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Abstract

This paper presents a new method for solving a classification problem; the BireyselValue method assumes that the individual
traits of a class help to classify an observation based on similarity measures. The method involves three stages to solve the
classification problem: the building stage, the training stage, and the prediction stage. The first two stages accomplish two
key steps: firstly, five parameters are used to transform any observation of size n variables into six variables; secondly,
subsets of the individual traits of each class are created. As a result, the parameters, the subsets of the individual traits, and
a scaled version of the training dataset are saved as a predictive model. Ultimately, the prediction stage uses the elements in
the predictive model to transform the observations that are to be classified and of size n into the size of six variables and to
perform similarity measures between the observation and the individual traits of class to make the final prediction. The
experimental results obtained on 6 multiclass datasets from different domains showed that the proposed method is efficient at
solving classification problems. Moreover, the method can potentially be used for purposes other than solving a classification
problem.

Keywords: BireyselValue Method, Classification, Prediction, Dimension Reduction

1. Introduction

1.1. Principles of Classification

Classification is something that exists in nature in a very mysterious way. A class implies the collection of
similar observations; the classification problem is the problem when an observation is to be classified in one
of the classes based on the similarity of its characteristics with that of each class. Based on this implication,
the characteristics of one or more groups of observations coincide and contrast with other observations. This
points to the individuality of that observation and reflects its system profile.

1.2. The BireyselValue Method

This paper presents a new method for solving a classification problem based on the similarity between
the individual traits of a given class and the observation to be classified. In particular, the method
process involves three key stages: building, training, and prediction. In the building stage, four steps are
involved in creating five parameters. In the training stage, seven steps are involved; consequently, subsets
are formed, where is equal to the number of classes. Moreover, each observation from the training dataset
is transformed into a shape of and placed into one of the subsets based on its original class. Each subset is
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considered to represent the individual traits of a given class. Next, the five parameters, the subsets, and a
scaled version of the training dataset were saved as a predictive model.

Finally, eleven steps are involved in the prediction stage. The five parameters and the scaled version of the
training dataset in the saved predictive model are used to scale and then transform a given observation for
which a class is sought. Next, a similarity check between the subsets, which are stored in the saved predictive
model as the class individual trait, and the scaled, transformed observation are applied to make the final
prediction.

The primary scenario for using the proposed method is as follows: given a training dataset
with mobservations, n variables, and k ≥ 2 classes, the first two stages involved creating a predictive
model. Finally, any given observation with n variables can be classified using the predictive model after the
third stage is applied. Fig. (1) illustrates the workflow of the proposed method.

This paper is organized as follows: section () points to the motivation behind the name of the method and
the conditions required to implement it. In addition, a training dataset is used as a showcase example to
illustrate the steps of implementation. In section (), the paper introduces in detail the three stages and
their steps using a showcase example. Furthermore, the mathematical formulations are discussed. Section
() outlines the design of the experimental study by describing the experimental methodology and setup,
the hyperparameter definitions, the evaluation measures and the results. Section () discusses the obtained
results from different viewpoints. Finally, Section () concludes and presents the main outcomes of the study
and some directions for future exploration in the research field.

Figure 1: BireyselValue method workflow .

2
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2. The BireyselValue name, conditions and showcase

2.1. Meaning of the name BireyselValue

The similarity check between the individual traits of a class and the observation to be classified, outlined
above in , implies two things: the observations in the same class coincide with one another and have similar
characteristics; moreover, the individual traits of a class form the backbone of the BireyselValue method
to predict the class of the given observation. To this end, those individual traits must be sought from
observations that are in the same class. Since the personal characteristics of the observations in the same
class are the input to form the individual traits of that class, the name Bireysel was used for this method.
In the Turkish language, the word “Bireysel” has the same meaning as “personal” or “individual” as in the
English language. The second part of the name “Value” is self-explanatory.

2.2. Conditions

Two conditions are required for the BireyselValue method to be employed:

2.2.1. The training dataset of size m× n must have m ≥ 80, and n ≥ 2.

2.2.2. The k classes must be ≥ 2. In addition, each class must have mcs ≥ 40. mcs corresponds to the
number of observations in a class.

2.3. Showcases

To demonstrate the use of the BireyselValue method, this paper will present an example of a training
dataset with a size of m = 120 observations and n = 5 variables, which means that 600 entries are
measured. Furthermore, the training dataset has k = 3 classes as C = (1, 2, 3).

3. Proposed Method

In this section, the three stages of the proposed method, named BireyselValue, are presented. The building
stage is presented in , the training stage is presented in , and the prediction stage is presented in .

3.1 The Building Stage

In this stage, four steps are involved in creating five parameters; the sequence of the steps is as follows:

3.1.1. Step one

The norm of the training dataset is captured using the Euclidean norm, which is the square root of the
sum of every squared entry in the training dataset. The result is a scalar value named parameter 1, which
is referred to as vnorm. The calculation of the norm is formulated as follows:

3
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√∑m
r=1

∑n
a=1 ¯xra˚2(1)

Next, parameter 1 in Equation (1) is used to scale the training dataset; every entry xra in the training
dataset is divided by parameter 1. As a result, the scaled version of the training dataset is referred to
as ds. Fig. (2) illustrates the outcome from this step using the showcase example in ().

Figure 2: Building stage: step one outcomes: parameter 1 and ds;

3.1.2. Step two

The main aim of this step is for every observation in ds to have a vector representation of size k, where k
is equal to the number of classes. Technically speaking, every observation in ds is considered the ori-
gin/center of the n-sphere shape that has radius r; then, observations from the same or different classes,
or perhaps none, will be inside the n-sphere. The number of observations m, the radius r, and the number of
overlapping classes determine the number of observations inside the n-sphere. Fig. (3) illustrates this idea
in 2D graphs using the showcase example in (), where two variables are chosen.

4
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Figure 3: Observation from the ds as the origin/center of 2-sphere and the percentage of observations from
the same or different classes

The outcome of this step is as follows: a scalar value named parameter 2, referred to as rinner; more-
over, m × k matrix named parameter 3, referred to as the neighbors’ summary; each row in the
neighbors’ summary corresponds to an observation in ds; and the number of k columns is equal to the
number of classes in ds. Parameters 2 and 3 are calculated in sequence as follows:

3.1.2.1. Fundamentally, a vector d of the Euclidean distances between each observation and other
observations in ds is calculated; the distance is the square root of the squared difference between two
observations of size n, and it is formulated as follows:√

¯(Xj −Xe)˚
2(2)

Next, the value of parameter 2 is captured; that is, the midrange of the vector d is tuned by the value
0.01 ≤ l ≤ 0.99. The calculation of parameter 2 is formulated as follows:

min[?](d)+max[?](d)
2 × l(3)

3.1.2.2. Finally, if the Euclidean distance in Equation (??) is less than or equal to parameter 2 in Equation
(??), the comparison is considered inside the n-sphere; the final result is a matrix, outlined above in (),
named parameter 3. Fig. (4) illustrates the outcome from this step using the showcase example in ().

5
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Figure 4: Building stage: step two outcomes: parameter 2 and parameter 3

3.1.3. Step three

The main aim of this step is for every class in ds to have an average value representative. Technically
speaking, every class has a number of observations, and each observation has n variables; on the basis of the
assumption outlined in (), the sum of the n variables of each observation is sought. This is formulated as
follows:

∑n
i=1 xi(4)

As a result, each class will have several sums from Equation (??); an average of the sums is calculated as

6
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follows:

minsum +maxsum

2 (5)

Finally, the averages of each class collectively form a vector v of size k, where k is equal to the number of
classes in ds. Vector v is named parameter 4 and is referred to as avg vector. Fig. (5) illustrates the
outcome from this step using the showcase example in ().

Figure 5: Budling stage: step three outcomes: parameter 4

3.1.4. Step four

The main aim of this step is for every class in ds to have an average error value representative. Technically
speaking, the neighbors’ summary in () is split into k subsets, where k is equal to the number of classes
in ds; every subset contains observations belonging to the same class. The maximum index value of each
row is captured; if the maximum index value is not equal to the class index, the corresponding row observation
in ds is flagged. As a result, each class contains the number of observations misclassified by the maximum
number of neighbors in (). Next, the sum of the n variables of each observation is obtained. This is formulated
as in Equation (??). In addition, an average of the sums is calculated as in Equation (??). Finally, the
average of the errors of each class collectively forms a vector v of size k, where k is equal to the number
of classes in ds. Vector v is named parameter 5 and is referred to as err vector. Fig. (6) illustrates the
outcome from this step using the showcase example in ().

Fig. (7) illustrates the names and their references as the outcome from the building stage.

7
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Figure 6: Budling stage: step three outcomes: parameter 4

Figure 7: Building stage: step four outcomes: parameter 5

3.2 The Training Stage

In this stage, seven steps are include transforming the shape of each observation into the size (1× 6) and
creating the individual traits of each class, as outlined above in (); the sequence of the steps is as follows:

3.2.1. Step one:

The average sum of each observation in ds is calculated as follows:

∑n
i=1 xi(6)

The result is a scalar value of each observation, named jsum.

8



P
os

te
d

on
27

M
ar

20
24

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
71

15
65

18
.8

6
76

82
55

/v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

3.2.2. Step two:

The squared distance between jsum in (??) and the average vector in () is captured; the result is a vector
v of size k, named javg, where k is the number of classes in ds.

3.2.3. Step three:

The squared distance betweenjsum in (??) and the error vector in () is captured; the result is a vector v
of size k, named jerr, where k is the number of classes in ds.

3.2.4. Step four:

The corresponding row observation from the neighbors’ summary in () is selected; the result is a vector
v of size k, named jns, where k is the number of classes in ds.

3.2.5. Step five:

Three vectors from (), (), and () are stacked and transposed ; the result is a matrix of size (k × 3)
named jTstack. Fig. (8) illustrates the five steps in sequence using the showcase example in ().

Figure 8: Training stage: step one, two, three, four, and five, in sequence

3.2.6. Step six:

The index of the maximum value of each column in () is captured. The result is a vector v of size 3, named
jmax; simultaneously, the index of the minimum value of each column in () is captured. The result is a
vector v of size 3, which is denoted as jmin.

3.2.7. Step seven:

The two vectors in () are stacked; the result is a matrix of size 2 × 3, named jimg, and flattened to a
vector of size 1 × 6. As a result, each observation in ds is transformed to a size of 1 × 6. Finally, ds
is split into k subsets; each subset represents the individual traits of the class, and k corresponds to
the number of classes in ds. Fig. (9) illustrates the previous two steps using the showcase example in ().

9
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The ds in (), the vnorm in (), the rinner in (), the avg vector in (), the err vector in (), and the
individual traits in () are saved as the predictive model ; Fig. (10) illustrates those elements.

Figure 9: Training stage: step six, and seven, in sequence.

Figure 10: The predictive model from the building and the training stages, respectively; comprises, 4 pa-
rameters, the individual traits, and the ds.

3.3. The Prediction Stage

In this stage, eleven steps are involved in transforming the size n of a given observation into the size
1 × 6 and predicting its class; the sequence of steps is as follows:

3.3.1. Step one:

The given observation is scaled by the vnorm in (). As a result, a scaled observation name O of size n is
used.

10
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3.3.2. Step two:

Neighbors’ summary created for the observation using the ds in () and the rinner in (). As a result, a
vector v is named Ons of size k, where k is equal to the number of classes in the ds.

3.3.3. Step three:

The sum of n variables of the observation in () is captured. The result is a scalar named Ojsum
.

3.3.4. Step four:

The square root difference between Ojsum
in () and the avg vector in () is calculated. The result is a

vector v named Oavg of size k, where k is equal to the number of classes in the ds.

3.3.5. Step five:

The square root difference between Ojsum
in () and the err vector in () is calculated. The result is a

vector v named Oerr of size k, where k is equal to the number of classes in the ds.

3.3.6. Step six:

Three vectors from (), (), and () are stacked and transposed ; the result is a matrix of size k× 3 named
OT

stack.

3.3.7. Step seven:

The index of the maximum value of each column in () is captured. The result is a vector v of size 3, named
Omax; simultaneously, the index of the minimum value of each column in () is captured. The result is a
vector v of size 3, which is denoted as Omin. Fig. (11) illustrates the seven steps outlined above using
the showcase example in ().

Figure 11: Prediction stage: step one, two, three, four, five, six, and seven in sequence

11
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3.3.8. Step eight:

The two vectors in () are stacked and then flattened to a vector Oimg of size 1 × 6.

3.3.9. Step nine:

A vector v of size Pbp a is created with a size k, where k is equal to the number of classes in ds in ().

3.3.10. Step ten:

A similarity check between Oimg in () and every observation in the subset of the individual traits in ()
is performed, in every match of similarity, the corresponding index of bbp a in () increases by 1.

3.3.11. Step eleven:

The maximum value index in Pbp a in () is predicted as the class.

Fig. (12) illustrates steps eight to eleven, outlined above, using the showcase example in ().

Figure 12: Prediction stage: step eight, nine, ten, and eleven in sequence

4. Experimental Evaluation

In this section, the experimental evaluation is presented, describing the data, the performance measures, the
baseline algorithms, the results and other additional information.

4.1. Materials and Methods

4.1.1. Methods and Datasets:

Two classification methods, logistic regression and the K-nearest neighbor method, were chosen as the baseline
methods; both were compared with the BireyselValue method in terms of the performance metrics mentioned
below. Moreover, six different multiclass datasets were selected from several domains to evaluate the com-
pression effect. The datasets were obtained from two repositories, as outlined in (). The datasets were
randomly split into training and testing sets. Notably, none of the preprocessing, preparation, or cleaning
steps were performed on the datasets. However, to satisfy the conditions for employing the BireyselValue

12
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method outlined above in (2.2), a dedicated function from the BireyselValue package in Dahman (20241) was
employed; as a result, a balanced training dataset was used for the three methods. The sizes of the original
dataset, the numbers of classes, the sizes of the training and testing datasets, and the overall accuracy results
are illustrated in Fig. (13) and Fig. (14). Notably, the scatter plots are created using two values: the first
is the value from equation (??), and the second is the index of the observation. Overall, the scatter plot
represents the overlapping classes of each dataset.

Figure 13: Result details on employing the BireyselValue method, Logistic Regression, and K nearest neigh-
bors on 3 datasets

Figure 14: Result details on employing the BireyselValue method, Logistic Regression, and K nearest neigh-
bors on 3 datasets

4.1.2. Performance Measures:

The testing-based evaluation metrics (precision, recall, and F1 score) and accuracy (overall, macro,
and weighted average) were used to evaluate the classification accuracy of the three methods applied to

13
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the testing datasets.

4.1.3. Methods setup and execution environment:

The BireyselValue method has one hyperparameter, the scalar of the radius, which is used in the building
stage, outlined above in (). For that purpose, values ranging from 0.1 to 0.3 are recommended. The
range was chosen through experimentation, but in some datasets, such as Chicco Jurman (2020) and Koklu
Özkan (2020), when using this range, the accuracy measures after applying the prediction stage were very
low. For those datasets, the range was adjusted to values ranging from 0.05 to 0.09 to reach an acceptable
accuracy. In addition, not all the variables n for the datasets Chicco Jurman (2020), Diogo Ayres
(2000), Koklu Özkan (2020), and Martins . (2021) were selected; however, only 30-50% of the variables
were selected because, after some experimentation, the BireyselValue method performed much better with
fewer variables. Notably, the selected variables are randomly chosen. A Python package from Dahman
(20241) was used to construct the building, training and prediction stages, as outlined in (), (), and (),
respectively. The documentation about the usage and the implementation steps are available Dahman
(20242).

The k hyperparameter for the K-nearest neighbor method was fixed k = 5. The value was chosen through
experimentation, and the best performance was observed at this value. Similarly, the random state value
for the logistic regression method was fixed with a range from 5-16, which varied depending on the dataset.
For both methods, the Python package from Scikit-learn Pedregosa (2011) was used to perform the training
and prediction steps.

Finally, the running environment was implemented on a basic machine containing a 5-core Intel(R) CPU
(3.4 GHz-3.6 GHz) with 8 GB of RAM.

4.2. Results

The performance metric results in () obtained using the three methods applied to the testing datasets are
presented in this section. Each table corresponds to one of the datasets in (). Notably, LR, KN, and BV
refer to logistic regression, the K-nearest neighbor, and the BireyselValue, respectively.

precision recall F1-score
LR KN BV LR KN BV LR KN BV Support

0 1 0.86 1 1 1 0.86 1 0.92 0.92 6
1 1 1 1 1 1 1 1 1 1 7
2 1 1 0.83 1 0.83 1 1 0.91 0.91 6

Overall accuracy 1 0.94 0.95 19
macro avg 1 0.95 0.94 1 0.94 0.95 1 0.94 0.94 19

weighted avg 1 0.95 0.96 1 0.95 0.95 1 0.95 0.95 19

Table 1: Results from the Charytanowicz . (2010) testing dataset
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precision recall F1-score
LR KN BV LR KN BV LR KN BV Support

0 0.83 0.61 0.93 0.74 0.57 0.83 0.78 0.59 0.83 58
1 0.59 0.29 0.65 0.71 0.32 0.83 0.65 0.3 0.73 31

Overall accuracy 0.73 0.48 0.83 89
macro avg 0.71 0.45 0.79 0.73 0.45 0.83 0.71 0.45 0.8 89

weighted avg 0.75 0.5 0.85 0.73 0.48 0.83 0.73 0.49 0.84 89

Table 2: Results from the Chicco Jurman (2020) testing dataset

precision recall F1-score
LR KN BV LR KN BV LR KN BV Support

0 0.95 0.95 0.76 0.77 0.78 0.93 0.85 0.86 0.83 328
1 0.36 0.42 0.57 0.63 0.77 0.53 0.46 0.54 0.55 60
2 0.65 0.65 0.73 0.95 0.81 0.38 0.77 0.72 0.5 37

Overall accuracy 0.77 0.78 0.74 425
macro avg 0.65 0.95 0.69 0.78 0.94 0.61 0.69 0.71 0.63 425

weighted avg 0.84 0.95 0.73 0.77 0.95 0.74 0.79 0.8 0.72 425

Table 3: Results from Ayres-de Campos . (2000) testing dataset

precision recall F1-score
LR KN BV LR KN BV LR KN BV Support

0 0.85 0.81 0.54 0.82 0.74 0.49 0.83 0.78 0.51 1033
1 0.6 0.6 0.85 0.53 0.67 0.89 0.56 0.64 0.87 836
2 0.63 0.51 0.7 0.73 0.54 0.57 0.68 0.52 0.62 621
3 0.51 0.59 0.76 0.55 0.58 0.85 0.53 0.58 0.8 549
4 0.72 0.62 0.28 0.73 0.56 0.18 0.73 0.59 0.22 493
5 0.59 0.45 0.9 0.56 0.45 0.93 0.57 0.45 0.91 396
6 1 1 0.56 0.99 0.99 0.68 1 1 0.61 155

Overall accuracy 0.68 0.64 0.67 4083
macro avg 0.7 0.65 0.65 0.7 0.65 0.66 0.7 0.65 0.65 4083

weighted avg 0.68 0.64 0.66 0.68 0.64 0.67 0.68 0.64 0.66 4083

Table 4: Results from Koklu Özkan (2020) testing dataset

precision recall F1-score
LR KN BV LR KN BV LR KN BV Support

0 0.77 0.86 0.56 0.62 0.51 0.79 0.69 0.54 0.65 582
1 0.31 1 0.86 0.42 0.43 0.77 0.36 0.29 0.81 304
2 0.76 1 0.42 0.77 0.51 0.35 0.77 0.59 0.38 883

Overall accuracy 0.66 0.5 0.68 1769
macro avg 0.61 0.5 0.61 0.6 0.48 0.63 0.6 0.47 0.61 1769

weighted avg 0.69 0.58 0.7 0.66 0.58 0.68 0.67 0.52 0.68 1769

Table 5: Results from the Martins . (2021) testing dataset
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precision recall F1-score
LR KN BV LR KN BV LR KN BV Support

0 0.96 0.97 0.97 1 0.95 0.95 0.98 0.96 0.96 73
1 1 0.9 0.9 0.93 0.95 0.95 0.96 0.93 0.92 40

Overall accuracy 0.97 0.95 0.95 113
macro avg 0.94 0.95 0.94 0.96 0.95 0.95 0.97 0.94 0.94 113

weighted avg 0.95 0.95 0.95 0.97 0.95 0.95 0.97 0.95 0.95 113

Table 6: Results from the Street . (1993) testing dataset

5. Discussion

In the overall analysis, spotting which method was the best using overall accuracy, which is the proportion of
the correctly classified observations out of all the observations, it is possible to verify that the BireyselValue
method performed at almost the same level of overall accuracy as the other two methods. Indeed, in two
of the testing datasets, in particular Chicco Jurman (2020) (Table 2) and Martins . (2021) (Table 5), the
BireyselValue outperformed the two methods, whereas with the other datasets, the BireyselValue was
close to the most accurate.

All the testing datasets except for the first dataset Charytanowicz . (2010) (Tabel 1) are imbalanced. The
support column, which refers to the number of actual occurrences of the class in the testing dataset, illustrates
that. Therefore, the interpretation of the results from the performance measures in () should be carefully
suggested. The two measures of the precision value, which are the ratio of the true positive and the sum
of the true positive and the false positive, and the recall (or the sensitivity) value, which is the ratio of the
true positive and the sum of the true positive and the false negative, are intuitive for the case of a binary
classification problem; however, combining both together, which is the value of the F1-score, can be
intuitive for the case of a multiclass classification problem. As a result, the F1-score is used to calculate
two different averages: (a) the macro average and (b) the weighted average, where the first is calculated
by taking the unweighted mean of all the per-class F1-scores, i.e., this metric treats all the classes equally
regardless of their support values; the latter is calculated by taking the mean of all the per-class F1-scores
while considering each class’s support value. To this end, the macro average is intuitive for balanced testing
datasets, whereas the weighted average is intuitive for imbalanced testing datasets.

The overall accuracy, the macro, and the weighted averages in (Tabel 1) show that the three methods perform
at almost the same level of accuracy, even though the logistic regression appears to report 100% accuracy.
However, there is a reason to suggest: the dataset Charytanowicz . (2010) is a common dataset, and
the logistic regression method used for this experimentation was implemented Pedregosa (2011), which is a
well-established library with an extensive level of resources; therefore, such accuracy could have been the
result of hidden parameters that are tuned for such a common dataset.

The macro- and weighted averages results from (Tabel 2) show that the BireyselValue method outper-
forms the other methods. The overall accuracies were 73%, 48%, and 83% for the LR, KN, and BV,
respectively. Similarly, the results from (Tabel 6) show that the performances of the three methods are very
similar. Since both datasets are binary classification problems, the precision and recall values are intuitive;
however, due to the imbalance of both, then the F1-score is the appropriate choice. The F1-scores were much
better captured by the proposed method for each class in (Tabel 2); similarly, in (Tabel 6), the performances
of the three methods were very similar. Furthermore, the level of accuracy captured by the BireyselValue
in (Tabel 2) was based on the use of only 5 out of 12 variables.

The weighted average from (Tabel 4) shows that the three methods are very similar; nonetheless, the
results from the baseline methods in compression with that one from the proposed method are based on
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the 17 variables of the dataset, whereby the BireyselValue method used only 7 out of the 17
variables. Moreover, the dataset has 7 classes, which emphasize the technical aspect mentioned in the
previous paragraph.

Finally, (Tabel 3) shows that the proposed method has the least performance among the other
two methods. Although the results of applying the three methods were within the same range of all the
performance metrics, one interpretation of the lowest performance achieved by the proposed method could
be that the number of observations of each class in the training datasets, i.e., the 139 observations of each
class in the training dataset, was insufficient to provide additional information about the class. This
interpretation is based on the imbalanced distributions of the three classes, which can be seen in the support
column in (Table 3).

6. Conclusions and Future Works

In this paper, the discussion centers on proposing a new method for solving a classification problem.
The BireyselValue method is based on two key assumptions: first, to transform both the observations
in the training dataset and the one to be classified into variable sizes of six; second, to create an individual
trait subset of each class. On the basis of these assumptions, a zero vector v of size k, where k is equal
to the number of classes, is created; then, a similarity check between the observation to be classified
and the individual trait subsets is implemented; every match will increase the corresponding index in
vector v; and finally, based on the index of the maximum number in v, the observation is classified.
This workflow is implemented in three stages: the building stage, which constructs five parameters; the
training stage, which transforms the observations in the training dataset into the size of six variables and
creates the individual trait subsets; and as a result, a predictive model is saved to perform the prediction
stage. In the prediction stage, essentially, the observation to be classified is transformed into a size of six;
then, a similarity check occurs; and finally, the prediction is made.

The experiments using 6 multiclass classification datasets and 5 performance metrics showed, in
general, that the BireyselValue method can produce competitive results when compared to related
works using classification methods. This finding suggests that the proposed method is efficient at
solving classification problems. Additionally, the results showed that most of the accuracy of the proposed
method was based on 30-50% of the variables, unlike the other two methods. This implies two steps: (a)
the proposed method can capture and then build an intuitive profile using a small number of variables, and
(b) from a technical perspective, the mathematical equations that are used by the BireyselValue to build
and train predictive models can dismiss the redundant (or the dependent) variables that are of no benefit to
give any useful information about the class’s traits.

Overall, the BireyselValue method is primarily used for solving classification problems. However, an-
other usage is possible. An essential step in the training stage, as outlined in (), is to transform the
observations in the training dataset into a variable size of six, i.e., the dataset of n variables, where n is any
size, is reduced to six dimensions; as a result, the dataset of size (m × n) becomes (m × 6). Since this
transformation is based on the individual traits of each class, the constructed six dimensions are most
likely to contain the hidden characteristics of the observation; as a result, this transformation could
address the issue of the curse of dimensionality in machine learning. In addition, the new dataset
can be used as the training dataset for other classification methods.

In future research, it is important to apply this method, mainly to achieve primary usage, on various types of
datasets of several observations, variables, and classes; then, based on the accuracy reports, improvements are
made. In addition, as outlined above, it is possible to use this method to address the curse of dimensionality
in machine learning; such a claim is worthy of further research or study. To this end, this paper aims to be
the first of a series of publications on research and studies on the improvements and usage of this method.
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