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Abstract

The time it takes for an ecosystem to recover is a key aspect of environmental disturbance. Conventionally, recovery is defined

as a return to the pre-disturbance state, assuming ecosystem stationarity. However, this view does not account for the impact of

external forces like climate change. We propose a counterfactual approach, viewing recovery as the state the ecosystem would

achieve without the disturbance. This redefines recovery time as the period until the ecosystem reaches its counterfactual

state. Through a case study on the greening of the Arctic and Boreal regions, we present evidence demonstrating significant

disparities between counterfactual and conventional recovery time estimates. The well-documented greening of the region serves

as an external force, introducing non-stationary dynamics that result in a counterfactual recovery time twice as long as the

conventional view. We advocate for embracing the counterfactual definition of recovery, as it aligns more realistically with

informed decision-making.
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Abstract 

The time it takes for an ecosystem to recover is a key aspect of environmental disturbance. 
Conventionally, recovery is defined as a return to the pre-disturbance state, assuming ecosystem 
stationarity. However, this view does not account for the impact of external forces like climate 
change. We propose a counterfactual approach, viewing recovery as the state the ecosystem 
would achieve without the disturbance. This redefines recovery time as the period until the 
ecosystem reaches its counterfactual state. Through a case study on the greening of the Arctic 
and Boreal regions, we present evidence demonstrating significant disparities between 
counterfactual and conventional recovery time estimates. The well-documented greening of the 
region serves as an external force, introducing non-stationary dynamics that result in a 
counterfactual recovery time twice as long as the conventional view. We advocate for embracing 
the counterfactual definition of recovery, as it aligns more realistically with informed decision-
making. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Disturbance is any distinct event that disrupts the structure, function, or composition of an 
ecosystem, community, or population, and alters resource availability or the physical 
environment (Turner 2010; P. S. White and Pickett 1985). Disturbances can be caused by abiotic 
(e.g., wildfires and tornadoes) or biotic pulse events (e.g., pathogens), with long-term pressing 
impacts on ecosystem function (Kautz et al. 2017; Harris et al. 2018). Natural disturbances are 
essential for maintaining key ecosystem functions (Moi et al. 2020). However, the disturbance 
pattern including severity, frequency, and timing is rapidly changing (Johnstone et al. 2016; 
Turner and Seidl 2023; Turner 2010). For example, globally, there has been an increase in the 
frequency and intensity of disturbances such as wildfires (Pechony and Shindell 2010; Westerling 
2016), insect outbreaks (Kautz et al. 2017), and drought (Millar and Stephenson 2015). These 
shifts have been shown to impact ecosystems in various degrees, resulting in significant loss of 
key life-sustaining ecosystem services. 

One key aspect to understand, mitigate, and adapt to a changing disturbance regime is the time 
it takes for ecosystems to recover. But what is recovery? In its most intuitive form, the Oxford 
dictionary defines recovery as a "return to a normal state" (https://languages.oup.com/). 
However, in the context of ecology, the term "normal" is not always unambiguous. In most 
studies, the time to return to normal is considered as the duration it takes for a state variable of 
a disturbed system to bounce back to its pre-disturbance state (Pérez-Cabello, Montorio, and 
Alves 2021; Yi and Jackson 2021; Moreno-Mateos et al. 2017). A more general definition of 
recovery is that disturbed systems reach a stable state. The post-disturbance stable state could 
be similar to the pre-disturbance state, or it could be a different stable state (McDowell et al. 
2020; Seidl and Turner 2022). 

The conventional definition of recovery is fundamentally limited by the unrealistic assumption of 
ecosystem stationarity, where ecosystems remain in equilibrium within a fixed historical range of 
variability (Milly et al. 2008; Rollinson et al. 2021). This concept originated from early studies on 
ecosystem resilience and disturbance where a steady state was envisioned, implying that 
changes in a state variable over time closely approximate its average (Fraccascia, Giannoccaro, 
and Albino 2018; Rykiel Jr 1985; Nimmo et al. 2015; Yi and Jackson 2021). The core idea is the 
resiliency of an ecosystem depends on its capacity to recover to pre-disturbance state(Nimmo et 
al. 2015; Matos et al. 2020). However, this definition overlooks external forces such as climate 
change. These external forces may impose a non-stationary dynamic on the ecosystem and can 
shift the state of an ecosystem regardless of disturbance occurrence. In the event of a 
disturbance, these external forces can either shorten or lengthen the recovery time (Cheng, 
Ganapati, and Ganapati 2015). However, the conventional view confounds the impact of these 
forces with that of the disturbance itself. 

An alternative definition of recovery that goes beyond the stationary assumption, is the 
counterfactual definition, which defines the recovery time as the duration it takes for an 
ecosystem to reach its "counterfactual state." In this context, the counterfactual definition of 
recovery poses the question: What would the state of a disturbed ecosystem have been if the 
disturbance had not occurred? Unlike the conventional definition, which compares the current 



state of an ecosystem to its pre-disturbed state, the counterfactual method compares it to a 
hypothetical, undisturbed state, considering the influence of external forces. This concept 
disentangles the contribution of external forces and the disturbance on recovery.  

The two perspectives on recovery have significant implications for ecosystems management and 
decision-making. The conventional view of recovery is reactive and introduces a trade-off 
between the speed and the quality of the recovery process (Cheng, Ganapati, and Ganapati 
2015; Olshansky 2006). In this view, the primary objective is to restore the ecosystem to its pre-
disturbance state (normal state) as rapidly as possible, often without considering the quality of 
the recovered state; the new normal imposed by other forces. This approach is fundamentally 
backward-looking and implies returning the ecosystem to the vulnerable conditions that existed 
before the disturbance. Decisions based on this conventional recovery view may inadvertently 
exacerbate the disturbance cycle. 

In contrast, the counterfactual perspective is more proactive, where the quality of recovery 
holds equal importance alongside the speed of recovery. Unlike the conventional view, the 
counterfactual approach evaluates the post-disturbance recovery against a hypothetical state 
that a disturbed ecosystem would have reached if the disturbance had never occurred. The 
counterfactual recovery approach empowers decision-makers to plan for the future (Cheng, 
Ganapati, and Ganapati 2015; Olshansky 2006) and aligns more closely with the goal of 
promoting the resilience of ecosystems. For example, there is a body of evidence indicating that 
protected and managed regions can recover to their original state (as per the conventional view) 
more rapidly (McClanahan 2008; Senf, Müller, and Seidl 2019; Su et al. 2022). However, these 
management practices may simultaneously compromise the ecosystem's resistance to future 
disturbances (Côté and Darling 2010; Senf, Müller, and Seidl 2019). Resilience depends on 
seeking a balance between resistance (quality) and the speed of recovery, and the 
counterfactual view implicitly considers both critical aspects. 

Ecologists have long recognized the influence of external factors like climate change on recovery 
(Gaiser et al. 2020; Turner and Seidl 2023; Turner et al. 2020; Albrich et al. 2020). However, 
there is a gap in developing quantitative frameworks to analyze these external forces' impact 
(Fick et al. 2021; Iglesias and Whitlock 2020). To address this gap, we introduce an approach 
based on time series impact analyses to quantify counterfactual recovery time estimates. We 
emphasize the divergence between counterfactual and conventional perspectives using an 
illustrative example: the recovery time for greenness in North American Arctic and boreal 
ecosystems. Over three decades (1984-2013), these ecosystems have faced diverse 
disturbances, including wildfires, permafrost thaw, insect outbreaks, and human activities(Foster 
et al. 2022; Zhang et al. 2022). Regardless of the trigger, a key consequence of disturbance in this 
region has been altered land cover composition (Jonathan A. Wang et al. 2020). We focus on the 
recovery of the annual maximum normalized difference vegetation index (NDVI), a proxy for 
ecosystem greenness and photosynthetic potential, following land cover disturbances. We 
demonstrate the significant discrepancies in NDVI recovery time estimates between 
counterfactual and conventional approaches. The framework presented in this study has the 
potential to be applied to encompass the recovery of other remote sensing or ecological 
variables. 



Materials and Methods 

Study area and datasets 

The study region is the core domain of the NASA Arctic-Boreal Vulnerability Experiment project, 
encompassing most of Alaska and a large portion of western Canada (Figure S1), with a total area 
of slightly more than four million km2. The land cover map used in this study has a 30 m spatial 
resolution and covers the period 1984-2013 (J. A. Wang et al. 2019). The data can be 
downloaded from the ORNL DAAC (10.3334/ORNLDAAC/1691). This product has ten different 
land cover types (Table S1), including evergreen forest (EF), deciduous forest (DF), shrublands, 
herbaceous vegetation, sparsely vegetated areas, barren land, fens, bogs, shallow/littoral areas, 
and water classes. Since our primary interest is NDVI, we only focused on vegetative categories.  

The NDVI data in this study is the annual maximum NDVI that was developed for the region (E.K. 
Melaas et al. 2019) with 30 m spatial resolution, and has been used in various studies (Eli K. 
Melaas, Sulla-Menashe, and Friedl 2018; E.K. Melaas, Friedl, and Sulla-Menashe 2018). The NDVI 
values from 1984 to 1998 are based on the Landsat TM sensor, and from 1999 to 2013 on the 
Landsat ETM+ sensor. There is an inconsistency between the two sensors, as the NDVI values of 
ETM+ are generally higher. This could introduce a spurious upward trend in the analyses. To 
correct for this bias, we calibrated the ETM+ NDVI using the following linear correlation which 
was originally developed for the region and the Landsat dataset (Sulla-Menashe, Friedl, and 
Woodcock 2016) used in this study: 

    

Where NDVIcor and NDVIobs are the corrected and observed NDVI ETM+, respectively.  

We divided the region into 0.05° × 0.05° grids, each covering approximately 17,000 pixels with 
30-meter resolution. Within each grid, we calculated the percent cover of each land cover type 
by counting the number of pixels of a specific land cover type and dividing it by the total number 
of enclosed pixels. We also calculated the average NDVI in each grid. In this study, we defined a 
10% change in net land cover change between two consecutive years as a disturbance. If a grid 
experienced at least one change greater than 10% between two consecutive years, we 
considered it a disturbed grid. Note that the 10% threshold is subjective, since our goal was to 
demonstrate how the ecosystem recovers from a significant land cover composition change. 
Despite the subjectivity of the disturbance threshold, the map of disturbed areas produced in 
this study (Figure S1) is very close to the comprehensive map of disturbance recently derived for 
the region (Zhang et al. 2022). 

It is worth mentioning that while normalized burned ratio (NBR) is commonly used in recovery 
studies across the region (Frazier et al. 2018; J. C. White et al. 2022; J. C. White, Hermosilla, and 
Wulder 2023), our focus was on NDVI. We chose NDVI because, in comparison to NBR, it exhibits 
a relatively rapid recovery (Frazier et al. 2018), allowing for an assessment of both traditional 
and counterfactual recoveries during the study period. Furthermore, NDVI is extensively utilized 
in the analysis of greening (Fiore et al. 2020; K. Fred Huemmrich et al. 2023), disturbance and 



recovery (Bright et al. 2019; Shvetsov et al. 2019), and has demonstrated correlations with 
climate, productivity, leaf area index, and other ecological variables in the region (K. F. 
Huemmrich et al. 2010; Raynolds et al. 2012; Verbyla and Kurkowski 2019).  

Trend estimation 

The trend estimation in land cover time series and NDVI is conducted using the Bayesian 
Estimator of Abrupt Change, Seasonal Change, and Trend (BEAST) method (Zhao et al. 2019), 
which is implemented in Python. The code for this algorithm can be accessed at 
(https://github.com/zhaokg/Rbeast). BEAST is an ensemble algorithm that, instead of searching 
for the "best" time series model, fits numerous models and assesses the relative utility of 
individual decomposition models. It accomplishes this by leveraging all the models through 
Bayesian model averaging. Extensive testing on synthetic data and various remote sensing time 
series products has demonstrated that BEAST is capable of capturing realistic nonlinear dynamics 
within a time series (Zhao et al. 2019; Dashti et al. 2021; Li et al. 2022). Furthermore, this 
algorithm identifies potential change points (CPs) in trends. The CPs indicate the point in time 
when there is a significant change in the trend, attributable to various factors such as 
disturbances.  

Estimating conventional and counterfactual recovery time 

We defined conventional recovery time as the period for a variable (e.g., NDVI) to reach its mean 
value before a disturbance. In contrast, counterfactual recovery time is the duration for a 
variable to attain its counterfactual state, representing what the ecosystem’s condition would 
have been without the disturbance. To predict this counterfactual state, we employed the 
Bayesian Structural Time Series (BSTS) model (Brodersen et al. 2015). BSTS was originally 
developed to assess the impact of interventions or external events on a time series. It has found 
applications in a wide range of fields, including assessing the impact of COVID-19 on ridership 
(Hu and Chen 2021), evaluating marketing campaign effectiveness (Mourtgos, Adams, and Nix 
2022) and examining hurricane impact on mortality rates (Santos-Burgoa et al. 2018). An 
implementation of BSTS has been developed as an R package known as CausalImpact. 

Inferring the impact of land cover disturbance on NDVI using BSTS involves a three-step process. 
Firstly, a model is established between NDVI and highly correlated variables before the 
disturbance occurs. The critical assumption is that these correlated variables remain unaffected 
by the disturbance. In our study, we assume that neighboring NDVI values (within a ~50 km 
radius) in the undisturbed region demonstrate a strong correlation with the NDVI of the 
disturbed area prior to the disturbance, and they remain unaffected by the disturbance, thus 
fulfilling the BSTS assumption. We then calculated the mean of all these undisturbed NDVI values 
and utilized this time series as the predictive feature. Secondly, we fit the model established in 
the preceding step to the undisturbed NDVI values post-disturbance to predict the 
counterfactual NDVI state. Thirdly, the posterior distribution of the pointwise impact of 
disturbance on NDVI post-disturbance was computed. 



Lastly, we defined a counterfactual recovery time as the moment when the disparity between 
counterfactual predictions and observed NDVI post-disturbance approaches zero. In other 
words, counterfactual recovery marks the time when the actual and potential NDVI, accounting 
for the influence of external factors such as climate change, converge. All findings presented in 
our study are statistically significant (p-value < 0.01). 

Results 

Disturbance Drives Shifts in Vegetation Greenness 

The NDVI dynamics were found to be closely linked with land cover changes and disturbances 
(Figure 1). The most prominent pattern in disturbance was the onset of a decline in evergreen 
forests (EF) in 1994, which persisted until the end of the study period (Figure. 1a). Over this 
period, the coverage of evergreen forest in disturbed areas decreased by approximately -54%, 
from an average of 60% in 1994 and earlier to 30% by 2013 (Figure. 1b). Concurrently, other 
vegetation types expanded. Notably, there was a sharp rise in sparse vegetation, which was 
subsequently moderated, while shrubs and herbaceous vegetation began to grow at an 
accelerated pace, gradually replacing sparse land cover. This pattern exemplifies a typical post-
disturbance succession process. Figure 1c shows the increasing number of change points (CPs) 
around 1995, highlighting that disturbance led to a change in the general trend of land cover. A 
similar pattern, although less pronounced, can be observed for the year 2005. While herbaceous 
cover also increased relatively, from 4% to 6%, this increment is much less than shrubs and 
sparse vegetation. Thus, we did not show the CPs for this category. The pattern described here is 
consistent with above-ground biomass dynamics over regions disturbed by fire, as described by 
(Jonathan A. Wang et al. 2021). Their analysis shows that around 1995, the net forest cumulative 
above-ground biomass changes from positive to negative, implying a reduction in forest cover 
since that year. 

 

Figure. 1. (a) Temporal land cover composition, (b) mean of estimated trends for different land covers, (c) 
frequency of detected change points (CPs) in the estimated trend that are caused by abrupt changes, (d) 
NDVI trend, (e) average slope of NDVI trends at each point in time, and (f) detected CPs for NDVI. The 



trends and CPs were estimated using the BEAST time series approach, and the shaded regions show the 
95% confidence intervals. Vertical lines highlight the two most common years in which CPs are detected. 

The land cover pattern over the disturbed area is also reflected in the NDVI dynamics (panel (d)). 
From 1994 to 1995, there is a sharp drop in NDVI, followed by a gradual recovery until 2004. At 
this point, another drop happens due to another smaller disturbance in land cover. In alignment 
with the land composition dynamics, the detected CPs in NDVI trend peak around 1995 and 
2004. An interesting observation is the increase in the probability of finding positive slopes since 
1994 in the NDVI trend (Figure. 1e) due to recovery process which is consistent with other 
studies.  

Greenness Takes Significantly Longer to Recover Under Counterfactual View 

Our analysis revealed a widespread disturbance across the region since 1994, as depicted in 
Figure 2. Upon focusing on regions affected by this disturbance, we observed significantly 
different estimates of the recovery time when considering conventional versus counterfactual 
perspectives. Achieving the counterfactual state required approximately 17 years, which was 
twice the time needed to reach the pre-disturbance mean NDVI in 8 years (see Figure 2d). At the 
onset of the disturbance, the actual disturbed NDVI experienced a sharp decline, deviating 
substantially from the counterfactual prediction (see Figure 2e). As the recovery process 
unfolded, the disparity between the actual and predicted NDVI gradually diminished. By 2002, 
the actual disturbed NDVI had returned to its pre-disturbance mean (NDVI = 0.57). However, 
during the same period, the predicted counterfactual NDVI slightly exceeded (NDVI = 0.6) the 
observed NDVI, suggesting that NDVI in the disturbed regions would have been slightly higher in 
2002 (~5%) had the disturbance not occurred. Similar to undisturbed pixels (see Figure 2c), we 
observed a slight positive trend in the predictions of the counterfactual state (slope=0.0008). 
This "greening effect" contributed to a 0.03 difference between observed and predicted NDVI in 
2002 and extended the disturbance recovery time from 8 years under the classical assumption 
to 17 years under the counterfactual definition of recovery.  



 
Figure 2. (a) Temporal land cover composition for regions that were disturbed in 1994, (b) the 
estimated trend for different land cover types as defined in Table S1, (c) the mean NDVI trend of 
disturbed and not disturbed neighboring grids, (d) the actual and the predicted counterfactual 
NDVI, and (e) the difference between the two. The brown and black circles show the 
conventional and counterfactual recovery points, respectively. The trend and the counterfactual 
predictions were estimated using BEAST and casual impact analyses, respectively. 

Discussion 

While our estimate of an 8-year recovery time for NDVI to return to the pre-disturbance mean 
aligns with findings from other studies conducted in the same region (Foster et al. 2022; Pickell 
et al. 2016; Jonathan A. Wang and Friedl 2019), our counterfactual recovery estimation of 17 
years exceeds this estimate by almost a decade. It even surpasses the ~5-15 years of recovery 
time observed using slower pace indices such as NBR in the region (Frazier et al. 2018; J. C. 
White et al. 2022; J. C. White, Hermosilla, and Wulder 2023). We should note, these studies 
commonly employ the Years to Recovery metric (Kennedy et al. 2012), which defines the time 
needed for variable to return to 80% of its pre-disturbance mean. This definition is less 
conservative, implying faster recovery, than our definition, which demands a return to the pre-
disturbance mean. Given the gradual recovery observed with NBR, it is reasonable to anticipate 
much longer counterfactual recovery timelines for this variable, necessitating longer time series 
than those employed in this study for a comprehensive investigation. 

The discrepancy between conventional and counterfactual estimation of recovery time is 
primarily due to the well-known greening trend in the Arctic and boreal region observed in many 
studies (e.g. Piao et al. 2020; Ju and Masek 2016; Myers-Smith et al. 2020; Phoenix and Bjerke 
2016). Greening acts as an external force constantly affecting NDVI values, gradually pulling 
them up (i.e. positive slope) in both disturbed and undisturbed regions. The conventional notion 
of recovery, which centers on returning to the pre-disturbance NDVI mean, overlooks this 
ongoing NDVI uptrend and non-stationary pattern. It implicitly assumes a stationary NDVI 



dynamic. While the positive trend is incremental and small, its cumulative impact becomes 
significant over extended timeframes. As shown in Figure 2, even with the relatively sharp post-
disturbance NDVI increase, it takes 17 years for disturbed areas to reach to the NDVI value that 
would have existed if the disturbance had not occurred. 

It's worth noting that the difference between NDVI values of 0.57 at the conventional recovery 
point and 0.6 at the counterfactual recovery point may seem insignificant at first glance. 
However, a more meaningful comparison involves considering the difference in NDVI alongside 
the slope of NDVI increase. The undisturbed NDVI slope is approximately 0.0008. Consequently, 
the 0.3 difference in NDVI is more than 37 times greater than the slope. This subtle yet 
consistent upward trend adds an additional 11 years to compensate for the 0.3 disparity. 
However, we recognize that a 0.3 difference in an ecological context may appear 
inconsequential, especially when considering that, in our case, the forest within the study 
timeline has never fully recovered to its pre-disturbance state. This is not surprising, as disturbed 
forested ecosystems typically require several decades to millennia to fully restore or there has 
been a permanent state transition due to multiple pressures (Turner et al. 2019; Cole, Bhagwat, 
and Willis 2014).  

Our choice of NDVI over other common indices, such as NBR, for forest recovery estimates is 
twofold: First, NDVI recovers much faster, allowing us to achieve our primary goal of presenting 
a framework for counterfactual recovery analyses. Second, NDVI has been extensively used in 
greening (Fiore et al. 2020; K. Fred Huemmrich et al. 2023; de Jong et al. 2011; Myers-Smith et 
al. 2020). Since greening is the dominant external force in our counterfactual analyses, the 
selection of NDVI is justified. Nevertheless, the framework proposed in this study has the 
potential to be extended to encompass the recovery of other remote sensing or ecological 
variables. 

We are living in an era of accelerated global changes due factors such as climate change and 
human activities. These external pressures introduce a non-stationary dynamic, potentially 
shifting entire systems toward a "new normal" over an extended timeframe (Seidl and Turner 
2022; Milly et al. 2008; Turner and Seidl 2023). We propose that the adaptation to this new 
normal should be considered, as it presents a more realistic scenario, and as a community we 
should move away from assuming a constant state when assessing recovery. In some instances, 
the traditional perspective can lead to misleading conclusions. For example, in our example, 
greening resulted in a longer counterfactual recovery period compared to the traditional view. 
Conversely, in water-stressed regions, a general negative trend in greenness may occur. 
According to the conventional view, this would imply significantly longer recovery times or 
incorrect conclusions that the ecosystem failed to recover, when, in fact, a counterfactual 
recovery to a reduced state might happen more rapidly. 

We acknowledge several limitations associated with the counterfactual recovery approach. Most 
notably, the counterfactual state is impossible to directly observe and relies on predictions, 
introducing uncertainty into the analysis. Depending on the context, various methods can be 
employed for counterfactual analyses. The simplest approach involves comparing disturbed and 
undisturbed regions using systematic methods such as quasi-experimental designs (Cheng, 



Ganapati, and Ganapati 2015; Grace et al. 2021; Xiao 2011). However, due to the intricate 
nature of ecological systems, finding two locations that are similar before the disturbance can 
limit the scope of such studies. In this study, we adopted a data-driven causal impact analysis 
approach, which requires predicting features that are unaffected by the disturbance and are 
highly correlated with the variable of interest. Therefore, this method is feasible when features 
for predicting the counterfactual state can be identified. An alternative method is to employ 
mechanistic models, such as Earth system models. For instance, Dobor et al. 2018, utilized a 
landscape model to demonstrate a 10-year difference in the recovery of total ecosystem carbon 
between the values before disturbance and those simulated under various climate change 
scenarios. These models are particularly useful for making longer-term predictions of the 
counterfactual state compared to other methods, and they offer more control over varying 
external forces such as different climate change projections. However, the challenge with most 
models lies in the number of parameters, model complexity, and the assumptions that underlie 
these models. 

We envision and expect that this study leads to a rethinking of the recovery process and inspires 
further research on this topic, encouraging the exploration of various methods, including 
counterfactual analyses that do not assume stationarity, to improve our ability to realistically 
predict post-disturbance ecosystem recovery. The concept of counterfactual recovery is highly 
relevant to concepts such as ecosystem resilience, natural/engineering climate solutions, 
conservation and decision making. 

Code availability 

All code used in this study is accessible through the dedicated public GitHub repository at 
https://github.com/hamiddashti/greeness. The repository contains code written in both Python 
and R, utilizing various open-source libraries. 
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