Evolution of parasite transmission dispersion

Hannelore MacDonald¹, Sebastian Bonhoeffer¹, and Roland Regoes¹

¹ETH Zurich

April 26, 2024

Abstract

An open question in epidemiology is why transmission is often overdispersed, meaning that most new infections are driven by few infected individuals. For example, around 10% of COVID-19 cases cause 80% of new COVID-19 cases. This overdispersion in pathogen transmission is likely driven by intrinsic biological heterogeneity among hosts, i.e. variability in SARS-CoV-2 viral loads. However, host heterogeneity could also indirectly increase transmission dispersion by driving pathogen adaptation. Specifically, transmission variation among hosts could drive pathogen specialization to highly-infectious hosts. Adaptation to rare, highly-infectious hosts could amplify transmission dispersion by simultaneously decreasing transmission from common, less-infectious hosts. This study considers whether increased transmission dispersion can be, in part, an emergent property of parasite adaptation to heterogeneous host populations. We develop a mathematical model using a Price equation framework to address this question that follows the epidemiological and evolutionary dynamics of a general host-parasite system. The results predict that parasite adaptation to heterogeneous host populations drives high transmission dispersion early in epidemics. Further, parasite adaptation can maintain increased transmission dispersion at endemic equilibria as long as virulence differs between hosts in a heterogeneous population. More broadly, this study provides a framework for predicting how parasite adaptation determines transmission dispersion for emerging and re-emerging infectious disease.

Evolution of parasite transmission dispersion

Hannelore MacDonald^{1*}, Sebastian Bonhoeffer^{1†}, Roland Regoes^{1‡}

1. Institute for Integrative Biology, ETH Zürich, Zürich, 8005, Switzerland;

* Corresponding author; e-mail: hannelore.macdonald@env.ethz.ch

† e-mail: seb@env.ethz.ch

‡ e-mail: roland.regoes@env.ethz.ch

Statement of Authorship: HM conceived of the presented idea and developed the theoretical framework; HM conducted the mathematical analysis and performed numerical simulations; RR supervised the mathematical analysis; All authors wrote the manuscript and gave final approval for publication and agree to be held accountable for the work performed therein.

Data Accessibility: Code is available on Zenodo:

https://zenodo.org/records/10203626

Short title: Evolution of parasite transmission dispersion Keywords: evolutionary ecology, parasite, epidemiology, adaptation, transmission dispersion, superspreading Article Type: Perspective Abstract word count: 200 Main text word count: 4231 Text box word count: 0 Number of references: 38 Number of figures: 9 Number of tables: 1 Number of text boxes: 0

1 Abstract

An open question in epidemiology is why transmission is often overdispersed, meaning that most new infections are driven by few infected individuals. For example, around 10% of COVID-19 cases cause 80% of new COVID-19 cases. This overdispersion in parasite transmission is likely driven by intrinsic heterogeneity among hosts, i.e. variable SARS-CoV-2 viral loads. However, host heterogeneity could also indirectly increase transmission dispersion by driving parasite adaptation. Specifically, transmission variation among hosts could drive parasite specialization to highly-infectious hosts. Adaptation to rare, highly-infectious hosts could amplify transmission dispersion by simultaneously decreasing transmission from common, less-infectious hosts. This study considers whether increased transmission dispersion can be, in part, an emergent property of parasite adaptation to heterogeneous host populations. We develop a mathematical model using a Price equation framework to address this question that follows the epidemiological and evolutionary dynamics of a general host-parasite system. The results predict that parasite adaptation to heterogeneous host populations drives high transmission dispersion early in epidemics. Further, parasite adaptation can maintain increased transmission dispersion at endemic equilibria if virulence differs between hosts in a heterogeneous population. More broadly, this study provides a framework for predicting how parasite adaptation determines transmission dispersion for emerging and re-emerging infectious disease.

¹ 2 Introduction

² Transmission events are often overdispersed during epidemics meaning that the majority of infections are

transmitted from a minority of infected individuals (Galvani and May 2005). For example, less than 20% of

⁴ cases cause 80% of new infections in typical outbreaks of Measles and COVID-19 (Endo et al. 2020; Galvani

and May 2005; Woolhouse et al 1997). This increased dispersion in parasite transmission is likely driven to a

considerable extent by intrinsic biological heterogeneity among hosts (Regoes, Nowak, and Bonhoeffer 2000;

VanderWaal and Ezenwa 2016). Consequently, the majority of studies on transmission dispersion focus on
 the direct impact of host heterogeneity (Lloyd-Smith et al 2005; VanderWaal and Ezenwa 2016; Woolhouse et

the direct impact of host heterogeneity (Lloyd-Smith et al 2005; VanderWaal and Ezenwa 2016; Woolhouse et
 al 1997). However, this perspective overlooks a dynamic and potentially important additional factor: the

¹⁰ evolution of parasites in response to host heterogeneity.

Could parasite adaptation to diverse host types amplify transmission dispersion? This Ideas and 11 Perspectives article proposes that host heterogeneity may not only drive transmission dispersion directly 12 by making some hosts more infectious than others but that it could also indirectly enhance transmission 13 dispersion by generating selection pressure for parasites that are more transmissible on some hosts than others. 14 How this could work is that parasite could specialize on hosts that drive more onward transmission when 15 adapting to heterogeneous host populations composed of individuals whose infectiousness and morbidity 16 vary following infection. In natural populations, differences in symptomatic responses to large within-host 17 parasite densities can make some hosts more infectious than others (Jones et al 2021; VanderWaal and 18 Ezenwa 2016; Yang et al 2021), e.g. asymptomatic children have significantly higher SARS-CoV2 viral loads 19 than hospitalized adults (Yonker et al 2021). Previous work has shown that distinct host types select for 20 parasites with different virulence levels (parasite-induced mortality), which decreases the transmission of 21 evolved parasites infecting novel host types (Kubinak and Potts 2013; White et al 2020). In the context of how 22 parasite adaptation could impact transmission dispersion, selection could reduce the proportion of infections 23 responsible for most new cases if parasites evolve high within-host growth rates to exploit hosts supporting 24 high parasite densities despite low mortality that simultaneously decrease transmission in other host types 25 by driving high mortality following infection. 26 This article begins by outlining a simple epidemiological model to demonstrate how host heterogeneity 27 alone contributes to transmission dispersion. We then show how parasite adaptation could create a situation 28 where transmission is increasingly dominated by a few, highly efficient host-parasite interactions using the 29 Price equation framework developed in Day and Gandon 2007. The advantage of this approach is that the 30 epidemiological and evolutionary dynamics occur on the same time scale (in contrast to other approaches

³¹ epidemiological and evolutionary dynamics occur on the same time scale (in contrast to other approaches
 ³² such as adaptive dynamics Dieckmann, Metz, Sabelis, and Sigmund 2002.) The framework thus predicts

³³ how parasites adapt throughout epidemics rather than only providing predictions at epidemic equilibria.

³⁴ The framework used here predicts that parasite adaptation to heterogeneous host populations can drive

high transmission dispersion early in epidemics and can maintain increased transmission dispersion at
 endemic equilibria. In addition, large differences in host quality are predicted to select for parasites that drive

³⁷ high transmission dispersion. More broadly, this study provides a framework for predicting how parasite

³⁸ adaptation determines transmission dispersion for emerging and re-emerging infectious disease. This article

³⁹ not only highlights the complex interplay between host heterogeneity and parasite evolution but also charts

⁴⁰ a course for future research into the mechanisms underlying transmission dispersion in both emerging and

⁴¹ re-emerging infectious diseases.

42 3 How host heterogeneity impacts transmission dispersion

We first introduce a basic epidemiological model with two distinct host types to demonstrate how host 43 heterogeneity impacts parasite transmission dispersion in the absence of parasite evolution. The heterogeneous 44 host population is composed of two host types with distinct transmission and virulence functions, both of 45 which depend on the within-host growth rate of the parasite (ϵ). Thus, parasites with identical within-host 46 growth rates transmit and increase host mortality at different rates in the two host types. This is modelled 47 by assuming that susceptible and infectious hosts that are "high yield" from the perspective of the parasite 48 (s_H, i_H) have high transmission and/or low virulence while infected such that parasite reproductive fitness 49 from these hosts is high. Conversely, hosts that are "low yield" from the perspective of the parasite (s_L, i_L) 50 have low transmission and/or high virulence following infection such that parasite reproductive fitness from 51 these hosts is low. The within-host growth rate of the parasite is constant in this first model, but will be the 52 trait under selection in the model that includes parasite adaptation. The epidemiological dynamics are given 53 by 54

$$\frac{ds_H}{dt} = \lambda(1-p) - (\bar{\beta}_H i_H(t) + \bar{\beta}_L i_L(t))s_H(t) - \delta s_H(t), \tag{1a}$$

$$\frac{ds_L}{dt} = \lambda p - (\bar{\beta}_H i_H(t) + \bar{\beta}_L i_L(t)) s_L(t) - \delta s_L(t),$$
(1b)

$$\frac{di_H}{dt} = (\bar{\beta}_H i_H(t) + \bar{\beta}_L i_L(t))s_H(t) - (\delta + \gamma + \bar{\alpha}_H)i_H(t),$$
(1c)

$$\frac{di_L}{dt} = (\bar{\beta}_H i_H(t) + \bar{\beta}_L i_L(t))s_L(t) - (\delta + \gamma + \bar{\alpha}_L)i_L(t).$$
(1d)

⁵⁵ where λ is the rate that new susceptible hosts enter the system - a proportion p of which are low yield and a ⁵⁶ proportion (1 - p) of which are high yield - δ is the natural host mortality rate and γ is the rate that hosts ⁵⁷ recover from infection. $\bar{\alpha}_i$ is the additional mortality suffered by infected hosts (virulence) and $\bar{\beta}_i$ is the ⁵⁸ average transmission rate in each host type (i = H, L). Both $\bar{\alpha}_i$ and $\bar{\beta}_i$ are functions of the within-host growth ⁵⁹ rate of the parasite (ϵ).

The transmission and virulence functions differ between high and low yield hosts such that parasites with the same within-host growth rate trait value will transmit and increase host mortality at different rates in the two host types. In line with previous theory on the evolution of parasite virulence (Alizon, Hurford, Mideo, and Van Baalen 2009; Alizon and van Baalen 2005), the model assumes a trade-off between transmission and virulence such that transmission ($\bar{\beta}_i$) and virulence ($\bar{\alpha}_i$) functions increase as ϵ increases. The function for the transmission rate is

$$\bar{\beta}_i(\epsilon, c_i, x, \rho) = \rho(c_i + \epsilon^x) \tag{2}$$

where *x* controls the concavity of the transmission function as the within-host growth rate increases, ρ is a scaling parameter and c_i (i = H, L) is the transmission set point which can vary between high and low yield hosts. We assume x < 1 to study how concave trade-offs between transmission and within-host parasite growth rates impact selection. $c_i \ge 0$ and is higher in high yield hosts when transmission varies between the two host types. Note that transmission would occur even when $c_i > 0$ and $\epsilon = 0$ (no parasite), however this is not a practical concern in this study as evolutionary analyses always assume positive starting values of ϵ ⁷² and selection never drives ϵ to 0 (see Results section).

⁷³ The function for virulence is

$$\bar{\alpha}_i(\epsilon, y_i) = y_i \epsilon \tag{3}$$

- where y_i is the rate that virulence increases as the within-host growth rate increases. y_i is higher in low yield
- ⁷⁵ hosts when virulence varies between the two host types.

⁷⁶ The expected number of new infections produced by an infected host is defined following Gandon 2004 and

77 Gandon and Day 2009 to study how host heterogeneity impacts parasite fitness and transmission dispersion

78 over time.

$$R_e(t) = \frac{\bar{\beta}_H s_H(t)}{\delta + \gamma + \bar{\alpha}_H} + \frac{\bar{\beta}_L s_L(t)}{\delta + \gamma + \bar{\alpha}_L}$$
(4)

Transmission dispersion can then be defined as the variance-to-mean ratio (following Lloyd-Smith et al 2005) in R_e from each host type

$$vmr(R_e(t)) = var(R_e(t))/R_e(t)$$
(5)

within-host growth rate evolutionary dynamics:

epidemiological dynamics:

Figure 1: The modelling framework follows the epidemiological dynamics of the host population (using a SI model (Anderson and May 1991)) and the evolutionary dynamics of the parasite within-host parasite growth rate (using the Price equation (Price et al. 1970)). The epidemiological dynamics impact selection on the within-host parasite growth rate. The value of the within-host parasite growth rate impacts how quickly infected hosts transmit the parasite and die from the infection, thus impacting the epidemiological dynamics. The form of the Price equation used here ignores the impact of mutation. The plot in the bottom left shows an example of positive selection on the within-host growth rate as the trait is positively correlated with fitness. The plot in the bottom right shows an example of the epidemiological dynamics for high and low yield susceptible and infectious hosts.

where

$$var(R_{e}(t)) = \sum_{j} i_{j}/i(R_{e}(t) - R_{ej}(t))^{2}$$

= $i_{H}(t)/(i_{H}(t) + i_{L}(t))(R_{e}(t) - \frac{\bar{\beta}_{H}(s_{H}(t) + s_{L}(t))}{\delta + \gamma + \bar{\alpha}_{H}})^{2}$
+ $i_{L}(t)/(i_{H}(t) + i_{L}(t))(R_{e}(t) - \frac{\bar{\beta}_{L}(s_{H}(t) + s_{L}(t))}{\delta + \gamma + \bar{\alpha}_{L}})^{2}$ (6)

In line with previous work (Anderson, Gupta, and Ng 1990; Mandal, Sarkar, and Sinha 2011; Wonham, Lewis, Rencławowicz, and van den Driessche 2006; ?), the first model demonstrates that transmission dispersion increases as difference in host quality increases (Fig.2). As expected, transmission dispersion is equal to zero when the host population is composed entirely of low yield or high yield hosts. The variance to mean ratio is high when high yield hosts contribute more infections than low yield hosts.

Figure 2: Large differences in host quality drive increased transmission dispersion $(vmr(R_e))$. Transmission dispersion is high when the host population is roughly equally split between high and low yield hosts (% $S_L \approx 0.5$.) and equal to zero when the host population is entirely high or low yield hosts. In the case where the high yield host is slightly more productive from the perspective of the parasite $(R_{eH} > R_{eL})$, $c_H = 0.1, c_L = 0, y_H = 0.1, y_L = 0.2$, while in the case where the high yield host is much more productive from the perspective of the parasite $(R_{eH} >> R_{eL}), c_H = 1, c_L = 0, y_H = 0.1, y_L = 1$. For both cases: $x = 0.5, \lambda = 50, \delta = 0.02, \gamma = 0.6, \rho = 10^{-2}, \epsilon = 0.25$.

⁸⁴ 4 A model to study how parasite adaptation impacts transmission dispersion

⁸⁵ In this next section we outline a model to study how parasite adaptation impacts transmission dispersion

⁸⁶ over time. To do so we use a modelling framework that was developed in Day and Gandon 2007 that

⁸⁷ follows the epidemiological and evolutionary dynamics of a host-parasite system. In this framework, the

- epidemiological dynamics are linked to the evolutionary dynamics through the Price equation and thus
- ⁸⁹ the impact of parasite adaptation on epidemiological dynamics is explicitly considered and vice versa (Fig.
- ⁹⁰ 1). To get at our question, we use an extension of this original model that considers a heterogeneous host
- ⁹¹ population originally developed to investigate the evolutionary dynamics of parasite adapting to partially
- vaccinated host populations (Gandon and Day 2007). In our case, we consider the evolution of a polymorphic
- ⁹³ parasite population infecting a heterogeneous host population in which the number of infections resulting
- ⁹⁴ from each host type can vary due to pre-determined biological factors. The trait under selection in this study
- $_{^{95}}$ is the within-host growth rate of the parasite (ϵ).
- Following Day and Gandon 2007, this study uses a form of the Price equation that ignores the impact of mutation to track the mean within-host parasite growth rate (ϵ) in the parasite population in each host type

$$\frac{d\bar{\epsilon}_H}{dt} = cov(\epsilon, r_{HH}) + \frac{i_L}{i_H}(\bar{r}_{LH}(\bar{\epsilon}_L - \bar{\epsilon}_H) + cov(\epsilon, r_{LH})),$$
(7a)

$$\frac{d\bar{\epsilon}_L}{dt} = cov(\epsilon, r_{LL}) + \frac{i_H}{i_L}(\bar{r}_{HL}(\bar{\epsilon}_H - \bar{\epsilon}_L) + cov(\epsilon, r_{HL})).$$
(7b)

- ⁹⁸ where r_{ij} terms specify the per-capita rate of production of new infections in host type *j* from host type *i* (*i.e.*
- ⁹⁹ fitness). $cov(\epsilon, r_{ij})$ is the covariance between the within-host growth rate and fitness for each transmission
- 100 scenario. r_{ij} terms are given by

$$r_{HH} = \bar{\beta}_H s_H(t) - (\delta + \gamma + \bar{\alpha}_H), \tag{8a}$$

$$r_{HL} = \bar{\beta}_L s_H(t), \tag{8b}$$

$$r_{LL} = \bar{\beta}_L s_L(t) - (\delta + \gamma + \bar{\alpha}_L), \tag{8c}$$

$$r_{LH} = \bar{\beta}_H s_L(t). \tag{8d}$$

The first term in equations (4a) and (4b) describes the impact of selection on $\bar{\epsilon}_H$ and $\bar{\epsilon}_L$ from infections 101 that pass exclusively within one host type (e.g. i_H infects s_H). The second and third terms in (4a) and 102 (4b) describe the impact of transmission between host types (e.g. i_H infects s_L) and are thus weighted by 103 the relative sizes of the two host type populations. The second term in (4a) and (4b) expresses the impact 104 transmission between host types has on $\bar{\epsilon}_H$ and $\bar{\epsilon}_L$ in the absence of selection. This term will have an impact 105 on trait values when $\bar{\epsilon}_H$ and $\bar{\epsilon}_L$ differ. The third term in (4a) and (4b) accounts for any selection that occurs 106 during the transmission process between host types, e.g. parasites with high ϵ enjoy high transmission and 107 are over-represented among strains that infect s_L from i_H . This term accounts for the fact that transmission 108 between host types can impact ϵ trait values even if $\bar{\epsilon}_H$ and $\bar{\epsilon}_L$ are equal. 109

110

(4a) and (4b) can be expanded by assuming
$$cov(\epsilon, r_{ij}) \approx var_i(\epsilon)(\frac{dr}{d\epsilon})$$
, which yields

$$\begin{aligned} \frac{d\bar{\epsilon}_H}{dt} &= var_H(\epsilon)(\frac{d\beta_H}{d\epsilon}s_H(t) - \frac{d\alpha_H}{d\epsilon}) + \frac{i_L(t)}{i_H(t)}(\bar{\beta}_L s_H(t)(\epsilon_L - \epsilon_H) + var_L(\epsilon)\frac{d\beta_L}{d\epsilon}s_H(t)),\\ \frac{d\bar{\epsilon}_L}{dt} &= var_L(\epsilon)(\frac{d\beta_L}{d\epsilon}s_L(t) - \frac{d\alpha_L}{d\epsilon}) + \frac{i_H(t)}{i_L(t)}(\bar{\beta}_H s_L(t)(\epsilon_H - \epsilon_L) + var_H(\epsilon)\frac{d\beta_H}{d\epsilon}s_L(t)). \end{aligned}$$

¹¹² which using Eq. 2 expands to

$$\frac{d\bar{\epsilon}_H}{dt} = var_H(\epsilon)(\rho x \epsilon_H^{x-1} s_H(t) - y_H) + \frac{i_L(t)}{i_H(t)} (\bar{\beta}_L s_H(t)(\epsilon_L - \epsilon_H) + var_L(\epsilon)\rho x \epsilon_L^{x-1} s_H(t)),$$
(9a)

$$\frac{d\bar{\epsilon}_L}{dt} = var_L(\epsilon)(\rho x \epsilon_L^{x-1} s_L(t) - y_L) + \frac{i_H(t)}{i_L(t)} (\bar{\beta}_H s_L(t)(\epsilon_H - \epsilon_L) + var_H(\epsilon)\rho x \epsilon_H^{x-1} s_L(t)).$$
(9b)

113 5 Results

The goal of this study is to determine how parasite adaptation to heterogeneous host populations impacts 114 transmission dispersion. That is, does parasite adaptation skew the contribution that infections from each 115 host type make to parasite fitness (measured as an increase in $vmr(R_e)$)? To do so, we use a mathematical 116 modelling framework that follows epidemiological dynamics coupled to the evolutionary dynamics of the 117 parasite trait under study: the within-host growth rate (ϵ). The framework differs from adaptive dynamics in 118 that the epidemiological and evolutionary dynamics proceed simultaneously such that the epidemiological 119 dynamics need not be at an equilibrium for new parasite strains to emerge, (*i.e.* no time-scale separation 120 between the epidemiological and evolutionary dynamics.) The epidemiological dynamics follow susceptible 121 and infectious host densities (Eq. 1a - 1d) which determine parasite reproductive fitness (measured as R_{er} Eq. 122 6) and drive the adaptation of the within-host growth rate (Eq 5a, 5b). The epidemiological and evolutionary 123 dynamics are linked such that changes in the within-host growth rate impact the transmission and virulence 124 of infected hosts and thus the epidemiological dynamics. The host population is heterogeneous as there 125 are two distinct host types: (1) a high yield host that has high transmission and/or low virulence following 126 infection such that parasite reproductive fitness from these hosts is high and (2) a low yield host that has low 127 transmission and/or high virulence following infection such that parasite reproductive fitness from these 128 hosts is low. We predict how different host population compositions (e.g. proportion of low yield hosts, 129 differences in transmission set points) impact parasite evolution, which changes the reproductive fitness 130 of the parasite from both host types and thus the relative contribution both hosts make to parasite fitness, 131 measured as transmission dispersion (Eq. 9.) The model predicts that transmission dispersion is highest 132 when the host population is mostly composed of low yield hosts and when the difference in quality between 133 the two host types is large. 134

¹³⁵ 5.1 How transmission dispersion changes over the course of an epidemic

Susceptible host density is high early in an epidemic and quickly drops as hosts become infected (Fig.3A). 136 Infected host density peaks relatively early in an epidemic and then drops before eventually rebounding 137 and settling to an endemic equilibrium (Fig.3B). Infected host density drops as the influx of new infections 138 decreases from the drop in susceptible host availability and as hosts recover and die from the infection. 139 Low yield infected hosts maintain lower densities than high yield infected hosts when they experience 140 higher virulence than high yield hosts. Parasite adaptation changes the dynamics that occur in the absence 141 of evolution by driving an earlier decrease in susceptible host density (Fig.3C) and maintaining lower 142 equilibrium host densities (Fig.3D). 143

Two selective forces act on the within-host growth rate (ϵ): (1) susceptible host density selects for increased within-host growth rate - with strength proportional to susceptible host density (2) virulence selects for decreased ϵ - with strength proportional to the rate that virulence increases as ϵ increases (y_i). Early in an epidemic, there is strong selection for high ϵ as susceptible hosts are abundant (Fig. 4A, 3C). Selection for high ϵ is approximately the same in both host types during this period ($\epsilon_H \approx \epsilon_L$). As susceptible hosts are depleted, selection for increased ϵ disappears. Low ϵ is then adaptive as negative selection from the cost of virulence outweighs the weak positive selection from the few remaining susceptible hosts (Fig. 4B, 3D). Selection for higher ϵ resumes as the susceptible host population is replenished and continues until the epidemiological and evolutionary dynamics reach an equilibrium. Note that the extent that ϵ_H and ϵ_L trait values diverge while approaching the evolutionary equilibrium increases as the difference in virulence between hosts increases (this can also be predicted from (Eq. 3a, 3b)).

The dynamics of parasite fitness (R_e) and transmission dispersion $(vmr(R_e))$ are determined by both 155 the epidemiological dynamics and the evolutionary dynamics of the within-host growth rate (Figure 5). 156 Parasite fitness in both high and low yield hosts is high early in epidemics regardless of parasite adaptation 157 as susceptible host density is high $(R_{eH}, R_{eL}$ in Fig. 5A, 3C). Parasite adaptation increases the relative fitness 158 from high and low yield hosts by driving more new infections from high yield hosts compared to low yield 159 hosts (Fig. 5A). Parasite adaptation can thus result in increased transmission dispersion by increasing parasite 160 fitness from high yield hosts more than low yield hosts. The early peak in parasite fitness and transmission 161 dispersion is followed by a dip when susceptible hosts are rare (Fig. 5A, 3C). Transmission dispersion is 162 also low when hosts are rare as parasite fitness is low for infections of both host types (*i.e.* R_{eH} and R_{eL} 163 are both low which drives low $vmr(R_e)$, Fig. 5C). Parasite fitness and transmission dispersion both rise 164 again as susceptible host abundance increases (Fig. 5B, D). At equilibrium, transmission dispersion is lower 165

¹⁶⁶ compared to early in an epidemic as host densities are relatively low (Fig. 3D, 5D).

¹⁶⁷ 5.2 Impact of host composition on transmission dispersion

The composition of the host population impacts the extent that parasite adaptation increases transmission 168 dispersion. For example, host populations that are mostly composed of low yield hosts select for parasites 169 that drive high transmission dispersion (Fig. 6.) Parasites infecting and adapting to host populations with 170 only a few high yield hosts cause high transmission dispersion as the small proportion of high yield hosts 171 are responsible for an outsized proportion of new cases. Further, parasite adaptation drives larger increases 172 in transmission dispersion as the difference in quality between high and low yield hosts increases (Fig. 7). 173 Both differences in transmission and virulence can drive increased $vmr(R_e)$: transmission dispersion is high 174 when low yield hosts have lower transmission $(c_H > c_L)$ and/or higher virulence $(y_H < y_L)$ compared to 175 high yield hosts (Figure 7). 176

¹⁷⁷ 5.3 Parasite within-host growth rate variance impacts transmission dispersion

The phenotypic variance of the within-host growth rate in the parasite population (var ϵ) controls how quickly 178 parasite adaptation occurs (Figure 8). Early in an epidemic, high phenotypic variance drives increased peak 179 within-host growth rates as parasites can quickly adapt to exploit high host densities (Figure 8). When 180 phenotypic variance is low, parasite adaptation proceeds more slowly such that host densities drop, reducing 181 selection pressure for high within-host growth rates, before high trait values evolve. High phenotypic variance 182 also drives high transmission dispersion $(vmr(R_e))$ early in the epidemic through the high values of the 183 within-host growth that result in larger increases in parasite fitness from high yield hosts (R_{eH}) relative 184 to fitness from low yield hosts (R_{eL}) (Fig. 9 A,B,C). Conversely, low phenotypic variance prevents high 185 within-host growth rates from evolving and thus maintains low transmission dispersion by keeping R_{eH} and 186 R_{eL} relatively close to one another. 187

The impact of phenotypic variance on parasite adaptation differs at the endemic equilibrium compared to 188 early in an epidemic: intermediate phenotypic variance maximizes equilibrium transmission dispersion (Fig. 189 9 F). Similar to early in an epidemic, increasing phenotypic variance increases the within-host growth rate 190 and transmission dispersion for small values of phenotypic variance (Fig. 9 D, F). However, further increases 191 in phenotypic variance decreases the within-host growth rate in low yield hosts (ϵ_L) while maintaining 192 high within-host growth rates in high yield hosts (ϵ_H) (Fig. 9 D). When phenotypic variance is low, 193 selection dominates to increase ϵ_L and ϵ_H to prioritize increasing fitness on high yield hosts at the cost 194 of decreased fitness on low yield hosts (Fig. 9D). Conversely, high phenotypic variance results in within-host 195 growth rate specialization in the two host types which maintains high reproductive fitness in both hosts and 196 simultaneously decreases transmission dispersion (Fig. 9 D, F). 197

Figure 3: Epidemiological dynamics of a heterogeneous host population early (A, C) and late (B, D), with (A, B) and without evolution (C, D). A and B show the density of susceptible high yield (S_H) and low yield hosts (S_L) and infectious high yield (I_H) and low yield hosts (I_L) . C and D show the total density of susceptible (S) and infectious (I_H) hosts with and without parasite evolution. In the absence of parasite evolution, the parasite within-host growth rate (ϵ) is set to 0.25 and does not change. Note that high and low yield susceptible host densities are identical when they have equal proportions in the host population (p = 0.5 in Eq. 1a-1d.) $c_H = 1, c_L = 0.1, y_H = 0.1, y_L = 1, x = 0.5, \lambda = 50, \delta = 0.02, \gamma = 0.6, \rho = 10^{-2}, var_H(\epsilon) = var_L(\epsilon) = 1.$

¹⁹⁸ 6 Summary and discussion

This study provides a framework for predicting how parasite adaptation impacts transmission dispersion for emerging and re-emerging infectious diseases. The model predicts that parasite adaptation to heterogeneous host populations can result in increased transmission dispersion. Parasite adaptation drives the greatest increases in transmission dispersion when host populations are composed of high yield hosts that have higher transmission and lower virulence compared to low yield hosts. The results predict that parasite adaptation

to heterogeneous host populations drives the evolution of high transmission dispersion of parasites early in 204 epidemics. Further, parasite adaptation can maintain increased transmission dispersion at endemic equilibria. 205 The results of the current study strengthen the idea that differences in host transmission can drive 206 transmission dispersion but also predict that differences in virulence can increase transmission dispersion by 207 impacting parasite adaptation. That is, epidemiological studies have previously shown that differences in 208 transmission potential among hosts (often measured as parasite load) is a source of heterogeneity that is 209 associated with increased transmission dispersion (Chen et al. 2021). This study suggests that heterogeneity 210 in host transmission potential can also indirectly increase transmission dispersion by selecting for parasites 211 that drive more infections from higher yield hosts than lower yield hosts. Thus given that these results 212 raise the possibility that differences in (host) virulence can select for parasites that enhance transmission 213 dispersion, more effort should be made to experimentally disentangle the relationship between virulence 214 and transmission dispersion. 215

Figure 4: Evolutionary dynamics of the within-host parasite growth rate (ϵ) early (A) and late (B). Figure shows the trait value of the within-host parasite growth rate in high yield (ϵ_H) and low yield hosts (ϵ_L). Dotted black line shows the value of the within-host growth rate in the absence of adaptation ($\epsilon = 0.25$). $c_H = 1, c_L = 0.1, y_H = 0.1, y_L = 1, x = 0.5, \lambda = 50, \delta = 0.02, \gamma = 0.6, \rho = 10^{-2}, var_H(\epsilon) = var_L(\epsilon) = 1$.

Figure 5: Parasite adaptation drives higher parasite fitness and transmission dispersion. Both parasite fitness and transmission dispersion are highest early in epidemics when susceptible host density is also high. Figure shows parasite fitness of high and low yield hosts (R_{eH}, R_{eL}) and transmission dispersion $(vmr(R_e) \text{ over time.} c_H = 1, c_L = 0.1, y_H = 0.1, y_L = 1, x = 0.5, \lambda = 50, \delta = 0.02, \gamma = 0.6, \rho = 10^{-2}, var_H(\epsilon) = var_L(\epsilon) = 1.$

The variation of virulence across host types is predicted to determine whether parasite adaptation drives 216 increased transmission dispersion, however virulence manifests in many different ways in nature. An obvious 217 question is thus how different virulence modes could impact the predictions made here. Virulence in this 218 study is modelled as an increase in host mortality following infection that increases with the parasite within-219 host growth rate. Parasites can enjoy a high growth rate on high yield hosts that are more tolerant to infection 220 (i.e. high yield hosts that do not experience high mortality despite being infected by parasites with high 221 growth rates.) Transmission dispersion can result from some hosts dying more quickly than others. Thus 222 alternative forms of virulence that also vary between hosts and shorten the duration of the infection could 223

Figure 6: Transmission dispersion is highest when parasites adapt to host populations that are mostly composed of low yield hosts. Figure shows the variance-to-mean ratio of $R_e(t)$ at the endemic equilibrium as the percentage of susceptible low yield hosts (s_L) in the system varies. $c_H = 1, c_L = 0.1, y_H = 0.1, y_L = 1, x = 0.5, \lambda = 50, \delta = 0.02, \gamma = 0.6, \rho = 10^{-2}, var_H(\epsilon) = var_L(\epsilon) = 1.$

Figure 7: The difference between transmission dispersion $(vmr(R_e)$ with and without parasite evolution is greatest when most hosts are born low yield (high p) and either high yield hosts are much higher quality than low yield hosts from the parasite's perspective $(y_L << y_H, c_H >> c_L)$. $y_H = 0.1, y_L = 1, c_H = 0.5, c_L = 0$. All other parameters are the same as in Figure 3.

lead to similar phenomena as predicted here. For example, hosts could vary in the severity of the symptoms 224 they experience post-infection (e.g. lethargy). Hosts experiencing severe symptoms may then decrease 225 contact with other hosts and thus decrease the likelihood that the infection is spread. Similarly, hosts could 226 vary in how quickly they experience symptoms after becoming infectious. Hosts that quickly experience 227 symptoms may also be less likely to spread the infection through decreased contact with other hosts. Finally, 228 the results of the current study could apply to the heterogeneous distribution of treatment against infection 229 that decrease virulence such that increased transmission dispersion could be adaptive if transmission is not 230 impacted. 231

The phenotypic variance in the within-host parasite growth rate impacts transmission dispersion by 232 determining selection strength (Fig. 8)). Low variance in the within-host growth rate constrains parasite 233 adaptation by limiting the range of trait values that natural selection can act upon which keeps the within-host 234 growth rate and transmission dispersion low. Conversely, high variance in the within-host growth rate selects 235 for high within-host growth rates in high yield hosts but low within-host growth rates in low yield hosts and 236 thus slightly lower transmission dispersion compared to intermediate variance. The current study assumes 237 that the variance in the within-host growth rate is the same in both host types, however in nature high yield 238 hosts would likely support higher variance as they are infected for longer periods of time and maintain 239 higher parasite loads. Relaxing this assumption and assuming that selection on the within-host growth rate 240 in low yield hosts is subject to low variance would likely drive higher transmission dispersion as selection for 241 low within-host growth rates in low yield hosts would be weaker than selection for high within-host growth 242 rates in high yield hosts. 243

Often highly infectious hosts experience high virulence due to the burden of carrying large parasite loads (De Roode, Yates, and Altizer 2008; Fraser, Hollingsworth, Chapman, de Wolf, and Hanage 2007). However, observations of hosts that tolerate high parasite loads while experiencing little or no increase in virulence are also common (Soper 1939; VanderWaal and Ezenwa 2016). This study combines a bit of both ideas by assuming that virulence increases as the within-host parasite growth rate increases but also assumes that a subset of hosts tolerate those increases in growth rate well. Further, this study assumes that the hosts that

Figure 8: Phenotypic variance in the population of the within-host growth rate (var ϵ) controls how quickly adaptation occurs. Plots show the dynamics of within-host growth rate (ϵ) adaptation for different values of var ϵ and demonstrate that ϵ adapts more quickly and reaches higher values when var ϵ is high. All parameters are the same as in Figure 3.

experience low virulence also transmit at a higher rate. In this way we have focused on the two extremes in 250 the disease ecology literature: hosts that transmit a lot because of the combination of low virulence and high 251 transmission and hosts that only transmit a little because they simultaneously have high virulence and low 252 transmission. In reality, host populations will also be composed of intermediate host types, e.g. hosts that 253 have high virulence and high transmission, hosts are resistant to infection naturally or through treatments 254 that result in low virulence and low transmission. We focused on the two extreme host cases because it 255 was most likely to enhance the impact of heterogeneity on the evolution of increased parasite transmission 256 dispersion. Less extreme forms of host heterogeneity have been considered in other studies. For example, 257 Gog, Hill, Danon, and Thompson (2021) assumed that a proportion of the host population is more vulnerable 258 to the infection but mixes less with other hosts while all other hosts are less vulnerable to the infection but 259 mix more readily. Similarly, Gandon and Lion (2022) studied how high and low contact rates as well as high 260 and low vulnerability to infection following vaccination impacted the speed that parasites evolve. Parasites 261 that adapt to these more intermediate host types will likely drive more modest increases in transmission 262 dispersion compared to the host populations studied here. Nevertheless, future work should study the effect 263

Figure 9: Variance in the within-host growth rate $(var\epsilon)$ impacts parasite adaptation and transmission dispersion. Left plots show how $var\epsilon$ impacts peak within-host growth rates (ϵ) , R_e and transmission dispersion $(vmr(R_e))$ that occur early in the epidemic (see Figure 5). Right plots show how $var\epsilon$ impacts the within-host growth rate (ϵ) , R_e and transmission dispersion $(vmr(R_e))$ at the endemic equilibrium (see Figure 5). All parameters are the same as in Figure 3.

²⁶⁴ of parasite adaptation to intermediate host types on transmission dispersion.

A key question is how common the host compositions studied here are in nature. Empirical studies on 26 host heterogeneity tend to focus on one trait: either transmission (often measured as parasite load or contact 266 rate) or virulence (this is measured many ways, e.g. symptoms, fertility, death rate). However one study that 267 is relevant to the assumptions of this model showed that the distribution of SARS-Cov2 viral loads among 268 symptomatic/pre-symptomatic and asymptomatic cases were similar (Chen et al. 2021). In other words, viral 269 load distributions are not clearly associated with host virulence and thus a subset of asymptomatic hosts could 270 have very high viral loads. Thus while there is some evidence that high and low yield hosts similar to those 271 modelled in this study exist, the exact compositions of host populations are not well documented. That is, the 272 percentages of hosts that are high yield and low yield as well as the distributions of intermediate traits such 273 as transmission found in host populations are often not known. Thus more empirical research is necessary to 274 determine how the compositions of host traits relevant to parasite spread vary in host populations. 275

The predictions made in this study should be tested experimentally. Successfully validating theory 276 requires controlled experiments where the factor-of-interest can be manipulated to compare empirical results 277 to theoretical predictions. Experiments to test whether parasite adaptation to heterogeneous host populations 278 can drive increased transmission dispersion will require a disease system with two host types that differ in 279 transmission and/or virulence. Many disease systems fit one of these criteria in that host types have been 280 identified that are capable of causing a disproportionate number of new infections either through increased 281 shedding of the parasite (Bassetti et al. 2005; Capparelli et al. 2009; Dougan and Baker 2014; Hughes and 282 Randolph 2001; Wang et al. 2017) or through decreased virulence (e.g. long infectious periods) (Curtis et al. 283 1999; Ferreira et al. 2011). One disease system that could be well-suited to test the predictions made in this 284 study is Daphnia magna and its bacterial parasite, Pasteuria ramosa. The Daphnia-Pasteuria system is ideal in 285 that both spore load (*i.e.* transmission potential) and virulence (measured as reductions in post-infection 286 lifespan or fecundity) can vary between males and females (Gipson and Hall 2018) and across age classes 287 (Izhar and Ben-Ami 2015). Thus it may be possible to use existing *Daphnia* lines that meet the high and low 288 yield host classifications used in this study and test the predictions made here. 289

Most new infections are transmitted from relatively few infected individuals. This increased transmission 290 dispersion is largely attributed to differences among hosts, thus most research to date has focused on 291 the importance of variability in host populations. The current study presents an additional evolutionary 292 mechanism that could enhance this phenomena whereby parasite specialization on highly infectious hosts 293 comes at the cost of transmitting less effectively from less-infectious hosts. The model predicts that in this 294 way, parasite adaptation can further skew transmission events so that most new infections are transmitted 295 from a minority of infectious hosts. Further, this study presents a framework for predicting how parasite 296 adaptation determines transmission dispersion for emerging and re-emerging infectious disease. 297

298 **References**

Alizon, S., Hurford, A., Mideo, N., & Van Baalen, M. (2009). Virulence evolution and the trade-off hypothesis:
 history, current state of affairs and the future. Journal of evolutionary biology, <u>22</u>(2), 245–259.

Alizon, S., & van Baalen, M. (2005). Emergence of a convex trade-off between transmission and virulence. The American Naturalist, 165(6), E155–E167.

Gupta, S., & Ng, (1990).Anderson, R. M., W. The significance of sexual 303 contact partner networks the transmission dynamics of hiv. Journal for 304 Immune Deficiency Syndromes, 3(4),417-429. from of Acquired Retrieved 305 https://consensus.app/papers/significance-partner-contact-networks-transmission-anderson/f242861efa 306 chatgpt 307

- Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. Oxford university press.
- Bassetti, S., Bischoff, W. E., Walter, M., Bassetti-Wyss, B. A., Mason, L., Reboussin, B. A., ... Sherertz, R. J.
 (2005). Dispersal of staphylococcus aureus into the air associated with a rhinovirus infection. Infection Control & Hospital Epidemiology, 26(2), 196–203.
- Capparelli, R., Parlato, M., Iannaccone, M., Roperto, S., Marabelli, R., Roperto, F., & Iannelli, D. (2009).
 Heterogeneous shedding of brucella abortus in milk and its effect on the control of animal brucellosis.
 Journal of applied microbiology, 106(6), 2041–2047.
- Chen, P. Z., Bobrovitz, N., Premji, Z., Koopmans, M., Fisman, D. N., & Gu, F. X. (2021). Heterogeneity in transmissibility and shedding sars-cov-2 via droplets and aerosols. Elife, 10, e65774.
- Curtis, A. B., Ridzon, R., Vogel, R., McDonough, S., Hargreaves, J., Ferry, J., ... Onorato, I. M. (1999). Extensive transmission of mycobacterium tuberculosis from a child. <u>New England Journal of Medicine</u>, 341(20), 1491–1495.
- ³²¹ Day, T., & Gandon, S. (2007). Applying population-genetic models in theoretical evolutionary epidemiology. ³²² Ecology Letters, 10(10), 876–888.
- De Roode, J. C., Yates, A. J., & Altizer, S. (2008). Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proceedings of the national academy of sciences, 105(21), 7489–7494.
- Dieckmann, U., Metz, J., Sabelis, M., & Sigmund, K. (2002). Adaptive dynamics of infectious diseases. Pursuit of virulence management, 460–463.
- Dougan, G., & Baker, S. (2014). Salmonella enterica serovar typhi and the pathogenesis of typhoid fever. Annual review of microbiology, 68, 317–336.
- Endo, A., et al. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome open research, 5.
- Ferreira, A., Marguti, I., Bechmann, I., Jeney, V., Chora, Â., Palha, N. R., ... Soares, M. P. (2011). Sickle hemoglobin confers tolerance to plasmodium infection. Cell, 145(3), 398–409.
- Fraser, C., Hollingsworth, T. D., Chapman, R., de Wolf, F., & Hanage, W. P. (2007). Variation in hiv-1 set-point
 viral load: epidemiological analysis and an evolutionary hypothesis. Proceedings of the National
 Academy of Sciences, 104(44), 17441–17446.
- ³³⁷ Galvani, A. P., & May, R. M. (2005). Dimensions of superspreading. Nature, 438(7066), 293–295.
- Gandon, S. (2004). Evolution of multihost parasites. Evolution, 58(3), 455-469.
- Gandon, S., & Day, T. (2007). The evolutionary epidemiology of vaccination. Journal of the Royal Society Interface, 4(16), 803–817.
- Gandon, S., & Day, T. (2009). Evolutionary epidemiology and the dynamics of adaptation. Evolution: International Journal of Organic Evolution, 63(4), 826–838.
- Gandon, S., & Lion, S. (2022). Targeted vaccination and the speed of sars-cov-2 adaptation. Proceedings of the National Academy of Sciences, 119(3), e2110666119.
- Gipson, S., & Hall, M. (2018). Interactions between host sex and age of exposure modify the virulence– transmission trade-off. Journal of Evolutionary Biology, 31(3), 428–437.
- Gog, J. R., Hill, E. M., Danon, L., & Thompson, R. N. (2021). Vaccine escape in a heterogeneous population: insights for sars-cov-2 from a simple model. Royal Society Open Science, 8(7), 210530.
- Hughes, V., & Randolph, S. (2001). Testosterone increases the transmission potential of tick-borne parasites.
 Parasitology, 123(4), 365–371.
- ³⁵¹ Izhar, R., & Ben-Ami, F. (2015). Host age modulates parasite infectivity, virulence and reproduction. Journal ³⁵² of Animal Ecology, 84(4), 1018–1028.
- Jones et al, T. (2021). Estimating infectiousness throughout SARS-CoV-2 infection course. Science. Retrieved from https://science.sciencemag.org/content/early/2021/05/24/science.abi5273 doi: 10.1126/science.abi5273
- Kubinak, J. L., & Potts, W. K. (2013). Host resistance influences patterns of experimental viral adaptation
 and virulence evolution. Virulence, 4(5), 410–418.
- Lloyd-Smith et al, J. (2005). Superspreading and the effect of individual variation on disease emergence. Nature, 438(7066).
- ³⁶⁰ Mandal, S., Sarkar, R., & Sinha, S. (2011). Mathematical models of
- malaria a review. Malaria Journal, 10, 202. Retrieved from
- https://consensus.app/papers/models-malaria-review-mandal/a4ec0eab6aff56d6ac803366b871bdaa/?utm_sour chatgpt doi: 10.1186/1475-2875-10-202
- ³⁶⁴ Price, G. R., et al. (1970). Selection and covariance. <u>Nature</u>, 227, 520–521.

- Regoes, R. R., Nowak, M. A., & Bonhoeffer, S. (2000). Evolution of virulence in a heterogeneous host
 population. Evolution, 54(1), 64–71.
- Soper, G. A. (1939). The curious career of typhoid mary. <u>Bulletin of the New York Academy of Medicine</u>, 15(10), 698.
- ³⁶⁹ VanderWaal, K., & Ezenwa, V. (2016). Heterogeneity in pathogen transmission: mechanisms and ³⁷⁰ methodology. Functional Ecology, 30(10), 1606–1622.
- Wang, O., McAllister, T. A., Plastow, G., Stanford, K., Selinger, B., & Guan, L. L. (2017). Host mechanisms
 involved in cattle escherichia coli o157 shedding: a fundamental understanding for reducing foodborne
 pathogen in food animal production. Scientific Reports, 7(1), 7630.
- ³⁷⁴ White et al, P. (2020). Host heterogeneity mitigates virulence evolution. Biology letters, 16(1), 20190744.
- Wonham, M., Lewis, M., Rencławowicz, J., & van den Driessche, P. (2006). Transmission assumptions generate conflicting predictions in host-vector disease models: a
- case study in west nile virus. <u>Ecology</u> Letters, 9(6), 706-725. Retrieved from
- https://consensus.app/papers/transmission-assumptions-generate-conflicting-wonham/9df2b9bad22e55f58 chatgpt doi: 10.1111/J.1461-0248.2006.00912.X
- Woolhouse et al, M. (1997). Heterogeneities in the transmission of infectious agents: implications for the design of control programs. PNAS, 94(1), 338–342.
- Yang et al, Q. (2021). Just 2% of SARS-CoV-2- positive individuals carry 90% of the virus circulating in
- ³⁸³ communities. <u>PNAS</u>, <u>118</u>(21).
- ³⁸⁴ Yonker et al, L. (2021). Virologic features of SARS-CoV-2 infection in children. Medrxiv.