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APPROXIMATING THE RIEMANN ZETA FUNCTION WITH

COPRIME N-TUPLES

MARCUS SILVER

Abstract. At the age of twenty-eight, Leonhard Euler, now one of the great-

est mathematicians of all time, gained immediate fame after solving the Basel

problem. For over eighty years this problem had withstood the attempts of

leading mathematicians until it was finally solved by Euler in 1734. Euler

generalized the problem and over a century later Bernhard Riemann defined

his zeta function, extending the problem to complex numbers. Riemann’s zeta

function has since become the head of the most important unsolved problem

in pure mathematics, the Riemann hypothesis.

1. Introduction

The aforementioned Basel problem, which went unsolved for over eighty years
can be approximated with a simple experiment.
First you ask a number of people to each list two random (preferably big) integers.
Then count how many of the two number pairs are coprime. (A group of numbers
is coprime if the only positive integer that is a shared divisor is 1.)
The total number of pairs divided by the number of coprime pairs will be approxi-
mately the solution to the Basel problem, π2/6.
To rephrase the result, the probability of two random integers being coprime is
6/π2, the inverse of the solution.

2. Basel Problem

The Basel problem asks for the precise summation of the reciprocals of the
squares of the natural numbers.
Defined as an infinite series, the problem looks like:

∞
∑

n=1

1

n2
=

1

12
+

1

22
+

1

32
+ · · ·

The sum of this series is approximately equal to 1.644934. The Basel problem
asks for the exact sum of the series (in closed form) and a proof, so the decimal
approximation isn’t good enough. In 1734 Euler found the exact sum to be π2/6.
Euler’s proof was flawed in that he used math that hadn’t been justified at the
time, but he produced an accepted proof just 7 years later. His original proof was
later found justified.
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3. Euler’s Solution

We will now solve the problem in the way Euler did.
To begin, recall the Taylor series of sinx:

sinx = x−
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

Also recall the product definition for sinπx:

sin (πx) = πx
(

1− x2
)

(

1−
x2

4

)(

1−
x2

9

)

· · ·

formally multiply the product definition for sinπx

= πx

−πx3

[

1 +
1

4
+

1

9
+

1

16
+ · · ·

]

+πx5

[

1

1 · 4
+

1

1 · 9
+ · · ·+

1

4 · 9
+ · · ·

]

− · · ·

Notice that doing this leaves separate terms for x, x3, x5. . .
Now use the Taylor series of sinx referenced above and plug in πx for x

sin (πx) = πx−
(πx)3

3!
+

(πx)5

5!
− · · ·

Simplify

= πx−
π3

6
x3 +

π5

120
x5 − · · ·

You will notice that the Taylor series for sinπx also leaves separate terms for
x, x3, x5. . .
You can set the x3 term from the expanded product and the x3 term from the
substituted Taylor series equal to each other (you can do this because of Newton’s
Identities)

−π

[

1 +
1

4
+

1

9
+

1

16
+ · · ·

]

= −
π3

6

You will notice that the equation between the brackets is actually the Basel problem.
Substitute the Basel problem in for its Taylor series and you will get:

−π

∞
∑

n=1

1

n2
= −

π3

6

Divide both sides by −π and you are left with the solution to the Basel problem.

∞
∑

n=1

1

n2
=

π2

6
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4. Proving the Experiment

In the experiment in the introduction, we found that the probability of two
random integers being coprime was approximately 6/π2, the inverse of the solution
to the Basel problem. We will now prove why we get this result.

To do this we will use Euler’s totient function ϕ (n). Euler’s totient function
counts the positive integers up to a given integer n that are relatively prime (co-
prime) to n. In other words, it is the number of integers k in the range 1 ≤ k ≤ n
for which the greatest common divisor gcd (n, k) is equal to 1. For ease of use we
can write this as a summation:

ϕ (n) =
n
∑

k=1

{gcd (n, k) = 1}

Now that we have the totient function defined, we can define the result of our
experiment as the limit of a double summation:

lim
N→∞

1

N2

N
∑

n=1

N
∑

m=1

{gcd (m,n) = 1} →
6

π2

This double summation goes over every single integer m and n up to N , counts
how many pairs (m,n) are coprime and divides that number by the total number
of pairs checked (N2). as N approaches infinity, the double summation approaches
6
π2 . Using a summation identity you can simplify this to:

lim
N→∞

2

N2

N
∑

n=1

n−1
∑

m=1

{gcd (m,n) = 1} →
6

π2

You can then substitute the second summation for Euler’s totient function:

lim
N→∞

2

N2

N
∑

n=1

ϕ (n) →
6

π2

Shown by Arnold Walfisz, the average order of the totient function is given by:

∑

n<x

ϕ (n) =
3

π2
x2 +O

(

x (log x)
2/3

(log log x)
4/3

)

As we are working with the limit as the function approaches infinity, we can remove
the error term O and plug the average order -

∑

ϕ(n)- into our summation. This
leaves us with:

lim
N→∞

2

N2
·
3

π2
N2 →

6

π2

Multiply out the fractions, removing the N2 term, in turn removing the need for
the limit. We are now left with our solution:

6

π2
=

6

π2

5. Extending the Experiment

In his 1859 paper ”On the Number of Primes Less Than a Given Magnitude”,
Bernhard Riemann defined his zeta function, expanding upon the series from the
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Basel problem, as the following:

ζ(s) =
∞
∑

n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · ·

You may notice that ζ(2) is actually the Basel problem.

Riemann’s Zeta function is actually defined over complex numbers, but in our case
we will only be defining it over positive integers.

Now that we have proven that the probability of 2 random integers being coprime
is equal to the inverse of ζ(2), we can actually extend the experiment for s random
integers.

In 1972, James E. Nymann showed that k integers, chosen independently and uni-
formly from {1, · · · , n}, are coprime with probability 1

ζ(k) as n goes to infinity,

where ζ refers to the Riemann zeta function.

I’m not even going to attempt to explain his proof, I will instead show code that
will let you run the experiment for any amount of numbers. The code is written in
Python.

from random import randint

from math import gcd

from sys import maxsize

k = 5 # tuple length

samples = 100000 # number of random tuples tested

cptuples = 0 # count of coprime tuples

for i in range(samples ):

nums = tuple(randint (1,maxsize) for i in range(k))

if gcd(*nums) == 1: cptuples += 1

print(cptuples/samples) # 1/zeta(k)

6. Conclusion

A simple experiment can be used to approximate the results of a complicated
problem.

You can use the probability of an n-tuple being coprime to approximate Zeta(n)
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