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Abstract

To understand the exhumation history of the Alpine foreland, it is important to accurately reconstruct its time-temperature

evolution. This is often done employing thermokinematic models. One problem of many current approaches is that they are

limited to 2-D and do not consider structural or kinematic uncertainties. In this work, we combine 3-D kinematic forward

modeling with a systematic random sampling approach to automatically generate an ensemble of kinematic models in the range

of assigned geometric uncertainties. Using Markov chain Monte Carlo, each randomly generated model will be assessed in

regards to how well they fit the available thermochronology data. This is done to obtain an updated set of modeling parameters

with reduced uncertainty. The resulting, more robust model can then be used to re-interpret the thermochronological data

and find alternative drivers of cooling for certain samples.We apply this approach to a simple synthetic model to test the

methodology, and then to the Eastern Alps triangle zone in the Bavarian Subalpine Molasse. Results show that it is possible to

translate low-temperature thermochronology data into a likelihood function to obtain a 3-D kinematic model with updated, more

probable parameters. The thermochronological data by itself, however, may not be informative enough to reduce the parameter

uncertainty. The method is useful, however, to study alternative mechanisms of exhumation for the thermochronological samples

that are not respected by the modeling, even when uncertainty is considered.
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Abstract 20 

To understand the exhumation history of the Alpine foreland, it is important to accurately 21 

reconstruct its time-temperature evolution. This is often done employing thermokinematic 22 

models. One problem of many current approaches is that they are limited to 2-D and do not 23 

consider structural or kinematic uncertainties. In this work, we combine 3-D kinematic forward 24 

modeling with a systematic random sampling approach to automatically generate an ensemble of 25 

kinematic models in the range of assigned geometric uncertainties. Using Markov chain Monte 26 

Carlo, each randomly generated model will be assessed in regards to how well they fit the 27 

available thermochronology data. This is done to obtain an updated set of modeling parameters 28 

with reduced uncertainty. The resulting, more robust model can then be used to re-interpret the 29 

thermochronological data and find alternative drivers of cooling for certain samples.We apply 30 

this approach to a simple synthetic model to test the methodology, and then to the Eastern Alps 31 

triangle zone in the Bavarian Subalpine Molasse. Results show that it is possible to translate low-32 

temperature thermochronology data into a likelihood function to obtain a 3-D kinematic model 33 

with updated, more probable parameters. The thermochronological data by itself, however, may 34 

not be  informative enough to reduce the parameter uncertainty. The method is useful, however, 35 

to study alternative mechanisms of exhumation for the thermochronological samples that are not 36 

respected by the modeling, even when uncertainty is considered. 37 

Plain language summary 38 

Understanding how the Alps have changed over time requires accurately tracking its temperature 39 

history. Current methods often fall short because they are limited to 2-D representations and do 40 

not consider uncertainties. Low-temperature thermochronology can be useful to study the 41 

thermal and tectonic history of the upper few kilometers of the Earth's crust. Kinematic models, 42 

on the other hand, serve to describe the tectonic and structural evolution. However, it is 43 

important to consider more than one possible structural evolution. In this work, we use 44 

thermochronological data as a constraint to decide which randomly generated kinematic model is 45 

more probable. It is important to study whether the thermochronological data can act as a good-46 

enough constraint, and whether this method can allow us to discern different factors acting in the 47 

Alpine tectonic evolution. 48 

1 Introduction 49 

Building accurate 3-D kinematic models is important to interpret and validate cooling 50 

ages from thermochronological data. These are important and widely used to study the tectono-51 

thermal and exhumation history of the uppermost crust. However, the interpretation of 52 

exhumation in mountain belts on the basis of thermochronologic data can yield precise but not 53 

necessarily accurate solutions due to uncertainties in both geometric and kinematic models, in 54 

addition to methodological uncertainties associated with thermochronological data. 55 

Though limited studies exist that have recognized this and include geometric uncertainty 56 

in their models (Brisson et al., 2023; Evans et al., 2015; Parks and McQuarrie, 2019), a full 57 
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assessment of the influence of geometric and especially kinematic uncertainty on the 58 

interpretation of thermochronological data is yet missing. This can be problematic, as predicting 59 

the deep structure of the subsurface is uncertain due to the lack of surface and subsurface data. 60 

Furthermore, the geometric models are subject to interpretation bias (Bond, 2015; Bond et al., 61 

2012), and may suffer from adopting idealized models (Butler et al., 2018). Shortening estimates 62 

and structural models may vary substantially when taking uncertainty into account (e.g. Judge 63 

and Allmendinger, 2011). For example, the same shortening rate acting on faults of uncertain dip 64 

can affect the estimated rates of exhumation. Furthermore, different structures may be active at 65 

different times, but result in similar exhumation scenarios (Figure 1a). This means that geometric 66 

or kinematic uncertainties do not necessarily manifest themselves in a difference in cooling ages. 67 

Thus, these geometric and kinematic uncertainties should manifest themselves as errors in 68 

subsequent studies, namely in the construction of thermokinematic models, which may result in 69 

an inaccurate interpretation of the tectonic evolution of an orogen. 70 

 The area of the foreland fold-thrust belt of the Alps, i.e. the Subalpine Molasse, is 71 

particularly suited to resolve large-scale dynamics of the orogen, as it links the Alps with its 72 

foreland. Despite research in this area ongoing for many years (e.g. Ganss and Schmidt-Thomé, 73 

1952; Mock et al., 2020; Ortner et al., 2015, 2023; von Hagke et al., 2014), the structural 74 

variability and internal geometry is still not well understood, and different interpretations of data 75 

are possible (Frings et al., 2023; von Hagke and Malz, 2018). Similarly, relative timing of 76 

deformation and associated strain partitioning across different faults has been dated in some parts 77 

of the fold-thrust belt (Cederbom et al., 2004; Ortner et al., 2015; von Hagke et al., 2012, 2014), 78 

while in other regions it is not yet well known. Different conceptual models are possible because 79 

field evidence of structures is limited due to vegetation cover and anthropogenic influence on the 80 

landscape, while seismic data is not available everywhere and sometimes lacks borehole control. 81 

Omitting the uncertainties of structural interpretations can make it difficult to evaluate 82 

thermokinematic models, and thus eventually to draw conclusions about the underlying 83 

processes driving mountain building.  84 

 In this work, we explore the influence of structural uncertainty on exhumation models. 85 

For this, we generated a stochastic ensemble of 3-D kinematic models where fault slip and 86 

geometry of selected faults are varied in each run. We use Markov chain Monte Carlo (MCMC) 87 

to compare the models to available thermochronological data and to characterize the posterior 88 

uncertainty. Likely models can then be determined on the basis of whether they provide suitable 89 

predictions of the observed thermochronological data (Figure 1b). The method aims to reduce the 90 

uncertainty of the kinematic model and to obtain more accurate exhumation estimates that 91 

account for geometric and kinematic uncertainties. Because of the complex nature of our 92 

kinematic model, the MCMC is tested on two benchmark studies before being applied to the 93 

Subalpine Molasse. First, we develop a very simple model to visualize the effects of the 94 

sampling and to test different convergence diagnostics. Then, we use the complex model with 95 

synthetic, known, target parameters, to show that the method works for real world scenarios, and 96 

that limitations can arise from the nature and quality of the data. 97 
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 98 

 99 

Figure 1. a) Two possible fault configurations for a single model. Applying the same shortening leads to different exhumation 100 
rates. b) Shows a basic Bayesian network containing three nodes (priors, the deterministic function represented by Noddy, and 101 
the likelihood given by the additional auxiliary data). 102 

2 Geological setting 103 

The area we focus on can be found in the European Alps southeast of Lake Constance. It 104 

is part of the foreland basin of the Alps - the Molasse basin, which formed in the Neogene during 105 

the later stages of the Alpine orogeny, as a result of the flexural bending of the European plate 106 

(Pfiffner, 1986). In the Molasse basin,  three distinct parts are recognized: a) the mostly 107 

undeformed Plateau Molasse between the Subalpine Molasse and the external Jura fold-thrust 108 

belt, b) the Foreland Molasse, i.e., the undeformed basin east of the Jura fold-thrust belt (Ortner 109 

et al., 2015, 2023), and c) the Subalpine Molasse. The latter consists of several south-dipping 110 

thrust sheets, though north-dipping backthrusts forming its characteristic triangle zone can be 111 

found in some regions, including the study area (Ortner et al., 2015; Schuller et al., 2015). The 112 

Subalpine Molasse developed starting from 35 Ma, when foreland sediments were incorporated 113 

into the Alpine wedge (Homewood et al., 1986; Kempf et al., 1999).  114 

In the late Miocene, the deformation of the Jura fold-thrust belt started to the west of 115 

Zurich, where Permian and Triassic evaporites acted as a decollement, transforming the Plateau 116 

Molasse into a wedge-top basin (e.g., Bolliger et al., 1993; Burkhard and Sommaruga, 1998; 117 

Laubscher, 1961). Thus, in the western foreland, strain is partitioned between the external Jura 118 

fold-thrust belt and the Subalpine Molasse. Also in the west, studies show that the Subalpine 119 

Molasse has been active since shortly after deposition of foreland basin sediments (Cederbom et 120 

al., 2004; von Hagke et al., 2012). This would indicate additional drivers for basin exhumation 121 
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other than plate convergence (Cederbom et al., 2004, 2011; Mock et al., 2020; von Hagke et al., 122 

2012). On the other hand, between Lake Constance and Munich, the Subalpine Molasse 123 

accommodates all shortening, and thermochronological data south of Lake Constance 124 

corroborate a late-stage reactivation of internal thrusts of the foreland fold-thrust belt (von Hagke 125 

et al., 2014). East of Lake Constance, preliminary results indicate little exhumation of the 126 

external structures. Additionally to the east, the Subalpine Molasse is partly absent or overridden 127 

by late thrusting within the Flysch units (Hinsch, 2013). 128 

Within the Molasse sediments, two regressive coarsening-upward sequences can be 129 

distinguished (Homewood et al., 1986; Kuhlemann and Kempf, 2002). These include the Lower 130 

Marine Molasse (UMM), the Lower Freshwater Molasse (USM), the Upper Marine Molasse 131 

(OMM), and the Upper Freshwater Molasse (OSM). South of the basal Alpine thrust in the study 132 

area, we can also find units of the Rhenodanubian Flysch (RDF), product of the closure of the 133 

Penninic ocean in the Paleogene (Trümpy, 1960), and Helvetic units, accreted to the Alpine 134 

wedge during the Eocene-Oligocene boundary (Pfiffner, 1986). 135 

 136 

Figure 2. Tectonic map of the modeled area showing the position of the low-temperature thermochronological samples from von 137 
Hagke et al., 2014. 138 

3 Methods 139 

3.1 Kinematic Modeling 140 

Constraining exhumation histories from thermal histories using low-temperature 141 

thermochronology can be uncertain (Reiners et al., 2005). Even without considering the inherent 142 

uncertainty in assuming paleogeothermal gradients, the exhumation history from the 143 

thermochronological data alone can only be roughly estimated. Kinematic reconstructions are 144 

important tools to reduce the uncertainty in interpretations, and combined with 145 

thermochronological data can yield more accurate exhumation values. Thermochronological data 146 
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has been combined with kinematic modeling in past studies in order to validate existing, well-147 

constrained cross sections (e.g. Eizenhöfer et al., 2023; Erdős et al., 2014; Parks and McQuarrie, 148 

2019). However, these studies are limited to 2D, and more importantly, consider only one or a 149 

limited range of possible kinematic and geometric scenarios. That is why, instead of a 150 

deterministic kinematic reconstruction based on a present-day geometric model, we generate 151 

probabilistic 3-D kinematic forward models. In these forward models, we consider major 152 

kinematic events and their properties. We omit local features, often included in high-resolution 153 

deterministic reconstructions, as long as they are not significant to the observed setting in the 154 

range of uncertainties. Transitioning from a high-resolution deterministic reconstruction to a 155 

probabilistic forward model of lower resolution is also motivated by the realization that, due to 156 

the diffusive character of heat transport, the temperature field is less sensitive to small geometric 157 

variations. And, more importantly, it would allow us to consider uncertainties in the kinematic 158 

forward models. 159 

  We built the initial kinematic models using Noddy (Jessell, 1981; Jessell and Valenta, 160 

1996), a 3-D forward geomodeling software. Despite its limitations in reproducing complex 161 

geological features, we use Noddy because the focus of this study is to illustrate the potential of 162 

probabilistic uncertainty quantification, and therefore complexity is not the highest priority. 163 

Relevant features can still be produced, exhibiting a comparable level of topological complexity 164 

(Thiele et al., 2016). Furthermore, with Noddy’s python wrapper pynoddy (Wellmann et al., 165 

2016), it is possible to stochastically perturb the model parameters to simulate uncertainty. While 166 

Noddy was initially meant for creating simple models for teaching purposes, it has also been 167 

used for studying concepts such as geological topology (Thiele et al., 2016), and machine 168 

learning techniques (Guo et al., 2021). In addition, it has been used for geophysical inversion 169 

(Pollack et al., 2020). 170 

Models can be constructed by combining different user-defined events (e.g. faulting, 171 

folding, tilting) upon a designated stratigraphic pile. These events are interpreted by Noddy as a 172 

sequence of kinematic operations. This process ensures that the resulting model is balanced. 173 

3.2 Assigning uncertainty and local sensitivity study 174 

All geological data is associated with uncertainty. In this work, we cover uncertainties 175 

pertaining to error, bias, or imprecisions (i.e., Type 1 errors as defined by Mann, 1993 and later 176 

adapted for geological modeling by Wellmann et al., 2010), which are present in any type of raw 177 

data. These types of uncertainties, as opposed to uncertainties that result from lacking 178 

knowledge, are handled with geostatistical methods. 179 

The next step is thus assigning uncertainty through probability density functions (PDFs) 180 

to the model inputs. These include kinematic parameters such as fault slip and slip azimuth, and 181 

geometric parameters like position, fault dip, fault curvature amplitude and dip direction. 182 

Geological models of this region are largely built upon seismic lines, as boreholes are scarce and 183 

outcrops are often limited due to vegetation. This means that we expect that any model built 184 

from this data will be uncertain (von Hagke and Malz, 2018).  185 
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For simplicity, not all modeling parameters were varied simultaneously. In the synthetic 186 

model, the exhumation only depends on the fault dip and the fault slip, because the faults are 187 

planar and exhumation can thus be calculated through trigonometry. Thus, only these parameters 188 

were varied. In the case study, faults exhibit more complex geometries, so we carried out a 189 

sensitivity analysis to estimate the expected changes in exhumation rate caused by the different 190 

parameters (Figure 3). We ran 50 simulations where we took turns varying each parameter in 191 

regular intervals of 200 m or 2˚  while keeping the rest of the parameters fixed, and calculated 192 

the resulting exhumation for each new parameter value. For comparison, the relative percentage 193 

change of the exhumation was calculated and is shown in Figure 3a.  The scenario analysis 194 

showed that many parameters exert control over the exhumation, however, not all of these 195 

behave in the expected way. For example, varying the slip direction can change thrust faults into 196 

strike-slip faults. Varying dip direction or the position in the x-direction of the fault, on the other 197 

hand, can result in the sample ending up in a different tectonic slice. Furthermore, changing the 198 

dip of curved faults in Noddy will pivot the entire fault in a non-realistic way. So even though 199 

the effect on the exhumation is large, it may not be geologically correct. After thorough 200 

examination, we chose to vary the fault slip and the fault depth (Z).  201 

 202 

Figure 3. (a) Tornado plot showing the percentage change of the calculated exhumation when each parameter is varied by a 203 
regular amount while keeping all other parameters constant. (b) Plots showing the exhumation response to the change of each 204 
parameter. 205 
 206 

The choice of suitable probability density functions for these parameters is described in 207 

more detail below where the model setups are detailed. For all cases, we use the initial values the 208 

mean and the assigned uncertainty as the standard deviation to define the PDFs. 209 
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 Next, we use our initial model as a base to simulate new input data sets from the assigned 210 

PDFs. For each stochastic run, we compare the current model to its pre-deformation state 211 

(regional tilting was included as pre-deformation). Assuming steady state topography we can 212 

calculate the exhumation, here referring to vertical movement of the sample as its difference in 213 

position before and after the deformation events (Figure 4). For this, it is necessary to recompute 214 

the model after disturbing the parameters in each run, so that the  new sample positions can be 215 

extracted from the pynoddy lithology block (i.e. a voxel model with an assigned lithology in 216 

each cell). 217 

 218 

 219 

Figure 4. Three randomly generated models, with the original, non-deformed stratigraphy marked as red dashed lines. The 220 
exhumation is calculated as the vertical distance between the position of the rock before and after the deformation events (whole 221 
red lines).  222 

3.3 Thermochronological methods and data 223 

Apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) dating methods are useful 224 

for tracing the tectono-thermal history of the uppermost 2 to 3 km of the crust, and are sensitive 225 

to cooling intervals between 80-40°C and 120-60°C, respectively (Carlson et al., 1999; Wolf et 226 

al., 1996). These intervals are also known as the partial retention zone (PRZ) and partial 227 

annealing zone (PAZ). If an apatite grain is subjected to reheating during burial, it will yield 228 

progressively younger cooling ages, until it is completely reset. Combining the AHe and AFT 229 

systems, which reset at different temperatures, has proven valuable in distinguishing cooling 230 

histories (Stockli, 2005). By assuming a paleogeothermal gradient, it is possible to estimate how 231 

deep the rock was buried prior to its exhumation based on its cooling age, as well as ascertain the 232 

maximum temperature attained within the basin. For a more in-depth description of the method, 233 

we refer the reader to Farley and Stockli, 2002. 234 

We employed the available AHe and AFT data from the Bregenz region (von Hagke et 235 

al., 2014) to evaluate the methodology used in this study. von Hagke et al., 2014 describe four 236 

different structural domains bound by major faults. These are, from south to north: 1) all units 237 

south of the basal Alpine thrust, 2) limited to the north by the basal UMM thrust, 3) the triangle 238 

zone, and 4) the mostly undeformed Plateau Molasse. Samples were taken to represent each 239 

tectonic slice, and the results are summarized in Table 1.  240 

 241 
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Sample ID 
Tectonic 

Slice 

AHe system 

reset? 

AFT system 

reset? 

Pre-exhumation 

depth [km] 

B10 1 - Yes >4.8 

B15 1 Yes - >3.2 

B25 2 Yes Partially 3.2 >z >4.8 

B30 2 - No <3 

B35 2 Yes - >3.2 

B40 3 Yes - >3.2 

B45 3 Yes - >3.2 

B50 3 Yes - >3.2 

B55 4 Yes Partially 3.2 >z >4.8 

B60 4 - No <3 
Table 1 242 
Low-temperature thermochronology data from von Hagke et al., 2014. The pre-exhumation depth was estimated using existing 243 
heat flow models of the area from Frings et al. 2022 (preprint). Note that the pre-exhumation depth is better constrained when a 244 
combination of AHe and AFT is used. 245 

3.4 Bayesian inversion 246 

Bayesian statistics is an important tool to deal with uncertainty and updating beliefs 247 

based on both prior knowledge and observed data. Unlike the frequentist approach, which treats 248 

parameters as fixed and unknown, Bayesian statistics views them as random variables defined by 249 

a probability distribution (McElreath, 2018). Thus, the aim of Bayesian inference involves 250 

updating the prior probability p(θ) of a parameter θ (i.e., fault dip, slip) based on the use of a 251 

likelihood function p(y|θ): the probability of observing y given the parameters θ, with y being the 252 

auxiliary or observed data (in this case - thermochronological data). The likelihood function is 253 

used to compute the posterior predictive model for our parameters, p(θ|y), representing the 254 

probability of parameter θ occurring given that y was observed (Stuart, 2010) (Eq. (1)).  255 

                                                                     Eq. (1) 256 

In order to resolve this equation, we follow the steps defined in Gelman et al., 2014 that 257 

outlines the inference process. First, all of the modeling parameters θ are defined and form a 258 

prior model. This prior model is subsequently conditioned to the observations through our 259 

forward deterministic operations (in this case - our kinematic Noddy models) to obtain prior 260 

predictive models. The results are evaluated against the constructed likelihood functions. We 261 

obtain an updated version of the parameters according to new observations. Also in this step, we 262 

use sampling techniques like MCMC to approximate the integral of Eq. (1), in order to obtain a 263 

solution. The final step is to evaluate the posterior predictive model by comparing the parameter 264 

kernel density distributions or by calculating the information entropy for the model ensemble 265 

(Wellmann and Regenauer-Lieb, 2012). 266 

For a more in-depth outline about the applications of Bayesian inference in geological 267 

modeling, we refer the reader to de la Varga et al., 2015 and de la Varga and Wellmann, 2016. 268 

 269 
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3.5 MCMC 270 

When performing random model realizations (e.g., using Monte Carlo sampling), we may 271 

end up computing models that are far from geological reality. In Monte Carlo sampling, prior 272 

uncertainties are propagated without considering any data, yielding larger margins of uncertainty 273 

and “pessimistic” predictions. By incorporating geological modeling into a Bayesian inference 274 

framework, we can incorporate additional information to update our beliefs about the prior 275 

distributions and lead towards a reduction in uncertainty.  276 

In this work, we define a discrete likelihood function using the thermochronological data. 277 

This data gives us a range of expected pre-cooling depths based on the sample’s reset status, 278 

assuming a fixed paleo-geothermal gradient. We assign a penalty to the likelihood every time an 279 

exhumation estimate falls outside the expected range, and obtain a final joint likelihood that 280 

ultimately will depend on how many of the samples were respected by the model. We 281 

incorporate this into a Metropolis-Hastings Markov chain Monte Carlo (MH MCMC) sampling 282 

approach (Metropolis et al., 1953). The Metropolis-Hastings method is the established standard 283 

version of the MCMC algorithms. In each iteration, a new realization is proposed with a new 284 

candidate probability distribution q(θ,θ’), from which new proposed parameters θ’ are drawn. 285 

Similarly, the likelihood given the observed data is evaluated. An acceptance ratio is then 286 

calculated using the following equation: 287 

                                                                  Eq. (2) 288 

The acceptance ratio is compared to a random value sampled from a uniform distribution 289 

U(0,1), to determine acceptance or rejection of the proposed model. Basically, if the likelihood 290 

of the proposed model p(y|θ’) is higher than in the previous iteration p(y|θ), then the proposed 291 

model has a higher probability to be accepted. This means that there is still a possibility of 292 

accepting models of lower likelihood and vice-versa, but it guarantees a thorough inspection of 293 

the entire parameter space (Sambridge and Mosegaard, 2002). 294 

The Eastern Alps kinematic model, as many practical problems in geology, is defined by 295 

more than 40 parameters. A problem that is commonly encountered when using MCMC is that 296 

an extremely high number of iterations is needed to sufficiently sample the entire posterior 297 

distribution space (i.e., to converge). This convergence is needed to draw the full representation 298 

of the 3-D geological model from the posterior parameter distributions. This is why we simplify 299 

the uncertainty quantification to include the variation of only 4 parameters for the synthetic 300 

model, and 6 parameters for the complex model, on the basis of the local sensitivity analysis 301 

performed in Sec. (3.2). 302 
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4 Results 303 

4.1 Synthetic model 304 

4.1.1 Model setup 305 

A synthetic model is used to exemplify how the uncertainty assessment is applied to a 306 

basic 3-D geological model and to aid in providing a clearer visualization of the sampling 307 

algorithms employed. It consists of two planar thrust faults. The prior parameterization consists 308 

of two different types of uncertain parameters associated with each fault: fault slip and fault dip 309 

angle, resulting in a total of 4 model parameters. The low number of parameters and the simple 310 

geometry of the faults facilitates the calculation of exhumation. This made computing the models 311 

and studying the method very fast and straightforward. In addition, two synthetic AHe data 312 

points are created: sample A between faults 1 and 2, and sample B to the right of fault 2 (Figure 313 

5). Sample A has not been reset, meaning that it is above the Partial Retention Zone (assuming it 314 

is at 40°C), i.e., the temperature where no influence of burial on the thermochronological age is 315 

expected. We would thus expect an exhumation value smaller than 1.3 km (assuming a paleo-316 

geothermal gradient of 30°/km). Sample B has been reset, so we expect an exhumation greater 317 

than 2.7 km, both assuming that the cooling is exclusively driven by exhumation. 318 

 A standard deviation of 500 m is added to the fault slip and 8° to the fault dip. Though 319 

additional uncertainties could also be included (e.g. the fault position, the slip vector pitch), the 320 

synthetic model was purposefully kept simple to better visualize the effect of the uncertainties. 321 

 As mentioned, a discrete likelihood function was defined where any models that explain 322 

the sample exhumations (< 1.3 km and > 2.7 km) were assigned a likelihood of 1. If either of the 323 

samples was not respected, then the likelihood was reduced in proportion to the proximity of the 324 

estimated exhumation to the expected value. Because the thermochronological data usually only 325 

provides broad, upper-lower-limit type constraints to exhumation, it is not possible to define a 326 

continuous likelihood function.  327 

 Two simulations were carried out using the synthetic model: an initial forward 328 

uncertainty propagation using Monte Carlo sampling without additional constraints by the 329 

thermochronological samples, and a second simulation including the Bayesian inversion using 330 

the auxiliary data. Due to the simplicity of the model, the simulations are fast so three separate 331 

MCMC chains were used to ensure convergence to the same posterior distributions. 332 
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 333 
Figure 5. Synthetic model and synthetic samples. In this case, the exhumation depends solely on the fault slip and the fault dips. 334 

If we consider the exhumation as vertical movement, then it can be calculated as the cosine of the dip angle multiplied by the 335 

horizontal slip vector. 336 

4.1.2 Result analysis 337 

Using the starting model parameters shown in Figure 5, a total of 26551 random model 338 

iterations were executed to secure 5000 accepted models using the Metropolis-Hastings MCMC 339 

sampling algorithm. This amount of runs was chosen by using convergence diagnostics to ensure 340 

that a representative number of samples was taken. The posterior parameter analysis shows that 341 

there is an increase in the parameter means, especially for fault 2, which must account for the 342 

relatively high amount of exhumation for sample B to be respected. Additionally, comparing the 343 

joint probability distributions shows that while the prior parameters are independent with respect 344 

to one another, the posterior parameters show correlation, and a decrease in their standard 345 

deviations, as well (Figure 6a). For example, the dip of the faults show a positive correlation 346 

with their respective slips. The correlation plots can be found in the Supplementary Material.  347 

On the other hand, the overall standard deviation of the resulting exhumation decreases 348 

for the accepted samples (Figure 6b). The rejection algorithm also ensures that it is more 349 

probable for sample A to fall above the partial retention zone and the opposite for sample B. By 350 

definition, in its exploration of the parameter space, MCMC sampling methods will occasionally 351 

accept models that do not fully obey the data or reject models that do. 352 

 353 
Figure 6. (a) shows the prior (red curve) and posterior (blue histogram) parameter distributions. (b) Boxplot showing the accepted 354 

model exhumation calculations (blue) after using MCMC sampling, and all model exhumation calculations (red) without 355 

rejection sampling. 356 
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 357 

 We use the concept of information entropy (Wellmann and Regenauer-Lieb, 2012) to 358 

visualize the model uncertainties (Eq. (3)).  359 

𝐻(𝑥)  = ∑𝑁
𝑖 = 1 𝑝𝑖(𝑥)𝑙𝑜𝑔 𝑝𝑖(𝑥)                                                                        Eq. (3) 360 

Where H is the information entropy in each cell x and normalized across the total number 361 

of cells N. An entropy value of 0 signifies that, for a random model ensemble, there is only one 362 

solution or unit known for one given voxel after many model iterations. As entropy rises, more 363 

solutions are possible with equal probability (i.e. the position of the unit is uncertain) for this 364 

voxel. We refer the reader to Wellmann and Regenauer-Lieb (2012) for further information 365 

about the use of entropy to visualize uncertainty in 3-D geomodels.  366 

The full model average entropy was computed. For prior runs without rejection, the mean 367 

entropy for one slice of the model was 0.60, which decreased by more than 35 % to 0.38 after 368 

MCMC sampling was performed. Consequently, MCMC is useful to derive a more refined 369 

model ensemble, resulting in a more accurate representation of the likely geological 370 

configuration (Figure 7). The average final posterior model shows a notable increase in the dip 371 

and slip of fault 2. 372 

 373 

 374 
Figure 7. Information entropy of a) the prior model ensemble and b) the posterior model ensemble considering the auxiliary 375 

thermochronological information. On the bottom-left corners of the plots the updated average configurations, representing the 376 

most probable geometries, are shown. 377 

 378 

 When using MCMC methods, it is important to determine the effective number of 379 

iterations to achieve a balance between the computational time of a single run and the expected 380 

convergence. In other words, when are the accepted samples usable to estimate features of the 381 

target distribution? While convergence cannot be formally guaranteed, many methods to estimate 382 

convergence exist (see Cowles and Carlin, 1996 for a thorough review) that, while heuristic, can 383 

be combined to prove that there is no evidence against it. On one hand, we applied the method of 384 

Geweke, 1992, which quantifies how much the parameter distribution changes between the burn-385 

in phase (or the “adjustment period” of the chain) and the end of the chain. If converged, the 386 

diagnostic should roughly follow a standard normal distribution. The synthetic model parameters 387 

are mostly within the range of 2 standard deviations (see detailed plot in the Supplementary 388 

material). Additional diagnostics such as parameter trace plots and autocorrelation plots, which 389 

check the chain’s correlation with its successive lags, are available in the Supplementary 390 

Material and show no evidence against convergence. Furthermore, three chains were run 391 
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independently with consistent posterior distribution values. Based on the convergence 392 

diagnostics, a chain of 5000 iterations should be sufficiently long to estimate the target 393 

distribution space. 394 

4.2 Case study: Bregenzarach 395 

4.2.1 Model setup 396 

The initial model was constructed based on published cross-sections by von Hagke et al., 397 

2014 and Ortner et al., 2015. After the stratigraphy was defined, a series of events were 398 

combined to recreate the currently observed geometry. The faults that make up the triangle zone 399 

(duplex faults and a backthrust) were defined as the first set of structural events, followed by the 400 

two south-dipping faults that define the Salmas and Horn slices, respectively. Finally, the Alpine 401 

basal thrust lifts the Steineberg syncline (Figure 8). The Steineberg syncline is bound by a 402 

detachment that brings the Molasse sediments over the Flysch and Helvetic units (not 403 

differentiated). One limitation in the model setup is that Noddy will only operate over a 404 

predefined stratigraphy and cannot account for this type of tectonically induced lateral variations 405 

in stratigraphy. This means that when modeled, the Steineberg syncline rests over the Mesozoic 406 

and crystalline basement rocks. While we know this is not true, it can still provide at least a 407 

minimum exhumation estimate. The final model including the thermochronological samples 408 

from von Hagke et al., 2014, is shown in Figure 9. 409 

 410 

 411 
Figure 8. Series of events defined in Noddy to reach the final geometry. Note that the regional tilting of the stratigraphy is 412 

assumed here as the starting point. 413 

 414 
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 415 
Figure 9. Final model created with Noddy and visualized using Paraview (Squillacote et al., 2007). AHe and AFT samples are 416 

from von Hagke et al., 2014. A question mark is added to the south of the Steineberg syncline because the modeling yielded an 417 

unexpected stratigraphy. Abbreviations: SA - Salmas thrust, HO - Horn thrust, ST - Steineberg syncline. 418 

 419 

 In this case, the model is defined by a large number of parameters, but after trial-and-420 

error runs with the MCMC algorithm, only a few parameters were selected for the final 421 

stochastic modeling, to reduce the dimensionality of the problem. To decide which faults and 422 

which parameters to vary, we first computed 1000 models without rejection, and assigned a score 423 

to each random model. The score (from 1 to 10) was based on how many of the 10 424 

thermochronological samples were respected in that particular run. Results showed that a score 425 

of 6 prevailed, followed by 4 and 5, constituting over 70% of the runs. Samples B30, B40, B50 426 

were not respected 50% of the time, and sample B55 was respected less than 10% of the time. 427 

The rest of the samples were respected for the majority of the runs. From these results, we 428 

selected the Salmas thrust, the Horn thrust, and the thrust that brings up the Steineberg syncline 429 

(here referred to as Steineberg syncline thrust) for the inversion. These are the faults that mostly 430 

control the exhumation of samples B50, B40, and B30, respectively. Slip and depth of the faults 431 

were observed to have the greatest influence over the resulting exhumation values. This led to 432 

the selection of six parameters for the analysis. The fault depths were assigned a standard 433 

deviation of 300 m, as the geometry of the model was based purely on seismic interpretations. 434 

On the other hand, fault slips were assigned an error of 800 m. This uncertainty is enough to 435 

explore possible different configurations without straying too far from the more precise surface 436 

geology. These prior distributions were also proposed based on several trial-and-error runs to 437 

achieve a balance between the acceptance rate and convergence. Because of the slow forward 438 

modeling step, a smaller step size would have led to a very slow chain convergence. 439 
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 Computing the models without the inversion was also important to determine an 440 

appropriate likelihood function. For example, samples with better constrained cooling age (i.e., 441 

possessing both an AFT and AHe age), should carry greater significance in determining the 442 

probability of rejection, than samples possessing a single cooling age. Similarly, cooling ages 443 

with big variances should result in a more lenient rejection threshold. 444 

 One additional important factor to consider is the assumptions on the paleo-geothermal 445 

gradient and its evolution through time. Ideally, we would combine the kinematic modeling in 446 

Noddy with geothermal modeling through time. Unfortunately, this has yet to be implemented in 447 

Noddy. Instead, we can use the available modeled heat flow values of the region and thermal 448 

conductivities measured in boreholes from Frings et al., 2022 (preprint), and other published heat 449 

flow estimations from vitrinite reflectance and AFT data (e.g. Mazurek et al., 2006) in order to 450 

approximate the geothermal gradient at the time of each event. These authors show that the 451 

geothermal gradient for an area directly west to our study area, in the Swiss Molasse Basin, was 452 

relatively low during the Paleogene and Neogene (15 to 25°C/km), with values increasing during 453 

the latest Neogene. Most of the samples have Miocene cooling ages that are mostly younger than 454 

their stratigraphic ages, and thus have a reset AHe system. For these cases, a geothermal gradient 455 

of 25°C/km was used to calculate the approximate pre-exhumation depth. B30 and B60, 456 

however, are both un-reset and present older ages, so a geothermal gradient of 20°C/km was 457 

used, instead. 458 

 459 

4.2.2 Results analysis 460 

Because of the model complexity, the amount of model runs needs to be reduced. Thus, 461 

we ran the maximum number of models possible with the available computational resources 462 

(RWTH compute cluster: 1 node, 4 cores, and 2 GB memory). By maximizing the high-463 

performance computing resources, it was possible to run 3088 models, with 1000 accepted 464 

models within several days. On one hand, B40 and B50 had an initial pre-exhumation depth that 465 

was not deep enough to ensure full resetting of the thermochronological systems. As expected, 466 

both the Salmas and the Horn thrusts show a shift towards higher fault slips (Figure 10c). The 467 

Salmas thrust shows a minor shift upwards in depth and the opposite is true for the Horn thrust. 468 

On the other hand, the Steineberg syncline thrust shows a shift downwards in depth but the 469 

change in slip is negligible. There are small decreases in the posterior parameter standard 470 

deviations: from 300 m to around 225 m for the position at depth, and from 800 m to around 750 471 

m for the slip (Figure 10). The average entropy for the model ensemble considering both rejected 472 

and  accepted models was 0.07, which decreased to 0.06 after performing the MCMC. However, 473 

it must be pointed out that in this case entropy may not be the best description metric. In Noddy, 474 

only lithologies carry “IDs”. The modeled faults affect mostly the Lower Freshwater Molasse, so 475 

varying fault position will most likely not result in an increase in entropy.  476 

 477 
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 478 
Figure 10. (a) Shows the initial fault configuration for the Salmas, Horn and Steineberg syncline thrust, respectively. (b) 479 

Schematic representation and summary of how the joint likelihood functions were constructed. (c) Resulting parameter 480 

distributions (blue histograms) after the MCMC is run compared with their priors (red curves). Abbreviations: PRZ - partial 481 

retention zone and PAZ - partial annealing zone.  482 

 483 

 Similar to the synthetic model, we checked the convergence of the MCMC chain by 484 

displaying the values of the parameters over the successive iterations in trace plots, which can be 485 

found in the Supplementary Material. The parameter trace plots exhibit stability (they fluctuate 486 

around a fixed value) and do not display any systematic trends or patterns. Geweke plots show 487 

that all parameters fall within 2 standard deviations. Autocorrelation plots show relatively low 488 

autocorrelation (not exceeding 0.2). All of the convergence diagnostics suggest that there is, 489 

again, no evidence against convergence.  490 

 In Figure 12 we divided the kinematic model into the major faulting events against a 491 

geothermal gradient. A geothermal gradient of 30°C/km was used for present-day and 20°C/km 492 

for the rest of the events. For this, the isotherms are kept undeformed under the assumption that 493 

the deformation is slow. This is supported by the modeling carried out by von Hagke et al., 2014, 494 

where most of the thermochronological samples do not require rapid exhumation. On another 495 

hand, we also assume that the cooling of the samples is purely fault driven. The final “best-496 

fitting” model according to the MCMC was generated using the maximum a posteriori (MAP) 497 

method. This is a statistical approach which essentially finds the mode (the most probable 498 

values) of the posterior distribution parameters. It corresponds to the values of the parameters 499 

that maximize the posterior probability (Nelder and Mead, 1965). The best fitting model was 500 

then used to calculate the new, more probable, exhumation estimates for the inverted samples 501 

(shown as red triangles in Figure 11). As for the resulting exhumations, while B30 shows very 502 

small changes from the prior, B40 and B50 show a shift towards the threshold values of the 503 

likelihood functions. Particularly, B50 now lies well below the partial retention zone, and B40 504 

can be found in its lower boundaries. 505 
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Figure 11. Thermal evolution of the Bregenz triangle zone. The kinematic modeling steps were divided and combined with a very 507 

simple thermal model. The samples marked in red are the samples used for structural and kinematic parameter inversion, and the 508 

updated positions post-MCMC can be observed as triangles. 509 

4.2.3 Test using synthetic exhumation measurements  510 

The results do not show dramatic shifts in the posterior standard deviations. This may be 511 

because the constraints given by the thermochronological data are too broad and thus many 512 

different combinations of parameters can explain the data. That is to say, there is no unique 513 

model that can explain the data. To test out this hypothesis, we carried out a third and final 514 

experiment to ascertain that the written MCMC algorithm is functioning and to emphasize that 515 

carrying out uncertainty quantifications could still be highly beneficial when dealing with a 516 

different data set.  517 

 For this experiment, we use synthetic exhumation data that was calculated using a set of 518 

fault parameters. We then start the chain from a random initial set of parameters, and try to 519 

recover the “unknown” set of target parameters established previously using the synthetic 520 

exhumation measurements. The uncertainty used was 150 m and 400 m for the depth and slip, 521 

respectively. This time, a continuous likelihood function was defined, with the synthetic 522 

exhumation measurements defining the means of the PDFs with an assigned uncertainty of 800 523 

m. This uncertainty was chosen to achieve the desired acceptance rate, around 30%.  524 

 We carried out 1500 models, of which around 500 were accepted. The results show that 525 

most of the parameter means have started to shift towards the known target parameters, but do 526 

not fully reach them. The MAPs were also calculated and plotted in Figure 12 together with the 527 

target and initial parameters. Only in some cases, such as the depth of the Horn thrust and the 528 

slip of the Salmas thrust, the MAPs have been shifted in the opposite direction, instead. This may 529 

be owed to the limited number of models run. 530 

 531 

 532 
Figure 12. Plots showing a comparison between the initial parameters, the known target value of the parameters and the MAP 533 

resulting from the MCMC. 534 
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5 Discussion 535 

The case study results and the last experiment show that the thermochronological data by 536 

itself may not act as a sufficient constraint for geometric and kinematic parameters. The overall 537 

results, however, indicate that it is feasible to consider geological modeling as a Bayesian 538 

inference problem (as has also been shown in de la Varga and Wellmann, 2016; Wellmann et al., 539 

2018). It is possible to translate cooling ages from thermochronological data into discrete 540 

likelihood functions that serve to constrain geometric and kinematic parameters. These aspects 541 

were also successfully integrated into a probabilistic modeling framework using pynoddy, both 542 

for the synthetic and real-case studies.  MCMC, as opposed to simple Monte Carlo sampling, has 543 

proven to be a powerful method not only to explore the posterior distribution space but also to 544 

obtain additional insight from the model parameters, for example how they behave in correlation 545 

to one another. The MCMC sampling has, in both experiments, yielded an updated, more 546 

probable version of the model that we started with.  547 

The updated models can then be used to describe and analyze the thermochronological 548 

data. For example, while the prior exhumations of samples B40 and B50 were not far from the 549 

desired exhumation, samples B30 and B55, which are also not explained by the model, have 550 

extremely differing exhumation values. On one hand, the model predicts a depth before 551 

exhumation for B30 of around 6 km. B30 is a non-reset AFT sample, so it should be buried at 552 

less than 3 km, assuming a geothermal gradient of 20°C/km. Sample B35 can be found 553 

contiguous to B30, and is a completely reset AHe sample. So, there is no possible fault 554 

configuration that could explain the reset status of B30. An explanation for this could be that 555 

there is uncertainty associated with the sample position (i.e., it has been placed in the wrong 556 

tectonic slice). However, it is not easy to consider sample position uncertainty without including 557 

it as an additional model parameter into the analysis. Otherwise, a sustained geothermal gradient 558 

of around 10°C/km would be necessary to explain it in order for the sample to be not even 559 

partially reset, which would not be consistent with the other samples’ status. On the other hand, 560 

sample B55 has a comparatively well-constrained cooling age because it contains at least a 561 

partially reset AFT system and a completely reset AHe system. The depth before exhumation 562 

should, in turn, also be well constrained. However, the modeling indicates only a few hundred 563 

meters of exhumation for this sample. While this could also be due to uncertainty in the sample 564 

position, another possibility is that B55 suffered reheating by a process not related to faulting.  565 

It is also important to point out that modeling in Noddy can be challenging and comes 566 

with some limitations. Because it is a program designed for modeling simple geological 567 

scenarios, mimicking realistic structure geometries can be difficult, but possible with some 568 

simplifications. Some major limitations include a limit of around 13 km in the amount of slip 569 

that can be assigned to the faults, making it difficult to model displacement through long 570 

horizontal detachments. For example, the slip associated with the Steineberg syncline thrust did 571 

not shift at all with the MCMC. This can be because its 12 km assigned slip is already too close 572 

to Noddy’s limit, and cannot recognize any slip increase. Another major limitation is simulation 573 

times, the time-limiting factor being the forward modeling step in Noddy. Keeping a high 574 
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resolution is very important and must be set at at least 100 (i.e., 1 voxel per 100 m) for the results 575 

to be significant and to fully represent the model. Furthermore, as MCMC chains are not easily 576 

parallelizable, this contributes to a big limitation in the amount of model iterations. With the 577 

current settings, running 1 model takes 5 minutes. This means that it is necessary to reduce the 578 

amount of modeling parameters used for inversion, as the number of iterations scales linearly 579 

with the amount of parameters. 580 

The data available, on the other hand, only allows for the use of a discrete likelihood 581 

function. This can lead to non-smooth probability density functions, making it less amenable to 582 

interpolation. This may be important when making predictions or estimating probabilities for 583 

values that were not explicitly observed in the data. Additionally, using a discrete likelihood 584 

function can make the model more sensitive to specific discretization schemes used. This may 585 

lead to less robustness in the face of small changes in the data or modeling assumptions, such as 586 

a change in the assumed paleo-geothermal gradient. Because of the nature of the data, the results 587 

of the MCMC do not lead to a significant reduction in uncertainty. As shown in the final 588 

synthetic data experiment, the data seems to not be informative enough to further reduce the 589 

uncertainty in the input parameters. The use of multiple thermochronometers for a single sample, 590 

however, might provide the additional necessary constraint to obtain an uncertainty reduction.  591 

From this result we gather that introduction of additional information does not always 592 

lead to an uncertainty reduction. Rather than a contradiction, this can mean that the prior 593 

information is not compatible with the likelihood functions (Wellmann et al., 2018). This can be 594 

seen, for example, for the initial geometry of the Steineberg syncline fault, which will never 595 

respect the thermochronological data. On the other hand, some parameter posterior means show 596 

only a slight deviation from the priors, and this can indicate that the data is already well adapted 597 

to the model. 598 

To improve the current simulations, we plan to build a surrogate model of the forward 599 

modeling step, in order to decrease computational times (Degen et al., 2020). This will involve 600 

constructing a computationally inexpensive approximation (a surrogate model) of the complex, 601 

expensive forward simulations in Noddy. Another possible improvement could be to obtain more 602 

precise exhumation rate estimates from the cooling ages, rather than using a “threshold” 603 

exhumation. Programs like age2exhume (van der Beek and Schildgen, 2023) could be used for 604 

this purpose, though assumptions such as steady vertical uplift and topography are maintained. 605 

Despite limitations in the computational time and model assumptions made, performing 606 

an uncertainty quantification using MCMC on kinematic models has proved useful to obtain 607 

updated modeling parameters that better explain the observed data. This is a major step forward 608 

to building a probabilistic, 3-D thermokinematic model. A thermokinematic model that accounts 609 

for uncertainties is a powerful tool to study the tectonic evolution of the area and, most 610 

importantly, helps to identify the drivers behind the exhumation. 611 

6 Conclusions 612 

From this study we gather the following conclusions: 613 
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● Using MCMC to perform an inversion for geometric and kinematic parameters has 614 

proven successful in providing an updated, more probable model through the introduction 615 

of auxiliary low-temperature thermochronological data.  616 

● The simple synthetic model MCMC has performed well and led to a substantial full 617 

model entropy decrease and to a shift in parameter means and standard deviations. For 618 

the complex case study, shifts in the parameter properties were not as obvious but 619 

improvements in the predictions of the exhumations were still achieved. A separate 620 

experiment using synthetic likelihood functions has proven that, while a limitation in the 621 

number of runs does exist, the MCMC algorithm employed seems sound.  622 

● This method could also potentially be meaningful to detect different drivers of 623 

exhumation. When the faulting in the model fails to account for the cooling age indicated 624 

by the data, it may imply the presence of an alternative cooling mechanism. 625 

● Uncertainty quantification using MCMC, however, does not always lead to a reduction in 626 

uncertainty. Thus, low-temperature thermochronology data used in this study can only 627 

provide broad constraints and may not be informative enough to achieve a decrease in 628 

uncertainty. A combination of dating methods could be used to obtain more precise 629 

exhumation estimates. 630 

● Though some limitations exist in applying the method to a complex, realistic geological 631 

scenario, further improvements could be made in repeating the MCMC analysis on a 632 

surrogate model to speed up computational times. 633 
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