
P
os

te
d

on
27

A
p
r

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
71

41
99

19
.9

43
11

24
0/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

A Depthwise Separable Convolution Hardware Accelerator for

ShuffleNetV2

Linshuang Li1, Dihu Chen1, and Tao Su1

1Sun Yat-Sen University

April 27, 2024

Abstract

Convolutional neural networks (CNNs) have been widely applied in the field of computer vision with the development of artificial

intelligence. MobileNet and ShuffleNet, among other depthwise separable convolutional neural networks, have gained significant

advantages in deploying on resource-constrained embedded devices due to their characteristics such as fewer parameters and

higher computational efficiency compared to previous networks. In this paper, we focus on the hardware implementation of

ShuffleNetV2. We optimized the network structure. Feature channel numbers, pooling modes, and channel shuffle modes are

modified, resulting in a 1.09% increase in accuracy while reducing the parameter count by 0.18M. Additionally, we implement

a highly parallel hardware accelerator on the Xillinx xczu9eg FPGA, which supports both standard convolution and depthwise

convolution. The power consumption of this accelerator is only 7.3W while achieving an energy efficiency of 13.45 GOPS/W.

The running frame rate achieves 675.7 fps.

A Depthwise Separable Convolution Hardware Accelerator for ShuffleNetV2

Linshuang Li, Dihu Chen, Tao Su

School of Electronics and Information Technology, Sun Yat-Sen Univer-sity, Guangzhou, Guangdong, Peo-
ple’s Republic of China

Email: stscdh@mail.sysu.edu.cn

Convolutional neural networks (CNNs) have been widely applied in the field of computer vision with the
development of artificial intelligence. MobileNet and ShuffleNet, among other depthwise separable convolu-
tional neural networks, have gained significant advantages in deploying on resource-constrained embedded
devices due to their characteristics such as fewer parameters and higher computational efficiency compared to
previous networks. In this paper, we focus on the hardware implementation of ShuffleNetV2. We optimized
the network structure. Feature channel numbers, pooling modes, and channel shuffle modes are modified,
resulting in a 1.09% increase in accuracy while reducing the parameter count by 0.18M. Additionally, we
implement a highly parallel hardware accelerator on the Xillinx xczu9eg FPGA, which supports both stan-
dard convolution and depthwise convolution. The power consumption of this accelerator is only 7.3W while
achieving an energy efficiency of 13.45 GOPS/W. The running frame rate achieves 675.7 fps.

Introduction: Nowadays, with the development of artificial intelligence, Convolutional Neural Networks
(CNNs) as one of its representative algorithms have received increasing attention. Due to its fast speed
and small model size, depthwise separable convolutional neural networks have gained significant advantages
deploying on embedded terminals.

However, depthwise separable convolutions decouple traditional convolutions into depthwise convolution
(DwC) and pointwise convolution (PwC) [1]. Therefore, conventional CNN accelerators are no longer suit-
able for performing computations in depthwise separable convolutional neural networks. Based on current

1



P
os

te
d

on
27

A
p
r

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
71

41
99

19
.9

43
11

24
0/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

research, the pipelined computing architecture introduced an additional feature bank to prefetch data from
off-chip memory [2], the introduction of additional storage units leads to increased hardware resources and
data read/write time consumptions. The reconfigurable architecture considered the combination of different
computation modes in the network model that supports both PwC and DwC calculations [3]. This structure
cannot guarantee that all modules are in an operational state during computation, leading to inefficient
utilization of computing resources and resulting in wastage. It does not support complex operations such as
grouped convolution and network shuffle operations as well. Although traditional channel shuffle mode sep-
arately handled the shortcut branch and concating the results after PwC [4], it still resulted in a significant
amount of memory read and write operations, leading to high latency.

Based on the above observations, the main contributions of this paper are as follows. We redesigned the
structure of the depthwise separable convolution ShuffleNetV2. The network channels, pooling mode and
channel shuffle mode are optimized, resulting in a 12.9% decrease in the parameter count and 1.09% accuracy
increase. We also proposed a hardware accelerator that supports both DwC and PwC, allowing them to
fully utilize and share the hardware resources of the computing array. Achieving Energy efficiency ratio with
minimal FPGA hardware resource utilization, resulting in a frame rate of 675.7fps for image processing.

Design details: The purpose of this paper is to implement the computation of depthwise separable convolu-
tion on resource-constrained embedded terminals, enabling fast and efficient image classification. Firstly, the
pooling layer after the first convolution layer is removed to ensure that more effective feature information
enters the construction block for feature extraction. Secondly, to ensure the utilization of processing elements
(PEs) in the convolution computing array, the number of channels after each down sampling unit is changed
from 29× to 27×. This operation allows for the full utilization and sharing of resources on the same com-
putational array by both DwC and PwC, without wasting hardware resources. The simplified ShuffleNetV2
structure is shown in Table 1. In addition, to further compress the network, we quantized the weights by
converting them from 32-bit floating-point numbers to 8-bit fixed-point numbers, with 3 bits for the integer
part and 5 bits for the fractional part.

Table 1. Simplified ShuffleNetV2 network structure

Layer Output size Repeat Stride Output Channel

Image 224×224 3
Conv1 112×112 1 2 27
Stage2 112×112 1 2 108

112×112 3 1 108
Stage3 56×56 1 2 216

56×56 7 1 216
Stage4 28×28 1 2 432

28×28 3 1 432
Conv5 7×7 1 1 1024
Maxpool 1×1
FC 100

The core of the accelerator is a highly parallel array that supports both standard convolution and DwC. For
standard convolution, we employed channel-level parallelism in the convolution. In one clock cycle, each row
of the convolution array reads the convolution window at the same position from l input channels, while each
column reads the convolution kernel weights from m output feature maps. The array uses a total ofl × m
PEs to perform the element-wise multiplication. The input feature maps and weights are accessed in address
order, a parallel approach suitable for natural data storage patterns. Moreover, only a single read operation
is required for the same data within the same clock cycle, resulting in reduced bandwidth requirements.
AfterDk × Dk (kernel size) cycles, a set of convolution results is obtained. Then, the sliding window moves
to the next position to traverse the entire feature map, and the computation continues for the next input

2



P
os

te
d

on
27

A
p
r

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
71

41
99

19
.9

43
11

24
0/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

feature map channel. This process repeats until all m output feature maps have completed the convolution,
and then the calculation starts for the next group ofl × m channel dimensions of the feature maps.

Fig 1 Convolution computing array for DwC mode.

For a DwC with both input and output channel parallelism of l , only l groups of PEs can be used simulta-
neously when implemented on traditional CNN accelerators, while the rest of the PEs in the computation
array will be idle. Therefore, to ensure that the computation engine shares the same computation array
for both DwC and standard convolution modes, and to achieve high resource utilization efficiency during
computation, an additional control module is used to manage the depth convolution mode. As shown in Fig
1, the standard convolution computation array is divided into q image processing units (PPE). Each PPE
reads l different channels of input data and the corresponding convolution kernel weights from the buffers.
Each PPE also contains l groups of window processing units (WPE) for multiplication. Each WPE performs
parallel computation on a single sliding window. Since the depth convolution layer has a uniform 3×3 kernel
size, the parallelism of PEs in each WPE is p =9.

In each clock cycle, the computation array first reads l ×pconvolution weights from the weight buffer for
each column. When the input feature map channels remain the same, the same batch of convolution kernel
weights can be used for each convolution operation, so the weights can be loaded only once. Then, p pixels
of a single convolution window from l input channels of qdifferent images are read from the input buffer and
loaded to different PEs for convolution. Therefore, the number of parallelizable multiplications is q ×l ×p .
The convolution window is traversed by prioritizing the entire feature map before moving on to the next set of
channel feature map computations, until all qdifferent input images have completed the convolution. Besides,
the size of the convolution array is determined to be 27×27. The parallelism for both standard convolution
and DwC is equal, ensuring that both convolution modes can fully utilize the hardware resources of the
computation module without wasting.

After the computation is completed in the convolution array, the feature map data enters the post-processing
module for further processing, including the addition tree module, activation module, pooling module, and
channel shuffle module. The hardware accelerator architecture is shown in Fig 2. After all the computation

3



P
os

te
d

on
27

A
p
r

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
71

41
99

19
.9

43
11

24
0/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

is finished, the output feature map data would be sent to the output buffer and then returned to the BRAM
for the next round of computation.

Fig 2 Architecture of the accelerator.

For the traditional channel shuffle operation, channels are selected alternately from two groups of feature
maps and recombined into a new output feature map, which is then transferred to BRAM as the input for the
next convolution. In this paper, the channel shuffle method is modified by partitioning the output feature
maps internally into groups of 4 channels. Channels are then selected alternately from the two groups and
recombined into a new output feature map, as illustrated in Fig 3. This approach maintained the advantage
of increasing inter-channel information exchange while reducing the number of memory read/write operations
by 75%, significantly reducing memory access time.

Fig 3 Comparison between original and optimized channel shuffle mode.

Experiments and results: The network we proposed is trained and tested using the PyTorch deep learning
framework. The test dataset we used is CIFAR100. The simplified ShuffleNetV2 network proposed in this
paper is compared with traditional networks, and the comparison results are shown in the table I. In the
case of small input feature map size, the network achieves a recognition accuracy improvement of 1.33% and
1.09% compared to the original network. At the same time, the number of parameters is reduced from 1.4M
to 1.22M, effectively reducing the storage resources and data access on the hardware.

4



P
os

te
d

on
27

A
p
r

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
71

41
99

19
.9

43
11

24
0/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Table 2. Comparison with original network

Original network Simplified network Simplified network

Data format float32 float32 int8
Accuracy(%) 69.40 70.73 70.49
Parameters(M) 1.40 1.22 1.22

The hardware acceleration system was deployed on Xilinx FPGA chip xczu9eg, with a clock frequency of 180
MHz. The GPU used was NVIDIA GeForce GTX 1080 Ti. The execution times of ShuffleNetV2 on FPGA
and GPU are shown in the table II, representing the average time for classifying 1250 images. The speed on
FPGA is 1.12 times faster than that on GPU, with a decrease in recognition accuracy of only 0.66%. Since
it takes 146M FLOPS to perform the whole network, we can calculate the GPU’s energy efficiency as 0.44.
Our work has achieved an energy efficiency 30.57 times higher than that of the GPU.

Table 3. Comparison with GPU

Device FPGA xczu9eg GPU

Power(W) 7.3 220
Power efficiency (GOPS/W) 13.45 0.44
Execution time(ms) 1.48 1.66
Accuracy(%) 69.83 70.49

We also compared our work with others work [2][4][5][6]. We achieved a computational efficiency that is 1.75
times higher than [4]. Compared to [5], we achieved a throughput and frame rate that are 2.08 times and
11.5 times higher respectively, even at a lower clock frequency. These comparisons demonstrate significant
advantages of our work in terms of computational speed and hardware resource consumption.

Table 4. Comparison with other work

[2] [4] [5] [6] ours

Device zu2eg 7z045 zu3eg 7z045 zu9eg
BRAM 145 213 170 64 190
LUT 31198 105000 24130 69666 18573
DSP 212 - - 385 729
Throughput(GOPS) - 56.1 47.1 33.6 98.2
Power (W) - – 5.5 - 7.3
Energy efficiency (GOPS/W) - - 8.56 - 13.45
Frame rate(fps) 205.3 291.5 96.5 240 675.7

Conclusion: This paper presents a deep separable convolutional neural network accelerator designed specif-
ically for ShuffleNetV2. Based on the features of ShuffleNetV2, optimizations are made to the network
structure, achieving a 1.09% increase in accuracy while reducing the parameters by 0.18M. The paper also
proposes a reconfigurable hardware accelerator that supports both PwC and DwC. The power consumption
of this accelerator is only 7.3W while achieving a power efficiency of 13.45 GOPS/W. The running frame
rate achieves 675.7 fps.

Acknowledgments: The authors thank to the support by the Science and Technology Program of Guangdong
Province under Grant 2022B0701180001.

5



P
os

te
d

on
27

A
p
r

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
71

41
99

19
.9

43
11

24
0/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

References

1. N. Ma et al , “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” in Proceed-
ings of the European conference on computer vision (ECCV) pp. 116-131, doi: arXiv:1807.11164v1.

2. D. Wu et al ., ”A High-Performance CNN Processor Based on FPGA for MobileNets,” 2019 29th
International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain,
2019, pp. 136-143, doi:10.1109/FPL.2019.00030.

3. Y. -G. Chen, H. -Y. Chiang, C. -W. Hsu, T. -H. Hsieh and J. -Y. Jou, ”A Reconfigurable Accelerator De-
sign for Quantized Depthwise Separable Convolutions,” 2021 18th International SoC Design Conference
(ISOCC), Jeju Island, Korea, Republic of, 2021, pp. 290-291, doi:10.1109/ISOCC53507.2021.9613976.

4. Z. Fan, W. Hu, H. Guo, F. Liu and D. Xu, ”Hardware and Algorithm Co-Optimization for
pointwise convolution and channel shuffle in ShuffleNet V2,” 2021 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 2021, pp. 3212-3217,
doi:10.1109/SMC52423.2021.9659057.

5. Y. Yang et al , Synetgy: “Algorithm-hardware co-design for convnet accelerators on embedded fpgas,”
Proceedings of the 2019 ACM/SIGDA international symposium on field-programmable gate arrays.
2019, pp. 23-32, doi:10.1145/3289602.3293902.

6. Y. Lin et al , ”A High-speed Low-cost CNN Inference Accelerator for Depthwise Separable Convo-
lution,” 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications
(ICTA), Nanjing, China, 2020, pp. 63-64, doi:10.1109/ICTA50426.2020.9332057.

6


