustrates the dramatic oscillations of the hmF2 as compared with
the mid- and high-latitude stations. The presence of complex physical processes like the
equatorial plasma fountain (MacDougall, 1969; Balan et al., 2018) induce categorically
more complex dynamics in the EDP time series than observed at mid-latitudes. Still,
we find SSDMD can fit a model that improves the MAE for both foF2 and hmF2 com-
pared to IRI.
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Figure 18: SSDMD 2-day forecast of the foF2 (top) and hmF2 (bottom) parameters for
the GU513 station with IRI predictions. MAE values for both models are provided in the
legend.

In addition to the MAE statistics presented for each station, Tables 3 and 4 give
summaries of root-mean-squared error (RMSE) and mean absolute percentage error (MAPE)
for all foF2 and hmF?2 forecasts, respectively. We find that SSDMD either outperforms
or closely matches a standard IRI forecast for both foF2 and hmF2 for the data sets pre-
sented. While significant improvement in the IRI forecast can be made by tweaking co-
efficients within the model or even through the assimilation of real time data, SSDMD
provides an easily implementable fitting method that can adapt to new data in real-time.
Moreover, adjusting the parameters within IRI will not always improve its forecast ac-
curacy, as one does not know in which direction to adjust parameters until observations
of the ionosphere are made.
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foF2 Forecast Errors
RMSE MAE MAPE
Station SSDMD IRI SSDMD IRI SSDMD  IRI
BC840 0.54 1.06 0.39 0.81 10.08 21.54

RO0O41 0.93 095 0.74 0.76 11.54 11.44

GA762 091 0.81 0.68 0.59 13.59 13.18

GU513 1.26 157 0.99 123 16.02 26.30

Table 3: Summary of foF2 error statistics for all stations using SSDMD and IRI.

4 Conclusions and Future Directions

We presented the standard DMD algorithm and formalized extensions that account
for oscillations at multiple scales within measured data. Wavelet decompositions along
each spatial dimension separated various scales within the time series that may other-
wise appear as noise and will often preclude a standard DMD approach. For each of the
scales, an affiliated reconstruction of the EDP time series was generated. Subsequent cor-
relation analysis across the time scales then showed how we may recombine specific scales
to preserve strong dynamic couplings between them in their one-step correlation. We called
these correlated scales the connected components of the model. We performed an av-
eraging step for each connected component by computing the mean over 24-hour time
lags. This process denoises the data without erroneously removing oscillations from the
original EDP signal that may initially appear as noise. Computing DMD on the connected
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hmF2 Forecast Errors
RMSE MAE MAPE
Station SSDMD IRI SSDMD IRI SSDMD IRI
BC840 23.03 28.68 16.41 2265 6.72 9.72

RO0O41 22.72 22.15 17.20 16.80 591 5.66

GA762 38.30 45.87 30.32 3441 13.08 16.02

GU513 45.43 54.74 34.00 4141 9.84 11.90

Table 4: Summary of hmF2 error statistics for all stations using SSDMD and IRI.

components individually alleviates the problem of having large single-step gradients in

the measurement data that would prevent DMD from fitting any stable modes. With

each connected component, we produced a set of DMD eigenvalues and modes that summed
coherently to form the SSDMD model. The final foF2 and hmF2 forecasts were then de-
termined from the predicted EDPs.

SSDMD is one among many recent attempts to improve short-term forecasts of the
foF2 and hmF2 parameters (cf. Perrone & Mikhailov, 2022; Wang et al., 2020; Tsagouri
et al., 2018; Mikhailov & Perrone, 2014; Zhang et al., 2014). While other methods gen-
erally treat past foF2 or hmF2 measurements as inputs to the model, SSDMD instead
uses the full EDP. The number of DMD modes is limited by the initial dimensionality
of the data; see Equation 8. Therefore, if the data used to generate the model only con-
sisted of the foF2 and hmF2 parameters, we would be restricted to a maximum of two
eigenvalues. Instead, using the high-dimensional EDP from the sounder gives our method
far richer spectral properties.

We note that all profile data in this study are autoscaled. This is an inherent data
limitation as there are no widely available manually scaled data sets that are of a size
suitable for statistical analysis. However, future studies with SSDMD and manually scaled
data may reveal additional insights into the spatial and temporal distributions of fluc-
tuations. Despite using autoscaled EDPs to construct the SSDMD models, our forecast
errors reflect the method’s predictions of foF2 and hmF2 and not the full profile.

The SSDMD algorithm is computationally efficient compared to physics-based mod-
els such as TIME-GCM or SAMIS, fitting a model and simulating a 5-minute resolution,
2-day forecast on the order of seconds using a single core on a consumer laptop. There-
fore, SSDMD is lightweight enough to be updated in near-real-time as additional data
are obtained, and it adapts to different measurement cadences without any changes to
the model parameters. Additionally, SSDMD requires far less data to generate and up-
date than empirical models like IRI or assimilation models like IRI-Real-Time-Assimilative-
Mapping (IRTAM) (Galkin et al., 2012) and the Global Assimilation of Ionospheric Mea-
surements (GAIM) model (Schunk et al., 2004). With limited observations, as is the case
with a single vertical ionosonde, SSDMD can produce reasonable forecasts of the aver-
age profile dynamics in the low, mid, and high latitudes. With high enough measurement
cadence, the method should produce reliable short-term forecasts during periods of ei-
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ther solar maximum or solar minimum. A final added benefit of the SSDMD approach
is the model has only four major hyperparameters, see Table 2, making it relatively sim-
ple to tune when necessary.

SSDMD fits a linear model to an expansion of full EDP time series and thus may
be seen as an autoregressive approach to forecasting foF2 and hmF2, and the simplic-
ity of the approach makes it accessible to a wide range of operational and research ap-
plications. Still, the method is not without its limitations, as SSDMD does not account
for any external driving forces such as solar activity, tidal forcing, or geomagnetic ac-
tivity. As such, model forecast accuracy is highly dependent on there being strong cor-
relations between the measurement and forecast periods at each time of day. Predict-
ing anomalous events in the data is not possible without the inclusion of driving forces.
Extending SSDMD further to incorporate external forcing is the topic of future devel-
opment and, combined with longer measurement series, could allow for a significant in-
crease in forecast accuracy over much longer prediction windows. The DMD method can
be modified to include control variables (Proctor et al., 2016), and in Mehta et al. (2018)
a version of this method was implemented for a global model to great effect. Neverthe-
less, this model was fit using simulated data, whereas SSDMD aims to address the mul-
tiscale nature of measured EDPs. For this reason, the applicability of SSDMD to peri-
ods of prolonged or recurrent F-layer perturbations during quiet geomagnetic conditions
may also be explored in future work. These disturbances can induce long-lived devia-
tions in foF2 and hmF2 with magnitudes that far exceed climatology (Perrone et al., 2020;
Zawdie et al., 2020) which would not necessarily be captured by empirical models with
drivers derived from geomagnetic and solar indices.

While the method was developed for one-dimensional observations of the ionosphere
at a single sounder station, in future work, data from the global network of sounders may
be used. However, a global model will require fitting additional spatial expansion func-
tions to interpolate between the stations. Finally, data spanning longer time periods may
also be used to extract seasonal and solar cycle dynamics. The method of SSDMD is ul-
timately not limited to ionospheric prediction, and it should be adaptable not only to
other space weather domains, but many other systems that involve low-dimensional dy-
namics embedded in high-dimensional, multiscale observations.

5 Data Availability Statement

The code used in this study is openly available at https://github.com/JayLago/
SSDMD-Ionosphere or at the permanent release link, https://doi.org/10.5281/zenodo
.7109436. The data used was obtained through the LGDC, https://giro.uml.edu/
didbase/, using the SAO Explorer program, for which we are grateful to the develop-
ers and maintainers. The authors would like to thank Dr. Terrance Bullet from the Na-
tional Centers for Environmental Information, NOAA, as well as Dr. Ivan Galkin from
the LGDC for the data from the Boulder, CO Digisonde station they continue to col-
lect and make available.

Appendix A Koopman Mode Analysis

Dynamic Mode Decomposition may be seen as a finite-dimensional approximation
to the Koopman operator (Koopman, 1931). The Koopman operator demonstrates how
the equations for a generic nonlinear dynamical system may be rewritten as a linear infinite-
dimensional operator acting on measurement functions of the system. This begins by con-
sidering a generic dynamical system,

YO =76@®), y0)=yoeMC RV, (A1)
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where M is some connected, compact subset of R¥s and define an observable, g(y(t)),
such that ¢ : M — C. Denoting the affiliated flow, y(¢t) = S(¢;y), we may rewrite
the system using the Koopman operator, K¢,

K'g(y) = g(S(ty))- (A2)
We see Kt is linear since

K'(agi(y) + Bg2(y)) = agi(S(ty)) + Bg2(S(t;y))
= aK'g(y) + BK'g2(y). (A3)

Following (Alford-Lago et al., 2022), we see that with some basic assumptions, i.e. if we
choose observables such that they are square-integrable and suppose M is invariant with
respect to the flow, we have simplified a problem of determining some unknown nonlin-
ear function f(y(t)) to one of finding an eigendecomposition of the linear operator, K?.
Moreover, by finding the Koopman eigenfunctions

{¢i}521 (Ad)
and affiliated eigenvalues
{X15=0 (A5)
where
Klg; =e™g;, je{l,2,...}, (A6)

then we have a modal decomposition for any other observable, g, so that
9(y) =D _e5(y), (A7)
j=1

and we can track the evolution of ¢g(y) along the flow with the formula,

oo

K'g(y) = cie™o;(y). (A8)

j=1

See (Budisi¢ et al., 2012) and (Mezié¢, 2019) for more in-depth treatments of the Koop-
man operator and its properties, (Mezié¢, 2005; Kutz et al., 2016) for deeper connections
between DMD and Koopman, and (Schmid, 2010; Tu et al., 2014; Williams et al., 2015)
for additional details on the DMD algorithm and its variations. We point out that the
Koopman operator is most naturally formulated with respect to Lagrangian data while
in this work we focus on analyzing Eularian data, that is to say, we assume the y; ob-
servations in our data stream are measurements of the EDP at fixed positions in alti-
tude. Were one to develop effective Euler-to-Lagrangian maps for the data sets studied
herein, this would open up a wider range of tools related to the DMD method. This is
a subject for future research.

Appendix B Pseudocode Algorithm

The complete SSDMD method is summarized in Algorithm 1. We assume famil-
iarity with standard numerical methods for computing the reduced Singular Value De-
composition (SVD), eigenvalue decomposition, solving an initial value problem, and com-
puting 1-dimensional wavelet decompositions. When computing the mean profiles over
24-cycles, use Equation 24. The algorithm returns the reconstructed time series of the
input data along with the DMD eigenvalues, modes, and eigenfunctions.

Acknowledgments

This work was supported by the Naval Information Warfare Center Pacific (NIWC Pa-
cific) and the Office of Naval Research (ONR).

—25—



Algorithm 1: SSDMD

Data: Y € RVs*XN7 guch that each column, y; € RV, is an observation of the
system &t time from y;_1.

Result: Y, W, A, &

Initialize: set DMD threshold cqmq > 0, and correlation threshold ccop > 0.

begin

Y — discreteW avelet Decomposition(Y)

YC, N +— correlatedConnectedComponents(Y, ¢y
for n=1...N¢c do

YO meanDailyC’ycles(YS)

Y’I’(L},f — [}_’g,l }_’S,z "'}_’S,mq]

Yo [Yna Vs o Vim)

U, %, VT «— reducedSVD(YS _, Cama)

K Y, vs-iuf ’

W,., A,, «— eigenvalue Decomposition(K)
P, «— solvel VP(W,,, Y )

Y, «— W,A,®,

¥‘i’<;[¢)1¢2§n]
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