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* Correspondence: Moritz von Stosch, DataHow AG, Hagenholzstrasse 111, 8050 Zürich,
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Abstract

Modern machine learning methods, and their use alongside established paradigms such as Quality by Design,

have the potential to fundamentally change the way bioprocesses are developed. In particular, horizontal

knowledge transfer methods, which seek to exploit data from historical processes to facilitate process devel-

opment for a new product, provide an opportunity to rethink process development workflows.

In this work, we firstly assess the potential of two knowledge transfer approaches, meta learning and one-hot

encoding, in combination with Gaussian process (GP) models. We compare their performance to GPs de-

veloped only on data of the new process. Using simulated mammalian cell cultivation data, we observe that

both knowledge transfer approaches outperform the individual-product approach.

In the second part, we address the question whether experiments for a new product could be designed more

effectively by exploiting existing knowledge. In particular, we suggest to specifically design few runs for the

novel product to calibrate knowledge transfer models, a task that we coin calibration design. We propose

a novel, customised metric to identify a set of calibration design runs, which exploits differences in process

evolutions of historical products. In two simulated case studies, we observed that training with calibration

designs yields similar test set errors compared to common approaches of Design of Experiments. However,

much fewer experiments are needed for the former, suggesting an interesting alternative for future bioprocess

development.

Overall, the results suggest that process development could be significantly streamlined when systematically

carrying knowledge from one product to the next.
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1 Introduction

Processes for the manufacturing of biopharmaceuticals must consistently deliver the right quality and be

economically feasible. The development of these processes needs to be fast, exhibit low technical risk, re-

quire limited investment, produce sufficient process understanding, and yield a manufacturing process that is

economically viable. Three approaches have been introduced in the past to answer to these needs: platform

processes, (miniaturised) high-throughput experimentation and Quality by Design (QbD).

Platform processes seek to provide a template for process development. Typically, a proprietary host

cell line, base and feed media as well as process conditions are developed and chosen ones, and process

conditions are only adapted slightly to improve quality or titer when changing the product. In this approach,

process development is streamlined and fast, a body of knowledge of how the process behaves is acquired

and technical risk is reduced. Regardless, early stage (cell line and condition screening) as well as late stage

process development (optimisation to reach quality and economic target as well as scale-up) will still require

the execution of multiple process runs (Bradl et al., 2016; Rehberger et al., 2013; Xu et al., 2020, 2022).

Depending on the product and platform, the average number of process development runs is in the hundreds

in early stage and in the dozens for late stage.

(Miniaturised) High-throughput experimentation aims at generating experimental evidence at eco-

nomically attractive small scales. Experimental results produced with small-scale, high-throughput devices

have been shown to be representative of larger scale production process (Bareither & Pollard, 2011; Fink

et al., 2021; Hemmerich et al., 2018; Kim et al., 2012). Consequently, these devices have become very pop-

ular with industry allowing to execute several runs in parallel, reducing timelines. A component that perhaps

contributed to their spreading was the adaptation of the statistical Design of Experiments (DoE) methodol-

ogy (Politis et al., 2017), which provides a design for several experiments for a planned outcome. Advances

in automation such as liquid handling platforms have also fostered the developments in high-throughput

experimentation.

Quality by Design (QbD) is defined as ‘a systematic approach to development that begins with pre-

defined objectives and emphasises product and process understanding and process control, based on sound

science and quality risk management’ in the guidelines Q8/9/10/11 of the International Council for Har-

monisation of Technical Requirements for Pharmaceuticals for Human Use. QbD found wide attention in

industry since its adoption in 2009 (Newcombe, 2014; ter Horst et al., 2021) and DoE was and is seen as

one of the central components (Rathore & Winkle, 2009) as it allows to investigate the impact of factors on

the process response in a systematic way.

Apart from answering to the process development needs, these three approaches in combination produce data

of sufficient quantity and quality - significant advances have been made in data gathering and management

as well as data science over the last decade (Darmont et al., 2022; Jin et al., 2015; Narayanan et al., 2020;

Sarker, 2021) - which seem to render possible a fundamental change in the way that processes are being

developed (von Stosch et al., 2021). The main idea is that machine learning (ML) methods allow to use the

data produced by processes of different molecules to streamline the design of a process for a new molecule,

i.e. horizontal knowledge transfer (Hutter et al., 2021).
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An efficient way to address the challenge of horizontal knowledge transfer are transfer and meta learning

techniques. In transfer learning, the goal is to exploit knowledge that was gained from one task in a source

domain to solve another task in a target domain (Weiss et al., 2016), e.g. by preserving several layers in a

pre-trained neural network and only adapting the rest for unseen data. In the context of process develop-

ment, a task is to find a process model for a specific product, such that the target domain would be a new

product that is not explored yet. In contrast, meta learning, often associated with the term learning to learn,

focuses on solving many source tasks in a joint fashion, usually to learn hyperparameters that can improve

the performance of the learning algorithm (Upadhyay et al., 2023).

Regarding the choice of ML models for dynamic systems, Gaussian processs (GPs) gained popularity over the

past decades (Deisenroth et al., 2009). GPs are non-parametric, Bayesian ML models; as such, they are sim-

ple to set up, work well with noisy and small datasets and naturally incorporate a measurement of uncertainty

in the predictions (Kocijan, 2016). These attributes make GPs a valuable tool in biopharma, where they were

demonstrated in applications such as modelling of bolus fed-batch cultures for antibodies (Cruz-Bournazou

et al., 2022) or process monitoring with spectroscopic data (Tulsyan et al., 2021).

While many specialised transfer and meta learning methods for neural networks exist in the field of ML (e.g. re-

viewed in Hospedales et al., 2022; Tan et al., 2018), these paradigms are less explored for GPs, particularly

in the context of bioprocesses. A simple approach to achieve horizontal knowledge transfer is joint training

on historical and new product data using one-hot enconding (OHE) (Ashenden et al., 2021), which means

introducing several binary features to represent a categorical feature. Recently, this approach was extended to

vector embeddings, where the study showed that transfer learning approaches slightly outperformed models

that were trained without historical bioprocess data (Hutter et al., 2021). However, applications of meta

learning, where an inductive bias is learned from historical data, remain scarce. Interestingly, meta learning

for GPs was recently explored in the work of Rothfuss et al.; in particular, the study found a framework that

addresses the challenge of overfitting to the meta-training tasks for small dataset and allows generalisation

as well as good scaling (Rothfuss et al., 2021).

Besides these modelling challenges, the related question of how to identify suitable experimental conditions

to understand the behaviour of new processes has been addressed in the past. DoE is an old field that goes

back to Sir Ronald A. Fisher in the 1920s (Politis et al., 2017). On a high level, the two classical approaches

used in bioprocess development are: screening designs, which aim at identifying critical design factors and

their main effects, and response surface designs, which aim to optimise these critical factors (Beg & Swain,

2021). Examples for screening designs are fractional factorial designs or definitive screening designs (DSDs),

the latter being suitable for screenings with with many design factors that have confounding effects (Jones

& Nachtsheim, 2011). The group of response surface designs include central composite, full factorial or

Doehlert designs.

Besides classical DoE approaches, Bayesian optimisation became of interest for the field, a concept that

was named one of the most important statistical ideas of the past 50 years by Gelman and Vehtari, 2021

in the context of adaptive decision analysis. In experimental designs, Bayesian optimisation has fostered

significant improvements in the number of experiments that are required to optimise a process (Greenhill

et al., 2020). However, initial designs for new processes, whose data is required to fit an initial model for

Bayesian optimisation, are usually chosen by simple, uninformed methods, either by space-filling strategies

like latin hypercube sampling (LHS) or by classical DoE methods like factorial designs. As an alternative,

we hypothesise that historical data contains information on experimental designs that reveal the underlying
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process dynamics more efficiently, thus leading to less required experiments to fit a new process model com-

pared to state-of-the-art methods.

Figure 1: Link between knowledge transfer and calibration design.
In the first part of this work, different strategies for knowledge transfer (light blue) are compared, e.g. meta
learning. To identify optimal designs to calibrate a process model, initial data from so-called excitation
designs (grey) is usually required. However, meta or transfer learner already informs the base learner as a
hyperprior, allowing to suggest optimal designs to calibrate the process model to a new product. This task
of generating initial optimal designs for an unseen product is called calibration design throughout this work.

In this work, we show that horizontal knowledge transfer improves model performance and that the choice of

initial experiments to start process optimisation can be improved by using existing knowledge. An overview

of the processes and their connection is given in Fig 1. As shown in the lower part of the figure, the first

part of this work investigates methods of knowledge transfer. To efficiently handle small datasets, which are

present at the start of new product development campaigns, GPs are applied as the model of choice. In a

first step, we transfer the meta learning approach by Rothfuss et al., called PACOH, to a biopharmaceutical

process model based on GPs. In a case study with historical datasets and one novel product, we benchmark

the performance of the new algorithm compared to other knowledge transfer models and models that are

only trained on data of the novel product. In the second part of this study, we explore how to use transfer

learning to calibrate process models to a new, completely unseen product (Fig 1, top). We refer to this novel

experimental design as calibration design and determine the process conditions based on a new metric that

takes the differences in the process evolutions of historical products into account. In contrast to common DoE

strategies, the calibration design does not require data from an initial excitation design of the novel product

(Fig 1, grey box) to calibrate the base learner, but can leverage information from the knowledge transfer

approaches. In the final part of this study, we therefore benchmark the novel calibration design metric to

other metrics and designs such as LHS and shed light on potential use-cases as well as future directions for

the approach.

5



2 Material and methods

In this paper, two different methodologies are targeted: knowledge transfer methods and calibration design

(identifying optimal initial experimental designs of a new product for model calibration). Both approaches

require an underlying process model. GPs are the model of choice in this work due to their efficiency regarding

small datasets and their ability to handle noisy experimental data, which is relevant for biopharmaceutical

processes. In this chapter, regression using GPs is explained first, followed by an overview of knowledge

transfer approaches and introduction of the novel task of calibration design.

2.1 GP regression

GPs are Bayesian machine learning models used throughout various regression problems. In a simple descrip-

tion, consider n m-dimensional input and n scalar output data points. Given some input data X ∈ Rn×m

and corresponding output data y ∈ Rn and given a new data point x′ ∈ Rm, a GP implements the predictive

conditional distribution of the output variable y′:

y′ ∼ N (x′|X,y) ≡ N (m(x′,X,y), σ2(x′,X,y)) (1)

where m(x′,X,y) and σ2(x′,X,y) describe the predictive mean and variance for a new observation x′,

given the data X and y. A detailed description of GP regression can be found in Rasmussen and Williams,

2006.

To model the time evolution of the process variables, we utilise GP regression in an autoregressive fashion to

propagate the process dynamics along the time dimension. To facilitate this, the process is discretised along

the time dimension and for all modelled species their generic mass balances are parameterised as follows:

d(c · V )

dt
= R(x) · V + uf (2)

where c is a vector of concentrations of the modelled process dynamics variables, V the culture volume

and uf a vector of mass feed rates (nonzero only for compounds that are fed). R(x) describes a vector

containing the rate of production (or consumption when negative) of the modelled species as a function of

all process variables x at a certain time t input to the GP model. The input x is given by a combination

of uncontrolled process dynamics variables and controlled process variables (such as pH or temperature).

Discretisation of the process in time allows us to utilise the forward-difference formula for the time-derivative

of the concentration, where Eq 2 now becomes:

d(c · V )

dt
= V

dc

dt
+ c

dV

dt
∼= V

c(ti+1)− c(ti)

ti+1 − ti
+ c

dV

dt
= R(xi)V + uf (3)

where xi ≡ x(ti) denotes the vector of all input process variables at time step ti. Further simplification of

Eq 3 allows us to lump the mass balances into a single effective rate of production R̃, as can be seen below

in Eq 4.
c(ti+1)− c(ti)

ti+1 − ti
∼= R(xi) +

1

V

(
uf − c

dV

dt

)
!
= R̃(xi, uf , V ) (4)

To approximate this effective rate of production R̃ we can utilise any machine learning model. In our case,

this approximation is parameterised through the predictive mean of a GP regression model: GP (x, uf , V ) ≈

6



R̃(x, uf , V ). Here we use the notation GP (x, uf , V ) interchangeably with the predictive mean of the GP.

Through this discretisation of the process mass balances in time, as well as the approximation of the effective

rate R̃ through the predictive mean of a GP regression model, we can autoregressively propagate the state

of the process along discrete steps in time:

c(ti+1) ≈ GP (xi, uf , V ) · (ti+1 − ti) + c(ti). (5)

Throughout this work, a squared exponential (SE) kernel with automatic relevance determination (ARD)

was used, with the kernel hyperparameters and noise parameters determined from the training data using

maximum likelihood estimations. To improve model robustness and predictive performance, a simple mean

averaging ensemble approach was chosen with 30 GP models comprising the ensemble, each sub-sampling

50% of the training data experiments. The high number of models in the ensemble, together with the chosen

sub-sampling percentage, ensure adequate coverage of the training data while improving the robustness

against over-fitting. Further background is given in Pinto et al., 2019.

2.2 Knowledge transfer approaches

In Section 3.2, we compare different models for knowledge transfer with individual-product models as a

benchmark. While individual-product models and one-hot encoding were used before, the meta learning

framework for GPs was not yet applied to a biopharmaceutical process model to the best of our knowledge.

All models are evaluated based on their performance of the predicted effective rate (Eq 4) on a test data set

with 100 simulated experiments (Section 2.4). In the following, the methodology of the various models is

detailed.

2.2.1 Individual-product models

In the simplest approach, only the data for the product of interest is used to train a GP regression model as

described in Section 2.1. This serves as a benchmark for meta learning and one-hot encoding models, which

are expected to outperform individual-product models in terms of the test set error (Section 2.3.4) if few

experiments are provided. We varied the number of available experiments between one and 20, which were

randomly sampled from the available training data generated as described in Section 2.4.

2.2.2 Meta learning for GPs

In the usual training setup of a GP regression model, that is training the base learner for a new product

(datasetD∗), the training is initialised with pre-defined prior probabilities P for the mean and kernel functions,

which are usually broad and uninformative if no specific process knowledge is available. In meta learning

for GPs, the idea is to obtain informed prior probabilities for a base learner from a hyperposterior Qhyper;

that is the hyperposterior is learned by a meta learner trained on with several historical datasets Di with

i = 1, ..., Nhistorical. This concept is illustrated in Fig 2.

Meta learning in this study was implemented by combining the PACOH framework by Rothfuss et al., 2021

with a stepwise GP described in Section 2.1. Essentially, the mean and kernel functions for the GP are defined

as parametric functions, more precisely neural networks, whose parameters are meta-learned in training. As

for other ML models, hyperparameter such as the number of layers and neurons in the neural network

7



Figure 2: Overview of meta learning concept for GPs.
In a standard GP setup, a base learner is initialised with prior probabilities and the hyperparameters of the
GP kernel are learned based on a dataset D∗, resulting in their posterior distribution. The GP, i.e. the
posterior distribution Q of the hyperparameters, can then be used for prediction. In meta learning, the
prior probabilities are obtained from a hyperposterior Qhyper, which is learned on historical datasets Di with
i = 1, ..., Nhistorical. This plot is a simplified version of Figure 1 presented in Rothfuss et al., 2021.

can determine the predictive output. As done in the original study, we thus performed a hyperparameter

optimisation using Hyperopt (Bergstra et al., 2013). More details and the optimised parameters can be found

in the Supplementary Information. For further details on meta learning and the optimisation guarantees, we

refer to Rothfuss et al., 2021. In the case study, we use the six datasets generated as described in Section 2.4

and assume one to be the new product while the other five serve as historical data for meta training. This

is benchmarked against a OHE model described in the following subsection.

2.2.3 One-hot encoding models

OHE is a common binary encoding strategy to turn categorical variables into numerical feature vectors. The

encoding turns any categorical feature c with Nc potential categories into Nc additional binary features, also

referred to as dummy variables, with a 1 denoting the presence of the corresponding category for the data

points respectively. Encoding the product information this way, the combined data shared across all products

can be utilised to train a model. Keeping the SE kernel with ARD, OHE variables introduce additional

similarity conditions to the kernel. A detailed explanation of the effects of binary encoded variables onto the

kernel values can be found in Hutter et al., 2021.

2.3 Calibration design of process conditions

The term calibration design refers to the task of identifying a suitable experimental design for a determined

number of runs to calibrate an existing model on process data of a new product of interest (in the following,

we in short refer to process data of a new product of interest as new product). In this study, we use different

objective functions to identify the best process conditions to calibrate an OHE-GP regression model to the

new product, which was initially trained on data of other products. For this, the initial OHE model is trained

with 20 experiments of three historical products, designed with LHS over the design space. This is the basis

for further generation of experimental designs for the new, completely unseen product, using the objectives

described in Section 2.3.2 in an optimisation detailed in Section 2.3.1.
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In the simplest case, we designed the conditions for a single experimental run ne = 1, e.g. the setup of a single

bioreactor. Here, solely the objective from Section 2.3.2 was optimised. Additionally, designs for parallelised

bioreactor setups (ne > 1), which are common for screening, were explored. In this case, the design of the

first experiment is identified purely by optimising the respective objective for similarity. Subsequently, the

designs of the next experiments are sequentially identified (prior to experimentation) by taking the objective

function f(u) with design factors u (Section 2.3.2), as well as the distance of these factors to the previously

suggested design d:

fparallel(u) = α · f(u) + (1− α) · 1

D

D∑
d

||u− ud|| (6)

with u as the vector of design factors that are optimised for the current experiment, D as the total number

of experiments that have been optimised so far and the scalar α as the weight of the objective compared to

the distance. In equation Eq 6, || • || denotes the euclidean distance over all factors, which are normalised by

the boundaries of the design space to yield values between 0 and 1 before calculating the euclidean distance.

This approach is iteratively repeated until the desired number of parallel experiments is obtained.

2.3.1 Optimisation framework

Bayesian optimisation of different objective functions was performed with scikit-optimize in version 0.9.2, us-

ing the Optimizer class with a gradient-boosted regression tree as surrogate model. An LHS with 100 sam-

ples was used to initialise the surrogate model and at least 1400 iterations were run for each suggested

experiment to ensure convergence. All optimisations were repeated at least five times with different seeds to

assess performance.

As an alternative to the distance-based design of parallel experiments (Eq 6), scikit-optimize offers parallel

optimisation using the constant liar (Chevalier & Ginsbourger, 2013) methodology. In short, the surrogate

model, which is an inherent part of the optimiser to approximate the objective function, is first queried for

one optimal data point. Subsequently, this data point is added to the observations made so far with a dummy

response, assuming either the mean or the minimum so far seen in the surrogate model as the corresponding

function value. The surrogate model is then queried for the new optimum and the process is repeated as

often as parallel points are to be designed. Afterwards, the true objective function is evaluated at all points

in the batch simultaneously and the surrogate model is updated. Further details on the implementation can

be found in the scikit-optimize documentation (Shcherbatyi et al., n.d.).

2.3.2 Objective functions

In our customised objective, we reason that data of historical products can inform the choice of new designs

that enhance the predictive power of the process model. As a hypothesis, certain experimental designs are

better suited to reveal differences in cell line behaviour than others. Using knowledge transfer models, these

difference in relevant process parameters such as titer are to be inferred using historical data. For this

purpose, a novel metric is introduced, using the same notation as De Luca et al., 2023 for comparability.

In the case study, we chose to optimise based on the predicted interval of final titer Ti(tend,u) of historical

product i, given a set of control variables u. We focus on titer as its optimisation (along with product quality

attributes) typically guides the development activities. Let T̃i(tend,u) denote the median prediction and

σ2
i (tend,u) = Var

[
T̃i(tend,u)

]
the variance of the predicted interval for product i out of N total historical

9



products. We suggest the following metric that is calculated pairwise between products:

f(tend,u) =

N∑
i

N∑
j,j>i

∣∣∣T̃i(tend,u) · σ2
j (tend,u)− T̃j(tend,u) · σ2

i (tend,u)
∣∣∣

σ2
i (tend,u) + σ2

j (tend,u)
(7)

where tend represents the end of cultivation and u a set of control variables, including initial viable cell

density (VCD), that can be optimised. In its core, the metric is looking at the pairwise difference in predicted

final titer scaled by the width of the predicted interval; it is thus trying to evaluate designs with factors u

that maximise this difference while taking prediction uncertainty into account.

2.3.3 Comparison to further DoE strategies

Further benchmarking of the objectives is done by comparing the modelling performance of the calibration

design runs to those stemming from models trained on data generated according to LHS or DSD. For LHS,

experiments were generated with different random seeds within the design space, not using center points.

DSD is a design strategy widely applied in bio-manufacturing and pharma (Dodds et al., 2022). To generate

the design, we used the definitive-screening-design package with version 0.4.0 (Ongari, 2023). If not

indicated otherwise, the training data of historical products is augmented by the suggested experiments for

training a OHE model. The index ”local”, however, indicates that the models were trained on the experiments

of the novel product alone, which is a standard for most DoE methods.

2.3.4 Performance metric

A test set of ne = 100 unseen experimental conditions for the new product (Section 2.4) was used to assess

the predictive quality of the model after training, which was performed on data from experiments that were

simulated according to the conditions planned with the different design strategies. These predictions and the

test dataset are used to calculate the relative root-mean-square error (RMSE) of each product:

RMSE =
1

σT

√√√√ 1

ne

1

nt

ne∑
j=1

nt∑
t=1

(
T (t, j)− T̃ (t, j)

)2

(8)

where nt is the number of observations of titer made over time, T (t, j) are the measured titer values at time

t from the test set experiment j, and T̃ (t, j) the respective predicted median titer. To standardise the error,

it is divided by the standard deviation in the actual measurements across the 100 experiments in the test

dataset, σT . Values of the RMSE well below 1.0 represent a good model performance while values above

1.0 indicate that a constant mean prediction over time would outperform the GP model prediction. For the

RMSEs in Section 3.2, titer is substituted by the respective process variables.

2.4 Generation of benchmarking datasets

The in silico model used to generate data is based on the macro-kinetic model for a fed-batch chinese

hamster ovary (CHO) cell culture as described in Craven et al., 2013 and Xing et al., 2010, with adaptations

to impose complex non-linearities in growth rate dependencies and to account for pH and temperature shifts.

The in silico model has been presented and utilised in past works (e.g. De Luca et al., 2023; Hutter et al.,
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2021). We simulated six different cell lines (which are associated with six different products, A-F), using the

in silico model and varying internal parameters for growth, substrate affinity, pH and temperature tolerance

to create different phenotypes.

For each of the six cell lines, the control inputs over a fixed cultivation time of 14 days were determined to

follow the subsequently described set point profiles:

Table 1: Overview of process parameters varied for dataset generation and optimisation
For benchmarking of meta learning vs. OHE, 15 parameters were varied as shown in column Knowledge
transfer range. For calibration design, 7 parameters were varied as shown in column Optimisation range.
In cases where two ranges are given, the first was used for lactate-consuming products A, B, E and F and
the second range for products C and D. The first value in the optimisation range was used for the case study
with products A, B, E, F (lactate-consuming only), the second value for the case study with products A, B,
C, D.

Process
parameter

Description Knowledge
transfer range

Optimisation
range

Unit

StirrerSpeed constant value [ 150 , 250 ] [ 200 , 200 ] -
DissolvedOxygen constant value [ 30 , 80 ] [ 40 , 40 ] % air saturation

pH-Phase1 pH profile
(before, switch
time, after)

[ 6.5 , 7.5 ] [ 6.5 , 7.5 ] -
pH-TimeSwitch [ 6 , 14 ] [ 7 , 7 ] d
pH-Phase2 [ 6 , 7 ] [ 6 , 7 ] -
Temp-Phase1 temp. profile

(before, switch
time, after)

[ 36 , 38 ] [ 36 , 38 ] ℃
Temp-TimeSwitch [ 6 , 14 ] [ 7 , 7 ] d
Temp-Phase2 [ 35 , 37 ] [ 35 , 37 ] ◦C
BolusGlucose mass & times of

daily bolus feeds
for

glucose/glutamine

[ 2 , 6 ] / [ 0.5 , 1 ] [ 2 , 6 ] / [ 0.5, 6 ] mmol
BolusGlutamine [ 6 , 8 ] / [ 0.5 , 4 ] [ 6 , 8 ] / [ 0.5 , 8 ] mmol

FeedStart [ 1 , 3 ] [ 3 , 3 ] d
FeedEnd [ 9 , 13 ] [ 13 , 13 ] d
VCD

initial conditions
[ 0.2 , 2 ] [ 0.2 , 2 ] 10−3 cells/mL

Glc [ 2 , 6 ] / [ 2 , 5 ] [ 4 , 4 ] mm
Gln [ 4 , 6 ] / [ 2 , 4 ] [ 4 , 4 ] mm

The variables whose name contains Phase represent the value of the set point during the respective phase,

those with TimeSwitch indicate when the switch from one phase to the other occurred. Initial concentration

values of VCD, glucose and glutamine were assumed to be controllable (i.e. they can be optimised), those of

lactate, ammonia and titer were fixed. This resulted in total of 15 factors that can be varied for the process

data generation and subsequently process optimisation.

The in silico model was used to simulate the evolution of six process variables, namely VCD, glucose,

glutamine, ammonia, lactate, and titer, where the data is obtained as daily measurements of process variable

concentrations c. In the case of noisy measurements of concentrations c̃, they were corrupted with relative

Gaussian noise of 2% and with absolute Gaussian noise applied as follows:

c̃ = c ∗ (1 + 0.02 ∗ N (0, 1)) +N (0, σi) (9)

In Eq 9, σi is corresponding to default standard deviations of the experimental error for different variables

(VCD: 0.03× 106 cells/mL, glucose: 0.5mm, glutamine: 0.1mm, ammonia: 0.1mm, lactate: 0.3mm, titer:

10mgL−1).
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Initial conditions of VCD, glucose, and glutamine were additionally corrupted only in form of an additive,

absolute error consisting of Gaussian noise with standard deviations as defined above. Noisy measurements

were included in the simulations to facilitate the comparison of different strategies under more realistic con-

ditions. However, run-to-run variation might impact the model performance and the width of the prediction

interval, which can be expected to increase with increasing run-to-run variation.

Subsequently, the data were used to fit the stepwise GP model, as detailed in Section 2.1. To generate histor-

ical datasets for each product, which can be used for the different knowledge transfer strategies (Section 2.2),

LHS was used to vary the 15 process parameters in the ranges described in Table 1. Datasets with 20 ex-

periments for training and 100 experiments for testing were thereby generated, aiming at covering the entire

process parameter space. For the calibration design, a subset of 7 parameters was chosen, which are initial

VCD, pH-Phase1, pH-Phase2, TempPhase1, TempPhase2, BolusGlucose and BolusGlutamine. The pro-

cess data for the six products with and without noise is published in an accompanying repository (Helleckes

et al., 2024).
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3 Results and discussion

3.1 Design of benchmarking dataset

The prerequisite to compare knowledge transfer methods and optimisation procedures for experimental design

is the availability of suitable benchmarking datasets. For this study, we simulated process data for six different

products A-F with the framework described in Section 2.4. Since the benchmarking datasets should represent

the case of different historical process development campaigns, it is important that the different simulated

product cases, that is cell lines, show a high degree of inter-product variability. This is shown in Fig 3.
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Figure 3: Inter-product variability for identical initial process conditions.
All processes of the six products were simulated using identical initial process conditions and product-specific
kinetic parameters (??). In particular, processes of products C and D mimic cell lines without lactate
consumption (dashed lines). A relative measurement error of 2% along with an absolute error of one standard
deviation was added to all simulations. The markers represent the daily measurements, which are used to
train the model. It becomes evident that the processes of the six different products have different behaviour
when exposed to the same process conditions.

Time series data for 14 days was simulated, assuming daily measurements of VCD, glucose, glutamine,

ammonia, lactate and the product titer as indicated by the markers (and as common in industry). All

products were simulated with the same identical conditions stated at ??, with a measurement error according

to Eq 9. Fig 3 shows the high variance between the different products in simulation, introduced by different

parameter settings in the in silico model. Most prominently, the ability to consume lactate can be seen for

cases A, B, E and F, while lactate is accumulating in cases C and D (dashed lines). Among the lactate-

consuming products, the cases of B and E show higher degree of similarity than other products, which can be
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seen from the similar trajectories in Fig 3. However, VCD and titer significantly differ for the same process

conditions, thus posing a suitable challenge for meta learning.
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Figure 4: Intra-product variability for product F.
Six exemplary runs are shown to demonstrate the high variability of process conditions within the chosen
design space. The datasets thus mimic a process development campaign in which the optimal conditions
are investigated in a broad range without prior knowledge. A relative measurement error of 2% along with
an absolute error of one standard deviation was added to all simulations. The markers represent the daily
measurements, which are used to train the model.

Beside inter-product variability, the dataset used in this paper also shows high intra-product variability when

exposed to different process conditions, which is shown in Fig 4 for product F. Similarly to the inter-product

variability, this characteristic is important to mimic real-world application scenarios with noisy measurements

in bioreactors. Interesting non-linear behaviour can especially be seen for lactate and glutamine. While being

used as a challenging benchmark for training of Gaussian processes in this study, the datasets are published

in a dedicated Zenodo repository (Helleckes et al., 2024), thus being available for comparison in future

methodological papers on knowledge transfer and design of experiments.

3.2 Comparison of models for rate prediction

Three different approaches for knowledge transfer with GPs are compared regarding their performance in

predicting the effective production rate R̃ that is used to update concentrations in the stepwise model

described in Section 2.1. We shuffle through all possible combinations of the six cell lines, simulating each of

them as the new product while utilising the other five as historical datasets, similar to the approach presented
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by Hutter et al., 2021. As a first benchmark, the GP is trained on a varying number of experiments of the new

cell line alone, also called a local model. In the second approach, we evaluate the OHE model described in

Section 2.2.3 and train it on data from the new product plus additional twenty experiments from each of the

other five historical products. Finally, we train a meta learning model using the PACOH approach described

in Section 2.2.2, which simultaneously uses several GPs as base learners on the historical 20 experiments of

each product. After meta training, the hyperposterior of the kernel parameters can be used to initialise a

new GP for the novel product. As presented by Rothfuss et al., 2021, hyperparameters influence the meta

learning performance for the PACOH approach. Similar to their approach, we thus performed hyperparameter

optimisation with the HyperOpt Python package and used the determined hyperparameters to train the meta

learning model.

Performance is evaluated by calculating the relative RMSEs on a test dataset with 100 experiments, using

the predicted and simulated effective rates (Section 2.3.4). The available data from the new product is varied

between 2, 4, 8 and 20 experiments. To avoid bias by the choice of subsets in the training data, the selection

was shuffled with 10 different seeds. Exemplary results for products A and C are shown as boxplots of RMSEs

in Fig 5, the results for the remaining products can be found in ??. The two examples were chosen since for

product A a large amount of similar data is provided in the corresponding training dataset (products B, E

and F with lactate consumption). For product C (without lactate consumption), a far smaller body of similar

experiments is available in the training dataset with the same size (only product D).
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directly.
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For product A (upper plot), it can be seen that both knowledge transfer approaches clearly outperform the

local model (blue) trained only on the data from the new product. As expected, using an increasing number

of experiments from the new product in training is enhancing the predictive performance of the respective

models, which can be seen by the improved relative RMSEs for the predicted effective rates across various

features. While for some variables such as VCD, or titer, OHE (orange) outperforms the meta learning

(green), the opposite is true for glucose and lactate. Overall, the RMSEs are well below 0.4, indicating a

good performance for both OHE and meta learning. Interestingly, while a local model with 20 experiments

also leads to decently low RMSE, the knowledge transfer approaches still outperform it, indicating that

similarities from historical products strongly enhance the predictive performance.

Regarding product C, which is a case where a cell line without the lactate consumption was simulated, the

results change. Here, meta learning is outperforming OHE for VCD, glutamine, ammonium, lactate and

titer predictions. For this case, the local model with 20 experiments performs equally well as meta learning

for VCD and significantly better for titer, indicating that the prediction quality for this product does not

benefit as much from the historical data. Since only products C and D simulate the case of missing lactate

consumption in the cell line, these results indicate that knowledge transfer works best when similarity is high,

which is to be expected. For heterogeneous datasets, meta learning outperforms OHE, indicating a promising

direction to improve GP regression models. Due to the comparable performance and lower computation time

compared to meta learning, the OHE model was used as a benchmark for the following case studies of

calibration design.

3.3 Calibration design for parallel experiments

When starting with model-assisted process development for a new product, the underlying process model

needs to be trained with initial data, sometimes referred to as excitation design (De Luca et al., 2023;

Ferreira et al., 2014; Huang et al., 2023). Traditionally, this design is either determined by methods of

DoE such as a full or fractional factorial design (Freier et al., 2016) or space-filling designs such as LHS

(Bader et al., 2023), Doehlert Designs (Pinto et al., 2019) and Sobol sequences (Siedentop et al., 2023).

However, industrial process development campaigns might share certain similarities, for example a closely

related cell line for protein production, or exploration of similar design spaces during optimisation. Related

to the previously explored methods for knowledge transfer, it thus becomes evident that these models might

also be used to obtain experimental designs to calibrate knowledge transfer models to data of a new product

in a systematic way. We refer to this task as calibration design, which has the potential to reduce the number

of experiments required for process model calibration.

In this study, a novel metric for calibration design is introduced (Section 2.3.2), which is based on the process

dynamics observed for historical products. By optimising this metric, the resulting suggestions in experimental

design points maximise the dissimilarity in the final titer among the historical datasets. The reasoning is that

certain experimental designs are better suited to reveal differences in cell line behaviour than others. As a

hypothesis, choosing these experimental designs, together with knowledge transfer models, leads to model

calibration requiring less experiments and resulting in better predictive performance compared to standard

DoE approaches, thus aiding process understanding.

The design of parallel experiments with Bayesian optimisation is an ongoing field of research (González &

Zavala, 2023), in which popular strategies include the constant liar method (Ginsbourger et al., 2010) or

a distance-based optimisation of points (De Luca et al., 2023). In the distance-based approach, the first
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experiment is determined by Bayesian optimisation, which inherently uses a surrogate model to approximate

the objective function over the design space. In the first step, the surrogate model is first queried to identify

the maximum of the objective of choice during optimisation. For further experiments, the objective function

for the first experiment is augmented by a term that is regulating the distance between suggested designs, thus

jointly optimising the objective and the distance (Section 2.3). The constant liar technique as implemented in

skopt, which is further explained in Section 2.3.1, led to locally clustered suggestions for parallel experiments

(supporting information), wherefore the distance-based approach was chosen for calibration design.

In the following, the novel metric is demonstrated in two case studies, using different combinations of similar

and dissimilar historical datasets to evaluate calibration design. For benchmarking, we compare the results

to a process model that was trained on designs sampled by LHS, which was previously evaluated by Stosch,

2018 to be a well-suited excitation design for hybrid models. To obtain a feasible subset for optimisation,

we chose four of our six simulated products and a subset of 7 design factors that determine the calibration

design (Section 2.4). In the first case study, all four products A, B, E and F represent lactate-consuming cell

lines. Within this case, the processes of products B and E were designed to be similar to each other while A

and B differ stronger in their dynamics (see also Section 3.1). Since all products were simulated as cell lines

with lactate consumption, we chose a OHE model as the knowledge transfer model for calibration design,

which is in line with the findings in Section 3.2 that OHE and meta learning perform equally well on these

products.
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Figure 6: First case study. Relative RMSEs on test set for titer utilising a OHE model trained on new
data obtained through various design paradigms: calibration design with custom metric (blue), definitive
screening designs (green) and LHS designs (orange, red). OHE models were initially trained on historical 20
experiments from the other three products. Calibration and LHS designs were then performed to identify
experiments to retrain the model to the novel product using 1, 2 and 4 new experiments. All four chosen
products mimic cell lines that can consume lactate. For 17 experiments, which is the number of experiments
required for DSD with 7 factors, we also trained local GP model on data from the new product alone. The
weight between distance and metric in Eq 6 was chosen to be α = 0.0001 so that both terms are in the same
order of magnitude and have approximately equal weight.

The results for the calibration design of 1, 2 and 4 experiments using our metric (Section 2.3.2) or LHS are

shown in Fig 6. More precisely, initial OHE models were retrained with experiments of calibration design to

improve the predictive performance, which is benchmarked by the relative RMSEs of titer on test datasets of

the new product. This measure was chosen since accurate prediction of process variables increases process

understanding and is important for process characterisation, e.g. in the context of regulatory demands and

QbD. We shuffle through all possible combination of historical datasets within the the case study for better
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generalisation.

First, Fig 6 shows that the relative RMSEs of titer on a test dataset with 100 experiments is lower for

products B and E as compared to products A and F. Since the OHE model used to evaluate the metric for

calibration design is based on the other three products and B and E share a greater similarity, this lower RMSE

values are to be expected. The proposed metric based on dissimilarities of historical products outperforms a

LHS calibration design for the dissimilar products A and F, especially when four experiments are designed.

This indicates that the combination of the proposed metric and the distance works well to spread experiments

across the design space, but at the same time optimise for those designs which reveal differences in process

dynamics well. For product B and E, RMSE values lower than 0.4 can already be observed when using only

one experiment for calibration design, which shows that the initial OHE has a high predictive performance

due to the high similarity of historical products.

In a second case study, we tested the proposed calibration design strategy on four products, this time choosing

two with lactate consumption (A and B) and two without (C and D). The results are shown in Fig 7.
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Figure 7: Second case study. Relative RMSEs on test set for titer of a OHE model utilising calibration design
with custom metric (blue) and LHS designs (orange). OHE models were initially trained on historical 20
experiments from the other three products. In this case study, two products with lactate consumption (A
and B) and two without lactate consumption (C and D) were chose. Calibration design was performed to
identify experiments to calibrate the model to the novel product. For 1, 2 and 4 experiments, all data shows
the result for OHE models, i.e. knowledge transfer approaches. For 17 experiments, which is the number of
experiments required for DSD with 7 factors, we also trained a local model on data from the new product
alone, both for LHS (red) and DSD (dark green). The weight between distance and metric in Eq 6 was
chosen to be α = 0.0001 so that both terms are in the same order of magnitude and have approximately
equal weight.

It can be seen that the relative RMSEs are generally greater than observed for the previous case study, which

is explained by the fact that a OHE model works better if data is more similar. Furthermore, it can be

observed that LHS and the proposed metric for calibration design perform similarly. Compared to a DSD,

a well-established strategy for design of experiments during early process development, a similar or even

better predictive performance is achieved already with 4 experiments. For a DSD with 7 design factors, 17

experiments are required. First, it can be seen that even with 17 experiments in the training data, a OHE

model with DSD (light green) outperforms a local model (dark green), showing the benefit of knowledge

transfer models. However, LHS is superior to DSD for sampling 17 experiment, since a local LHS model

without data from the historical datasets outperforms even the OHE DSD model in three out of four cases and

performs similarly well for the fourth case (product C). Most interestingly, the proposed metric for calibration
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design leads to similar or better performance compared to local DSD, which is one of the most chosen designs

in early process parameter screening. Compared to LHS for 1, 2 or 4 experiments, the test set performance

for the customised metric is similar in most cases and better for product C. In conclusion, calibration design

is particularly useful for homogeneous datasets as shown in the first case study, but still performs well in case

of heterogeneous historical datasets. This highlights the potential to exploit knowledge transfer in calibration

design for process campaigns, even if historical training data is more dissimilar to the product of interest.

3.4 Limitations and future work

In this work, we explored the use of knowledge transfer models to improve prediction of pharmaceutical

processes and suggest calibration designs to adapt the process for a new product. While meta learning showed

comparable performance for those products which exhibit similarity in the training data, it showed significant

potential for cases with few similar products in the historical training data, where the test set RMSEs could

be reduced compared to OHE and local models. This should be further investigated with heterogeneous

datasets from industrial applications to assess the benefit for real-world applications. Moreover, approaches

for similarity assessment between datasets might be exploited to further understand for which use-cases meta

learning can be beneficial.

Regarding the calibration design, this study showed high potential of process models utilising knowledge

transfer to characterise pharmaceutical processes. However, some aspects of this novel procedure should still

be addressed. First, local optimisers were used throughout this study, thus not guaranteeing convergence

to a global optimum. In addition to the proposed metric, further objectives for calibration design based

on dissimilarity could be investigated, for example by varying the weight of uncertainty in the prediction of

historical datasets or introducing weights for individual historical datasets based on their similarity to the new

product. Moreover, we focused on final titer as an important performance indicator of a process and work

could thus be extended to account for the entire evolution and other variables. In the future, the proposed

metric could also be extended to a combination of various features, most importantly including VCD as an

relevant influence.

4 Conclusion

In this work, we compared two knowledge transfer modelling methods with local models developed on data

of one product only, by using data of a simulated mammalian cell cultivation process, typically used for

monoclonal antibody production in the pharmaceutical industry. In a case study with six simulated products,

both knowledge transfer methods, i.e. meta learning and OHE models, outperformed local models, especially

if only few experiments of the new product were available. Further, we observed that meta learning boosts

the predictive performance of GP hybrid models for heterogeneous datasets. For future benchmarking and

comparison to methods proposed by others, we provide the simulated datasets in a dedicated repository.

Subsequently, we adopted the OHE knowledge transfer model to identify process conditions that are partic-

ularly suited to calibrate the model to data from a new product. For achieving the task, which we coined

calibration design, we proposed a customised metric. The metric favours those process conditions that lead

to the most dissimilar predicted titers in the historical datasets, reasoning that those conditions are most

informative to train a knowledge transfer model. We observed that the OHE models trained on experiments

obtained through LHS or calibration design with the new customised optimisation metric yield similar test

19



set RMSEs in the final predicted titer when compared to common approaches such as DSDs. However, much

fewer experiments are needed for calibration designs utilising the LHS or customised metric paradigms, mak-

ing them a promising alternative. The customised metric performs similarly or better than LHS on different

homogeneous and heterogeneous datasets, thus presenting an interesting alternative with low risk for inferior

model performance. While further studies on industrial data are needed to evaluate the practical application

of this novel approach, it shows a new direction for process development workflows.

In the future, our metric could be further extended to more features than only titer. In addition, the com-

bination of meta learning and calibration design to boost the predictive performance should be investigated

further. It could also be tested in scenarios where more process knowledge is integrated, i.e. using hybrid GP

models that consider first principles. Since calibration design and knowledge transfer approaches seem to be

able to reduce the number of experiments for process development significantly, they are of high research

interest and could possibly lead to significant savings in biopharma and perhaps other bioprocess industries.
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