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Abstract

In this article we present a new method called PSF-Radon transform algorithm. This algorithm consists on

recovering the instrument point spread function (PSF) from the Radon tranform (in the line direction axis)

of the Line Spread function (that is, the image of a line). We present the method and tested with synthetic

images, and real images from macro lens camera and microscopy. A stand-alone program along with a tutorial

is available, for any interested user, in [? ] .
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In this article we present a new method called PSF-Radon transform algorithm. This algorithm consists on recovering
the instrument point spread function (PSF) from the Radon tranform (in the line direction axis) of the Line Spread
function (that is, the image of a line). We present the method and tested with synthetic images, and real images from
macro lens camera and microscopy. A stand-alone program along with a tutorial is available, for any interested user,
in [1].
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1. INTRODUCTION14

Determining the instrument point spread function (PSF) has been accepted for a long time [2] as a key issue when assessing the15

quality of the image and is crucial for determining the resolution in any microscopy technique based on fluorescence, with or without16

super-resolution. This information indicates what features of the object under study will be distinguished (image resolution). It is a17

well established technique to measure the PSF imaging a point-like source such as a very small bead. The bead size must be between18

10% and 40% of the size of the PSF width not to distort significantly the measurement [3, 4]. A measurement within a 1% accuracy19

would require a bead of about 10% of the PSF width, which would involve beads so small that the noise in the measurement would20

hinder the possibility of a reliable measurement. Precise PSF determinations are mandatory if image improvement is performed21

numerically by deconvolution [5–8]. Moreover a recent deconvolution method has been presented [9] that overcomes the ill posed22

problem allowing a three to fivefold increase in the resolution, but has been shown to require a precise knowledge of the PSF better than23

3% [10]. To overcome this difficulty theoretical estimation of the PSF has been a way to try to circumvent the problem and each specific24

microscopy technique requires the derivation of peculiar analytical or numerical expressions for the PSF. For a confocal microscope25

different theoretical calculations have been proposed and they will depend on the Airy iris used at the detection [11–13] and eventual26

filters [14]. For a light sheet experiment the axial profile will be that of the pump beam transverse profile, typically a Gaussian or Bessel27

beam and the angle used for collection, and specific PSF calculators have been derived [15]. Size of the bead to measure the PSF has28

been shown to be critical and a protocol for the 3D PSF measurement is well established [3] and it indicates that a smooth symmetric29

axial profile is achieved. Gaussian approximations for confocal microscope PSF have been proposed [16] or eventually more complex30

analytical expression involving superposition of Gaussian functions [12] or Bessel functions [13]. Multiphoton microscopes provide31

another axial stacking method and multiparametric Gaussian fittings have proven a valuable approximation to the 3D PSF [17, 18].32

New methods and geometry appear continuously with increasing resolution and a reliable way to measure the PSF in a precise manner33

is a pending subject. A way around this is to design specific patterned samples to provide ways of assessing the instrument resolution34

and accuracy such as the Argolight sample [19] for AiryScan, confocal, structured illumination and other fluorescent microscopy35

techniques or origami labelled DNA samples [20] for very high super-resolution methods. In this work we present a method that36

reconstructs the PSF from the image of a line, i.e., the Line Spread Function (LSF) [2].37

The method starts with the measurement of an image of a line. Then the algorithm determines the angle of inclination and performs38

the Radon transform in that direction, assuming radiality of the PSF, this Radon transform is used as the Radon transform of the PSF.39

Finally the Radon inversion formula is calculated obtaining a numerical expression of the PSF.40

One of the main advantages of this method is that the line, compared to a small bead, requires much less exposure time to achieve41

the same signal to noise levels. The second point is that the retrieval of the method consists on numerical expressions for the PSF, that42

http://dx.doi.org/XXXX
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is, a matrix containing the values of the PSF. In this way, the method does not requires having to adjust it by a analytical function, as43

needed when retrieving the PSF from a noisy measurement from a very small bead.44

The article is organized as follows. In Section 2 we describe the steps of the method. We divided this section in 3 subsections where45

in A we define the Radon transform and show how we use the LPS to determine the PSF when knowing the correct angle, in B we46

describe how we determine the angle of the line, in Section C we describe how we symmetrize the Radon transform in the presence of47

noise and summarize the algorithm.48

Section 3 is devoted to test our methods in 3 cases. In Section A we analyze synthetic images and discuss how the error in the angle49

and photon count noise affects the performance of the method (Subsections A.1 and A.1). Experimental results for macro lens camera50

are shown in Section B where we also present in B.2 a new method that consist on applying Radon-PSF algorithm for the gradient of a51

step image. Finally in Section C we apply the algorithm to determine the PSF for fluorescence microscopy images.52

Additionally Appendix 5 is devoted to: the description of how we remove, when present, the background and Salt & Pepper noise53

(A) and how we recover the Radon transform of the LSF when we the structure consist on two or more lines (B). A self-contained54

tutorial on how to use the provided program is available in [1].55

2. DESCRIPTION OF METHOD56

A. Recovering the PSF using the Radon transform: theoretical description57

Let f be the function we want to retrieve (i.e. the PSF). If we define the segment x cos θ + y sin θ = r, where r is the distance from the58

line to the origin and θ is the angle of the line form the x−axis, the Radon transform of f is defined by,59

R[ f ](θ, r) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(x cos θ + y sin θ − r) dx dy (1)

On the other hand, we have by the filter back projection Theorem ([21, 22]) the following Radon inversion formula,60

f (x, y) =
1

2π

∫ π

0
(R[ f ](θ, ·) ∗ h)(x cos θ + y sin θ) dθ (2)

where h satisfies ĥ(ω) = |ω|. Here ∗ represents the convolution operator and ·̂ the Fourier transform.61

If f is radially symmetric then for all θ, R[ f ](θ, r) = R[ f ](0, r), therefore to recover f using Radon inversion formula, it is enough to62

calculate R[ f ](0, s) (that is, the projection on the x axis).63

If we define g(x, y) = f ∗ δx, where δx(x, y) is the segment x = 0, y ∈ [−L/2, L/2], therefore the Line Spread function (LSF) is64

defined as in [2] by,65

g(x, y) =
∫ L/2

−L/2
f (x, y− y′) dy′ (3)

and then66

R[g](0, r) =
∫ ∞

−∞
g(r, y) dy =

∫ ∞

−∞

∫ L/2

−L/2
f (s, y− y′) dy′ dy = L

∫ ∞

−∞
f (r, y) dy = LR[ f ](0, r). (4)

That means that we can recover the radon transform of the PSF from the Radon transform the LSF. This Radon transform results in67

a function L times more intense than the Radon transform of the PSF, which is an advantage when dealing with noisy images. See68

Figure1a for an example of a LSF, Figure 1b for its Radon transform in the direction of the line and Figure 1c for the PSF obtained after69

applying the inverse transform.70

(a) (b) (c)

Fig. 1. PSF- Radon transform algorithm. (a) original image of a LSF (g in Eq. (3)). (b) Radon transform in the direction of the LSF
(R(g) in Eq. (4)). (c): PSF obtained after applying the inverse transform.

Remark 2.1 In practice the integral of g will be taken in a finite interval [−B/2, B/2]. If we choose B sufficiently large, i.e B >> L+ FHWM( f ),71

we obtain,72 ∫ B/2

−B/2
g(r, y) dy =

∫ L/2

−L/2

∫ B/2−y′

−B/2−y′
f (r, u) du dy′ → L

∫ ∞

−∞
f (r, y) dy if B→ ∞ (5)
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Analogously, if L >> B + FHWM( f ),73 ∫ B/2

−B/2
g(r, y) dy→ B

∫ ∞

−∞
f (r, y) dy if L→ ∞ (6)

Here FHWM represents the Full width at half maximum of the function f . The Eq. (4),Eq. (5),Eq. (6) tells us that the Radon transforms of f74

and g are equal with the difference that the intensity of the last one is multiplied by the length of the segment (case of Eq. (5)) or the zone where g is75

projected (case Eq. (6)). The method consist then, on recovering f from the Radon transform of g, using the formula given in Eq. (2).76

See the figures in the tutorial at [1] to see a scheme of how the images should be cropped.77

B. Error in the angle - finding the angle78

In practical experiments the orientation of the image is arbitrary. For that reason, the first step of the algorithm consists on determining79

that angle.80

Assume that f is a Gaussian function, and the segment has an inclination of θ degrees, that is, if we make the change of variables81

x = −vs + uc, y = us + vc, with c = cos(θ), s = sin(θ), we define the resulting inclined image as g̃(u, v) = g(x, y). If we calculate the82

Radon transform of g̃ with angle zero, we obtain83

R[g̃](0, u) =
1

2πσ2

∫ L/2

−L/2
e
−(u−y′ s)2

2σ2

(∫ ∞

−∞
e
−(v−y′ c)2

2σ2 dv
)

dy′ =
1√
2πσ

∫ L/2

−L/2
e
−(u−y′ s)2

2σ2 dy′ := F(u). (7)

Observe that if s = 0 (no inclination)R[g̃](0, u) = L 1√
2πσ

e
−u2

2σ2 and we recover the PSF as in the general case. In the case s ̸= 0 we84

have taking r = y′s
σ , ũ = u

σ and ε = Ls
2σ85

h(u) :=
1
L

F(u) =
1
L

1√
2πσ

∫ L/2

−L/2
e
−(u−y′ s)2

2σ2 dy′ =
1

σ
√

2π2ε

∫ ε

−ε
e
−(ũ−r)2

2 dr (8)

We have the following
∫ ∞
−∞ h(u) du = 1,

∫ ∞
−∞ h(u)u du = 0, and taking z = ũ− r, du = σdz86 ∫ ∞

−∞
h(u)u2 du =

1
2ε

∫ ε

−ε

1√
2π

∫ ∞

−∞
e
−z2

2 (z + r)2σ2 dz dr = σ2(1 + ε2/3). (9)

Therefore, if we assume ε << 0 the relative error of deviation between h(u) and the PSF results,87

σ− σ
√

1 + ε2/3
σ

=
ε2/3

1 +
√

1 + ε2/3
∼ ε2/6 =

1
24

(
L sin(θ)

σ

)2
∼ 1

24

(
Lθ

σ

)2
. (10)

therefore, to obtain a relative error in the FHWM (or σ) less that ∆σ we need to detect the angle in a grid with step size88

∆θ ≤ 24
√
(∆σ)

σ

L
. (11)

Therefore it is necessary to have an estimate of the height and width of the segment, where the last one is comparable to the full width89

at half maximum (FWHM) of the PSF. When the angle has the direction of the line, the FHWM of the Radon transform is minimum.90

Therefore, the algorithm to detect the angle of the image is the following,

Algorithm 1. Image Angle

1: procedure ANGLE(Image,rel_error) ▷ image of a segment
2: For a given angle ∆θ, calculate for each θ = 0 : ∆θ : π the Radon transform and p(θ) the width of the peak.
3: Set: w = min p, L = max p.
4: Refine ∆θ according with Eq. (11) with ∆σ = rel_error.
5: Return to step 2.
6: return θ

91

In Figure 2 there is an example of a line inclined a certain angle, and how we define the width of the peak.92
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(a) (b)

Fig. 2. Determination of the angular inclination. (a) line with 45◦ of inclination. (b) Radon transform for θ = 45◦, peak, prominence
and width.

C. Symmetrization of the Radon transform and PSF-Radon Algorithm93

The main assumption of the method is that the PSF is radially symmetric and in consequence, its Radon transform is symmetric. But,94

in practice, the Radon transform of the image may have some fluctuations that made it non symmetric. This effect is due to distortion95

of the PSF or to the presence of noise. For that reason it was necessary to add a step to our method that consists on the symmetrization96

of the Radon transform (R). This symmetrization Rsym, consists on searching for the position of the peak of R, xp, and taking the mean97

values between the two branches, that is, Rsym(x) = 1
2 (R(x− xp) + R(−x + xp)). Finally we take Rsym as an approximation of Radon98

transform (observe that in case R is already symmetric Rsym(x) = R(x− xp)).99

The complete steps of the method are summarized in Algorithm 2.100

Algorithm 2. PSFRadon

1: procedure PSF(Image) ▷ image of a segment
2: Calculate the angle θ
3: R : Calculate the Radon transform of the image in the direction of θ.
4: R← Symmetrize the Radon transform.
5: RR← Make a matrix of 180 copies of R.
6: PSFmatrix ← Calculate the Filtered Backprojection of RR.
7: return PSFmatrix ▷ A matrix containing the values of the PSF on the original grid.

3. EXAMPLES: SYNTHETIC AND REAL IMAGES101

A. Synthetic images102

A.1. Angle103

To test the theoretical bound in Eq. (10) for more realistic cases, we constructed synthetic images convolving the line with a PSF104

consisting on the square of an Airy function (see Figure 3a). Along this article we will denote this PSF as Airy2. The parameters in105

Figure 3a are L = 200 px and w = 10 px. We approximated the PSF using the PSF- Radon algorithm with different errors in the angle106

of inclination. The resulting PSFs are plotted in Figure 3b. We obtained relative errors of the FHWM of 0.68, 0.26, 0.053, 2× 10−4 when107

the errors in the angle were 5.4◦, 3.6◦, 1.8◦, 0.18◦, respectively. These results are consistent with the theoretical bound of the relative108

error of the FHWM for a Gaussian PSF which are 0.5863, 0.26, 0.065, 7× 10−4, respectively. Observe that when the error in the angle109

is less than 2◦ the differences between the PSF-Radon functions and the original Airy2 function are imperceptible (Figure 3b). It is110

important to observe that as the error in the angle grows the first thing that is lost is the information around the halo (Figure 3c).111

A.2. Noise112

To test how the noise affects the retrieval of the PSF- Radon function we designed a family of synthetic line-PSF images where Poisson113

noise was added. In Figure 4 there are two examples for different noise levels.114

We conclude that the algorithm can be applied even when the image has high levels of noise. The only observation is that, as we115

increase the noise level some minor problems appear around the peak of the PSF.116

B. Measurement of point-spread function for macro lens camera images117

The first experimental test of the PSF-Radon algorithm was performed by taking pictures of a cell phone screen using a 5Mpixel118

camera with a macro lens with an iris to adjust the PSF. The images were taken at a camera-screen distance of 45cm. The iris of the119

camera was closed until we achieve a resolution of 12 pixels of the camera.120
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(a) (b) (c)

Fig. 3. PSF Radon using synthetic LSF function calculated for different errors in the inclination angle. (a) original vertical line. (b)
PSF obtained with different errors in the angle. (c) zoom around the halo.

(a) (b)

(c) (d)

Fig. 4. First column, Top to bottom: Synthetic segment with different noise levels. Second column PSF obtained after applying the
PSF-Radon algorithm together with the original PSF.

B.1. PSF- Radon algorithm vs Fitting beads121

Figures 5a and 5b correspond to pictures of structures consisting on vertical, horizontal lines and beads, both structures (lines and122

beads) were built in such a way that the width in the camera are 3px , that is 25% lower than the resolution, in the first case the time123

exposure was of 0.5 seconds while in the second case this time was of 10 seconds. For these particular acquisitions it was necessary to124

remove the Salt & Pepper noise (for the details on how we attack this problem see Appendix A). Figure 5c corresponds to a zoom of a125

bead for the 0.5 seconds exposure time picture. Observe that due to the noise, all the information about the PSF is lost in this picture.126

After increasing the exposure time up to 10 seconds (Figure 5d) it is possible to recover, as in [3], the information of the PSF assuming a127

form to approximate the bead by a Gaussian function. On the other hand, in Figure 5e there is a zoom of the line obtained from Figure128

5a. In Figure 5f we made a comparison between the PSF obtained using the bead and the PSF-Radon algorithm. Observe that, despite129

the fact that the image of the line used for our method was acquired with a factor 20 lower of exposure time than the one that uses the130

beads, we were able to better recover the structure of the PSF. The presence of the halos can be appreciated with our method.131

B.2. Measurement of point-spread function using a step132

There exists another type of structure that can be used to determine the PSF that consists on using a step sample instead of a line.133

In the image this structure will have the form Step(x, y) = f ∗ H, where H is a function that is equal to one when 0 ≤ x ≤ M and134

−L/2 ≤ y ≤ L/2 (see the rectangle in Figure 6a and zoom in 6c). If we calculate the partial derivative of Step in the x− direction we135



Research Article 6

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. (a) and (b): Acquisition with a standard camera of an image of a screen consisting on vertical, horizontal segments and
beads (right top and bottom of the screen). Both the segments and the beads have a width of 3px = 25% the resolution. In (a) the
acquisition was taken with 0.5 seconds of time exposure, (b) with 10 seconds. (c) and (d) corresponds to a zoom of one of the beads
in (a) and (b), respectively. (e) is a zoom of the vertical segment in (a). (f) comparison between the PSF obtained after applying the
PSF- Radon algorithm from image (e) with the fitted Gaussian obtained from (d) together with its profiles in the x and y-axis.

obtain,136

∂Step
∂x

(x, y) = f ∗ ∂H
∂x

= f ∗ δx(x, y) = g(x, y) (12)

where g has the form defined in Eq. (3) (see Figure 6d).137

To test the performance of this variant of the PSF-Radon algorithm we take again pictures of a screen, as in Section B, with structures138

consisting on rectangles and lines. Both structures are present in the same picture, Figure 6a. To compere both methods we use for the139

line the zone in Figure 6b and for the step the zone in Figure 6c. When the step has an inclination, the derivative must be taken in the140

direction perpendicular to the line (Figure 6d). The comparison between both resulting PSFs are plotted in Figure 6e.141

C. Argolight: measurement of point-spread function for fluorescence microscopy142

We also studied the performance of the PSF-Radon algorithm for microscopy images. We acquired images of an Argolight- SIM143

calibration sample that has multiple fluorescent reference standards with multiple geometric patterns designed for the quality control144

of microscopes, [23]. One of the patterns available in the sample is made up of gradually spaced lines. This pattern consists of pairs of145

36 µm long lines whose spacing gradually increases from 0 nm to 390 nm, with a step of 30 nm (see Figure 7a).146

An IX71 Olympus inverted microscope was used with an external 2X telescope in a 4f configuration before the camera (lateral port)147

to increase the magnification. A 60× oil immersion objective was used with a NA = 1.45, that was reduced to the value indicated in148

each experiment by placing an iris in the conjugate plane between the lenses of the 2× telescope. The sample was excited with an149

UV-LED and observed with a filter centered at 460 nm. A low noise CMOS camera (Andor Zyla 5.5) with 6.5 µm pixel size was used150

for image acquisition.151

The reason why we add an iris to the lenses was that the sample has a non-negligible thickness in the axial direction (according to152

the manufacturer the thickness is (600± 200)nm). Hence this sample cannot be used for high NA objectives as the out of focus signal153

would blur the PSF determination. Therefore, the iris allows the numerical aperture of the system to be modified to guarantee that the154

depth of focus of the optical system is greater than the thickness of the structure. The resulting numerical aperture is NA ∼ 0.55.155

Before applying the PSF-Radon algorithm, for this particular acquisition it was necessary to remove the background and the Salt156

& Pepper noise (for the details on how we attack these problems see Appendix A). Since this sample does not have any structure157

composed of an isolated line we have to adapt our algorithm to obtain the Radon transform of the LSF from what we call a 3 lines SF158

(see Figure 7b where the structure of the 3 lines can be visualized). For the details see Appendix B. In Figure 7c we plotted the 3 steps159

described in Algorithm 4 used to recover the Radon transform of the LSF. Finally, in Figure 7d we plotted the profile of the obtained160

PSF which results on having a resolution of 4.9px = 400nm.161
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(a) (b)

(c) (d) (e)

Fig. 6. (a): Original image. (b): zoom of the line (marked in green in (a)). (c): zoom of the step (marked in blue sky in (a)) and (d)
represents the derivative of (c) in the direction perpendicular to the line. (e): comparison between the resulting PSFs.

(a) (b) (c)

(d)

Fig. 7. (a): Original image consisting on several parallel lines. (b): zoom of the zone of interest (the arrow describes the angle used
for the Radon Transform and the limit of the area used for the algorithm). (c): description of the steps used in Algorithm 4 (Radon
transform (blue), subtraction of the second lobe (red) and approximation of the Radon transform of the LSF (yellow). (d): Resulting
PSF.

4. CONCLUSIONS162

In this article we presented a new method called PSF-Radon transform algorithm that consists on recovering the instrument point163

spread function (PSF) form the Radon transform (in the line direction axis) of the Line Spread function. We presented the description164
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and theory of the method. Also we developed an algorithm for finding accurately the angle of inclination of the line and we gave165

a theoretical prove of how the PSF is affected if we obtain this angle with a certain error. We tested the method first in synthetic166

images, showing how the accuracy in the angle of inclination and the Poisson noise affects the retrieval of the PSF. We also tested the167

method on real images from macro lens camera and microscopy and we developed an alternative method consisting on applying the168

PSF-Radon method to the directional derivative of the image of a step.169

We conclude that the main advantages of this method is that the line, compared to a noisy measurement from a very small bead,170

requires much less exposure time to achieve the same signal to noise levels and does not requires having to adjust the PSF by a171

analytical function to overcome the noise uncertainties.172

A stand-alone program along with a tutorial is available in [1], hopping that this method will be very useful for anyone interested173

in characterizing the PSF of their system.174

Work is in progress on developing new methods to build line and step structures to replace fluorescent beads, being a trivial one to175

use sharp knife edge structures for transmission and reflection microscopes.176

5. APPENDIX177

A. Removing background and Salt & Pepper Noise178

In many measurements the inclination together with a background (like in Figure 8a) may cause distortions in the Radon transform179

(see Figure 8b). For that reason we define a function that performs the histogram of the image and uses the maximum of this histogram180

as an estimation of the background (see Figure 8c) and subtracts it. As we can observe in Figure 8d, for this synthetic image the181

resulting PSF has a distortion both near the peak and around the halo if we do not subtract the background (Figure 8e and Figure 8f).182

As noise levels increases, failure to make this correction could lead to incorrect approximations of the PSF.

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) : Synthetic image of a line-PSf with a 45◦ of inclination, with a background= 50 and with Poisson noise (maximum
intensity= 1000). (b): Radon transform of the image using the subtract background function and without using it. (c) histogram of
the image showing a peak around the background. (d) profile of the PSF- Radon functions obtained using the Radon transforms of
(c). (e) and (f) are zooms in different regions of plot (c).

183

Another type of noise may appear due to the image transmission channels. That is, an impulsive noise that causes the affected184

pixels to take an extreme value, that is, maximum (white) or minimum (black). The effect of this noise on grayscale image is to have185

various black and white dots scattered randomly throughout the image, named Salt and Pepper noise (see Figure 9a).186

This Salt and Pepper noise can affect the performance of the PSF- Radon algorithm, see Figures 9b and 9c. To solve this noise, it187

is standard to use spatial average filters, but since this filter converts the original image to a blurred one the result is a loss in the188

resolution, that is a change in the PSF.189

For that reason we solve this problems using Algorithm 3,190
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Algorithm 3. Remove Salt & Pepper

1: procedure OUTPUT IMAGE (INPUT IMAGE,M)
2: Calculate the histogram of INPUT IMAGE.
3: z1: Search for the first zero on the right side of the histogram.
4: Salt pixels: Search for all the pixels with bin intensities two positions to the right of z1.
5: return OUTPUT IMAGE: Each output salt pixel contains the median value in the M×M neighbourhood, without taking the

value of the current pixel, around the corresponding salt pixel in INPUT IMAGE.

A picture and the result of this algorithm is describe in Figure 10.191

Remark 5.1 For our problem the pepper pixels where not critical. In the case that it was necessary to remove also these pixels it can by applied a192

similar algorithm by detecting for the first zero on the left side of the histogram.193

(a) (b) (c)

(d)

Fig. 9. (a) : Synthetic image of a LSF with a 45◦ of inclination, with background= 50, Poisson noise (maximum intensity= 1000) and
a salt pixel. (b): Normalized Radon transform of (a) and of the image in Figure 8a. (c): zoom around the peak of (b). (d): profile of
the PSF- Radon compared with the PSF- Radon function obtained in Figure 8d.

(a) (b) (c)

Fig. 10. (a) : Histogram of the image on Figure 9a. (b) is a zoom of the histogram around the zone corresponding to the intensities
of the sample. The arrow in (b) indicates the threshold given by Algorithm 3. (c) comparison between the PSF-Radon functions
obtained removing the salt noise together with the original PSF.
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B. Recovering the Radon transform of the LSF from a multiline-SF194

When there is no isolated LSF but we have and acquisition of 2 or more lines (see Figure 11a) it is necessary to subtract the contribution195

of the second line. We call a structure of this form a n-Line Spread Function (n-LSF). Assume that our structure is such that the Radon196

transform has the form f0(x) = g(x− x0) + αg(x− x1) (see blue line in Figure 11b), if we define197

f1(x) = f0(x)− α f0(x− x1 + x0) = g(x− x0)− α2g(x− 2x1 + x0) = g(x− x0)− α2g(x− x2) (13)

where x2 = 2x1 − x0, that is x2 − x0 = 2(x1 − x0) which means that we are duplicating the distance to x0 (see red line in Figure 11b).198

Therefore now the lobes are more separated and the tail due to the lobe centered at x2 does not affect the lobe centered at x0. We define,199

RL(x) =

{
f1(x) if x ≤ x0

f1(−x) if x > x0.
(14)

See yellow line in Figure 11b.200

Summering, the steps to obtain the Radon transform of a LSF from a n-LSF are define in Algorithm 4.201

Algorithm 4. Radon transform of a LSF from the n-LSF

1: procedure RL(Image)
2: Calculate the Radon transform of the image
3: Find the positions of the first peaks and the relative intensity α.
4: Calculate f1
5: return RL as in Eq. (14)

In Figure 11 we show, for a synthetic image how is the performance of the method described in Algorithm 4 in the case where the202

PSF is an Airy2 function and using an image of a two parallel lines which are at distance near the resolution. In this synthetic image203

the resolution is 480nm and the distance between lines is 500nm. The relative intensities between the two lines is 2. Observe that the204

retrieval PSF recovers the information of the halo with an error around 1%.

(a) (b) (c)

Fig. 11. PSF-Radon using a 2-LSP (a): Original image. (b): Radon transform (blue line), subtraction of the second lobe (red line) and
the approximation of the radon transform of the LSF (yellow line). (c) PSF-Radon vs original PSF.

205

Remark 5.2 In case that x2 it is still to close to x0 we can apply Eq. (13) iteratively obtaining206

fi+1(x) = fi(x)− α fi(x− xi + x0) = g(x− x0)− αi+2g(x− 2xi + x0) (15)

where xi+1 = 2xi − x0 satisfies xi+1 − x0 = 2(xi − x0), i.e: xi+1 − x0 = 2i(x1 − x0). That means that after a finite number of steps the 2 lobes207

are sufficiently separated so that there is no contribution of the second one to the first one.208

Also, it is important to mentioned that if we have a third peak far from the first one, its effect does not affect what happens near the first peak.209
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Research Highlights.215

• Determining the instrument point spread function (PSF) is a key issue.216

• Precise PSF determinations are mandatory if image improvement is performed numerically by deconvolution.217

• Much less exposure time to achieve the same performance than a measurement of the PSF from a very small bead.218

• Does not requires having to adjust the PSF by a analytical function to overcome the noise uncertainties.219
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