O_3 formation sensitivity to precursors and lightning in the tropical troposphere based on airborne observations

Clara Maria Nussbaumer¹, Matthias Kohl¹, Andrea Pozzer², Ivan Tadic¹, Roland Rohloff¹, Daniel Marno¹, Hartwig Harder³, Helmut Alois Ziereis⁴, Andreas Zahn⁵, Florian Obersteiner⁶, Andreas Hofzumahaus⁷, Hendrik Fuchs⁸, Christopher Künstler⁷, William H. Brune⁹, Thomas B. Ryerson¹⁰, Jeff Peischl¹¹, Chelsea Thompson¹², Ilann Bourgeois¹³, Jos Lelieveld¹, and Horst Fischer¹

¹Max Planck Institute for Chemistry
²Max Planck Institute for Chemistry
³Max Planck Institute fur Chemie
⁴Deutsches Zentrum fur Luft- und Raumfahrt (DLR)
⁵Karlsruhe Institute of Technology (KIT)
⁶Karlsruhe Institute of Technology
⁷Forschungszentrum Juelich
⁸Forschungszentrum Juelich GmbH
⁹Pennsylvania State University
¹⁰Scientific Aviation
¹¹National Oceanic and Atmospheric Administration (NOAA)
¹²University Savoie Mont Blanc

March 15, 2024

Abstract

Tropospheric ozone (O₃) is an important greenhouse gas that is also hazardous to human health. O₃ is formed photochemically from nitrogen dioxide (NO₂) (with oxygen and sunlight), which in turn is generated through oxidation of nitric oxide (NO) by peroxy radicals (HO₂ or RO₂). The formation of O₃ can be sensitive to the levels of its precursors NOx ([?] NO + NO₂) and peroxy radicals, e.g., generated by the oxidation of volatile organic compounds (VOCs). A better understanding of this sensitivity will show how changes in the levels of these trace gases could affect O₃ levels today and in the future, and thus air quality and climate. In this study, we investigate O₃ sensitivity in the tropical troposphere based on in situ observations of NO, HO₂ and O₃ from four research aircraft campaigns between 2015 and 2023, namely, OMO (Oxidation Mechanism Observations), ATom (Atmospheric Tomography Mission), CAFE Africa (Chemistry of the Atmosphere Field Experiment in Africa) and CAFE Brazil, in combination with simulations using the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model. We use the metric α (CH₃O₂) together with NO to show that O₃ formation chemistry is generally NO_x-sensitive in the lower and middle tropical troposphere and in a transition regime in the upper troposphere. By distinguishing observations, which are either impacted by lightning or not, we show that NO from lightning is the most important driver of O₃ sensitivity in the tropics. Areas affected by lightning exhibit strongly VOC-sensitive O₃ chemistry, whereas NO_x-sensitive chemistry predominates in regions without lightning impact.

O₃ formation sensitivity to precursors and lightning in the tropical troposphere based on airborne observations

Clara M. Nussbaumer¹, Matthias Kohl¹, Andrea Pozzer^{1,2}, Ivan Tadic¹, 3 Roland Rohloff¹, Daniel Marno¹, Hartwig Harder¹, Helmut Ziereis³, Andreas Zahn⁴, Florian Obersteiner⁴, Andreas Hofzumahaus⁵, Hendrik Fuchs⁵, Christopher Künstler⁵, William H. Brune⁶, Tom B. Ryerson⁷, Jeff Peischl^{8,9}, Chelsea R. Thompson⁸, Ilann Bourgeois^{8,9,a}, Jos Lelieveld^{1,2}and Horst Fischer¹ 4 5 6 7 ¹Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany ²Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus 8 9 ³Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, 10 Oberpfaffenhofen, Germany 11 ⁴Institute of Meteorology and Climate Research – Atmospheric Trace Gases and Remote Sensing 12 (IMK-ASF), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany 13 ⁵Institute of Energy and Climate Research – Troposphere (IEK-8), Forschungszentrum Jülich GmbH, 14 ⁶Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, 15 16 PA 16802, USA ⁷Scientific Aviation, Boulder, CO 80301, USA ⁸National Oceanic and Atmospheric Administration (NOAA) Chemical Sciences Laboratory (CSL), 17 18 19 Boulder, CO 80305, USA 20 ⁹Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, 21 CO 80309, USA 22 ^anow at: Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France 23

24 Key Points:

25	• $\alpha(CH_3O_2)$ correlated with NO is a powerful metric for indicating O_3 sensitivity
26	and is valid throughout the troposphere.
27	• O_3 chemistry in the remote tropical lower troposphere is found to be NO_x -sensitive.
28	• NO emissions from lightning drive O_3 sensitivity in the tropical upper troposphere
29	and induce highly VOC-sensitive chemistry.

Corresponding author: Clara M. Nussbaumer, clara.nussbaumer@mpic.de

30 Abstract

Tropospheric ozone (O_3) is an important greenhouse gas that is also hazardous to hu-31 man health. O_3 is formed photochemically from nitrogen dioxide (NO₂) (with oxygen 32 and sunlight), which in turn is generated through oxidation of nitric oxide (NO) by per-33 oxy radicals (HO₂ or RO₂). The formation of O_3 can be sensitive to the levels of its pre-34 cursors NO_x ($\equiv NO + NO_2$) and peroxy radicals, e.g., generated by the oxidation of volatile 35 organic compounds (VOCs). A better understanding of this sensitivity will show how 36 changes in the levels of these trace gases could affect O₃ levels today and in the future, 37 and thus air quality and climate. In this study, we investigate O_3 sensitivity in the trop-38 ical troposphere based on in situ observations of NO, HO₂ and O₃ from four research 39 aircraft campaigns between 2015 and 2023, namely, OMO (Oxidation Mechanism Ob-40 servations), ATom (Atmospheric Tomography Mission), CAFE Africa (Chemistry of the 41 Atmosphere Field Experiment in Africa) and CAFE Brazil, in combination with sim-42 ulations using the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model. We use 43 the metric $\alpha(CH_3O_2)$ together with NO to show that O_3 formation chemistry is gener-44 ally NO_x -sensitive in the lower and middle tropical troposphere and in a transition regime 45 in the upper troposphere. By distinguishing observations, which are either impacted by 46 lightning or not, we show that NO from lightning is the most important driver of O_3 sen-47 sitivity in the tropics. Areas affected by lightning exhibit strongly VOC-sensitive O_3 chem-48 istry, whereas NO_x -sensitive chemistry predominates in regions without lightning impact. 49

50 1 Introduction

Ozone (O_3) in the stratosphere is essential to life on this planet through its shield-51 ing of the Earth's surface from the sun's shortwave radiation (Staehelin et al., 2001). In 52 contrast, in the troposphere O_3 has adverse effects for plants, human health and the cli-53 mate (Ainsworth et al., 2012; Nuvolone et al., 2018). O_3 is an important anthropogenic 54 greenhouse gas (besides CO_2 and CH_4) and its impact on global warming is strongest 55 in the upper troposphere where it is most abundant (relative to tropospheric levels), tem-56 peratures are coldest and water vapor, which acts as a natural greenhouse gas, is sparse 57 (Cooper et al., 2014; Iglesias-Suarez et al., 2018; IPCC, 2023). This influence of O_3 on 58 the radiative budget is particularly pronounced in tropical latitudes $(30^{\circ}S \text{ to } 30^{\circ}N)$ (Lacis 59 et al., 1990; Iglesias-Suarez et al., 2018; Skeie et al., 2020). O_3 is additionally an impor-60 tant precursor for OH radicals, which in turn control the atmospheric oxidizing capac-61 ity (Lelieveld et al., 2016). 62

Ozone in the troposphere can originate from transport processes from the strato-63 sphere and photochemical formation. While the exact source distribution has not yet been 64 fully understood up to this point, it is almost certain that photochemical production is 65 the dominant source of O_3 in the troposphere (Lelieveld & Dentener, 2000; Cooper et 66 al., 2014; Archibald et al., 2020). Nitrogen oxides ($NO_x \equiv NO + NO_2$) and volatile or-67 ganic compounds (VOCs) are photochemical precursors for O_3 in the troposphere. NO_x is mostly emitted in the form of NO and converted to NO_2 in the presence of peroxy rad-69 icals (mostly HO_2 and CH_3O_2), shown in Reactions (R1) and (R2). Peroxy radicals in 70 turn are formed through oxidation of VOCs or carbon monoxide (CO) by OH radicals 71 (Crutzen, 1988; Pusede et al., 2015; Nussbaumer & Cohen, 2020). 72

$$NO + HO_2 \longrightarrow NO_2 + OH$$
 (R1)

$$NO + RO_2 \longrightarrow NO_2 + RO$$
 (R2)

 $_{73}$ NO₂ forms O₃ in the presence of sunlight and oxygen from the air via Reaction (R3).

$$NO_2 + O_2 \xrightarrow{h\nu} NO + O_3$$
 (R3)

Precursor sources at the surface are combustion processes (vehicle engines, vessels,
industrial activities, etc.), biomass burning and soil emissions for NO and mostly evaporative emissions, including volatile chemical products (personal care products, detergents, etc.), as well as biogenic emissions from vegetated areas for VOCs (Pusede et al.,
2015; McDonald et al., 2018). Aircraft and lightning are sources of NO at higher altitudes in the troposphere.

Depending on the precursor concentrations, O_3 formation can be sensitive to ei-80 ther NO_x or VOCs, the latter represented by peroxy radicals. A detailed analysis and 81 discussion of our current understanding of O₃ sensitivity can be found in Nussbaumer 82 et al. (2023). Briefly, for low NO_x , referred to as NO_x -sensitive O_3 chemistry, VOCs and 83 therefore peroxy radicals are present in excess. Peroxy radicals undergo Reactions (R1) 84 and (R2) with NO and further react with themselves in radical recombination reactions 85 or undergo auto oxidation. O_3 formation generally increases with increasing NO. O_3 chem-86 istry is VOC-sensitive when NO_x is available in excess. A maximum level of ozone pro-87 duction is reached when the available peroxy radicals react with NO to form NO₂. The 88 impact of increases in NO_x on O_3 concentrations for VOC-sensitive O_3 chemistry changes 89 with the altitude, which we hypothesize is due to the fraction of NO_2 . At the surface, 90 O_3 formation decreases with increasing NO_x due to the reaction of OH radicals with NO_2 91 (instead of VOCs to generate peroxy radicals), which becomes relevant when NO_x is more 92 abundant than reactive VOCs. Observations of decreasing O_3 at high NO_x are often re-93 ported in literature, for example, Nussbaumer and Cohen (2020), Sicard et al. (2020) or 94 Gough and Anderson (2022). In the upper troposphere, the reaction of NO_2 with OH 95 only plays a minor role - likely because daytime NO₂ is sparse as the NO_x equilibrium 96 is shifted towards NO. Consequently, O_3 is much less responsive to NO changes. We have 97 shown this effect of O_3 in the upper troposphere in Nussbaumer et al. (2023). 98

In order to understand and predict the response of O_3 towards changes in NO_x and 99 VOCs, it is essential to investigate which precursor O_3 is sensitive to, given its impor-100 tance for air quality and climate. Various metrics exist to determine which sensitivity 101 prevails, including the response of ozone production $P(O_3)$ to changes in NO_x , the week-102 end effect or the HCHO to NO₂ ratio. A detailed review and comparison of the most com-103 mon metrics in the literature is presented in Liu and Shi (2021) for the surface and Nussbaumer 104 et al. (2023) for the global troposphere. We found that most of these metrics are only 105 applicable at the surface, but not in the upper troposphere. Briefly, mixing ratios of trace 106 gases vary significantly throughout the troposphere and definitions for the surface, for 107 example, $P(O_3)$ changes with NO_x or a specific threshold for the HCHO to NO_2 ratio 108 do not apply at high altitudes. A detailed discussion can be found in Nussbaumer et al. 109 (2023). Instead, we have developed a new metric, $\alpha(CH_3O_2)$, to determine O_3 sensitiv-110 ity, which is valid throughout the entire troposphere (Nussbaumer, Crowley, et al., 2021; 111 Nussbaumer et al., 2022). $\alpha(CH_3O_2)$ presents the ratio of methyl peroxy radicals CH_3O_2 112 (a proxy for VOCs) which react with NO and promote O_3 formation in competition with 113 the peroxy radical self-reaction which inhibits O₃ formation. We present more details 114 including the calculation of $\alpha(CH_3O_2)$ in Section 2.1. 115

 $\alpha(CH_3O_2)$ was originally proposed as an indicator for formaldehyde formation and 116 applied to three stationary ground-site measurements across Europe in Cyprus, Germany 117 and Finland (Nussbaumer, Crowley, et al., 2021). α (CH₃O₂) identified NO_x-sensitive 118 O_3 chemistry in southeastern Europe and VOC-sensitive O_3 chemistry in central Europe, 119 which is in line with results obtained via the HCHO to NO_2 ratio, a metric dating back 120 to studies by Sillman (1995). In Nussbaumer et al. (2022), we used $\alpha(CH_3O_2)$ to indi-121 cate a change in upper tropospheric O_3 sensitivity in response to reduced air traffic (and 122 a 55% reduction in NO_x mixing ratios) during the COVID-19 lockdowns over Europe, 123

which common metrics would have failed to identify. We have recently investigated O_3 sensitivity in the upper tropical troposphere based on modeling simulations by a general circulation model and found lightning as the most important driver of VOC-sensitive O_3 chemistry (Nussbaumer et al., 2023). Generally, these studies have underlined that NO_x is most relevant in O_3 formation and sensitivity and that the abundance of VOCs only plays a subordinate role.

There are numerous studies that have investigated O_3 sensitivity to NO_x and VOC 130 levels at the surface and they almost exclusively focus on urban areas (Li et al., 2019; 131 Jaffe et al., 2022; Zhao et al., 2022; Akimoto & Tanimoto, 2022). While this is highly 132 relevant with respect to air quality and human health, it is also important to investigate 133 more remote locations particularly in regard to future emission changes. For example, 134 with increasing temperatures and decreasing precipitation one could expect to see in-135 creases in biomass burning, resulting in emission of NO_x in the remote rainforest (Bray 136 et al., 2021). In combination with the high levels of VOCs in these areas, O_3 could in-137 crease drastically locally, and in turn harm the natural vegetation and agricultural crops 138 (Ainsworth et al., 2012; Pope et al., 2020). At the same time, ongoing industrialization 139 in the Global South will likely impact ozone concentrations in the tropical troposphere 140 (Gaudel et al., 2024). In contrast to surface-based analyzes, research on O_3 sensitivity 141 in the upper troposphere is scant and has not been investigated in detail since the stud-142 ies of Brasseur et al. (1996), Jaeglé et al. (1998), Wennberg et al. (1998) and Jaeglé et 143 al. (1999) around 25 years ago, who concluded that O_3 chemistry was NO_x -sensitive in 144 the upper troposphere over the United States based on box-model simulations. Of note, 145 the observations for high NO_x did not match the model predictions in Jaeglé et al. (1998) 146 and Jaeglé et al. (1999). We suggest that O_3 production is an unsuitable metric for in-147 dicating O_3 sensitivity at high altitudes. This could be (partly) due to the terminating 148 reaction $OH + NO_2$ (forming HNO₃), which does not seem to play a significant role for 149 low NO_2 mixing ratios in the upper troposphere. 150

This study investigates O_3 chemistry in the tropical troposphere based on airborne observations during four aircraft campaigns, namely OMO, ATom, CAFE Africa and CAFE Brazil, between 2015 and 2023. We compare in situ observations with modeled data by the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model and we investigate the differences in trace gas concentrations and vertical profiles between the individual campaigns (and regions). We use $\alpha(CH_3O_2)$ to identify O_3 sensitivity towards its precursors in the tropical troposphere, with a particular focus on the role of lightning.

¹⁵⁸ While we have previously analyzed O_3 chemistry in the upper tropical troposphere ¹⁵⁹ based on model simulations (Nussbaumer et al., 2023), this is the first study to inves-¹⁶⁰ tigate the question of O_3 sensitivity at these altitudes based on in situ observations us-¹⁶¹ ing the metric $\alpha(CH_3O_2)$. To our knowledge, $\alpha(CH_3O_2)$ is currently the only available ¹⁶² metric reliably indicating which precursor O_3 is sensitive to at altitudes at which com-¹⁶³ mon tools fail and the impact of O_3 as a greenhouse gas is strongest.

¹⁶⁴ 2 Observation and Methods

165

2.1 O₃ Sensitivity Metric α (CH₃O₂)

 $\alpha(CH_3O_2)$ was originally developed for identifying HCHO (formaldehyde) produc-166 tion pathways. It presents the share of CH_3O_2 (methyl peroxy radicals) reacting with 167 NO or OH radicals forming HCHO versus the peroxy self-reaction $(CH_3O_2 + HO_2)$ form-168 ing CH₃OOH (Nussbaumer, Crowley, et al., 2021). The reaction of CH₃O₂ with NO also 169 yields NO₂, which forms O_3 via Reaction (R3), while the reaction of CH_3O_2 with HO_2 170 represents a termination reaction of the O₃ formation process (which is relevant for a 171 low-NO_x environment). The reaction of CH₃O₂ with OH contributes to HCHO, but not 172 to O_3 formation, and generally only plays a minor role compared to the pathway via NO 173

Figure 1. Identifying the dominant O_3 sensitivity using $\alpha(CH_3O_2)$ (adapted from Nussbaumer, 2023).

and HO₂. Therefore, it can be disregarded when studying O₃ sensitivity. Hence, α (CH₃O₂) 174 is calculated via Equation (2). We only use positive values for determining $\alpha(CH_3O_2)$ 175

to ensure that the resulting value is between 0 and 1. 176

$$\alpha(\mathrm{CH}_{3}\mathrm{O}_{2}) = \frac{k_{\mathrm{CH}_{3}\mathrm{O}_{2}^{+}\mathrm{NO}} \times [\mathrm{NO}]}{k_{\mathrm{CH}_{3}\mathrm{O}_{2}^{+}\mathrm{NO}} \times [\mathrm{NO}] + k_{\mathrm{CH}_{3}\mathrm{O}_{2}^{+}\mathrm{HO}_{2}} \times [\mathrm{HO}_{2}]}$$
(2)

A detailed description of $\alpha(CH_3O_2)$ can be found in Nussbaumer, Crowley, et al. 178 (2021), Nussbaumer et al. (2022) and Nussbaumer et al. (2023). Briefly, for low NO_x con-179 centrations, CH_3O_2 react with both NO and HO_2 and increases in NO lead to increases 180 in $\alpha(CH_3O_2)$. O₃ chemistry is NO_x-sensitive. For high NO_x concentrations, most avail-181 able CH_3O_2 reacts with NO and changes in NO have no impact on $\alpha(CH_3O_2)$, as O_3 182 sensitivity is limited by the availability of peroxy radicals (which represent the abundance 183 of VOCs). Figure 1 schematically shows how to use $\alpha(CH_3O_2)$ to identify prevailing O_3 184 sensitivity (Nussbaumer, 2023). O_3 concentrations increase with increasing NO_x when 185 O_3 chemistry is NO_x -sensitive. For VOC-sensitive O_3 chemistry at the surface, O_3 for-186 mation decreases with increasing NO_x due to the reaction of OH and NO_2 . In the up-187 per troposphere, O_3 concentrations reach a maximum and remain unresponsive to changes 188 in NO_x . 189

2.2 Aircraft Campaigns 190

177

Figure 2 presents an overview of the flight tracks of the four research aircraft cam-191 paigns discussed in this paper. These are OMO (Oxidation Mechanism Observations), 192 ATom (Atmospheric Tomography Mission), CAFE Africa (Chemistry of the Atmosphere 193 Field Experiment in Africa) and CAFE Brazil. The ATom campaign was divided into 194 measurements over the Atlantic and the Pacific Ocean. Detailed information on the in-195 dividual campaigns and the respective measurements are provided in the following sub-196 sections. We filtered all data for the tropical latitudes between 30° S and 30° N and for 197 the troposphere with a threshold of 100 ppbv for O_3 . We use a 1-minute average of the 198 measurements, brought to the NO timestamp, for this analysis. 199

Figure 2. Overview of the flight tracks (filtered by tropical latitudes between 30°S and 30°N) for the four aircraft campaigns OMO (green), ATom, CAFE Africa (red) and CAFE Brazil (blue). The ATom campaign was separated into data over the Atlantic (orange) and the Pacific Ocean (cyan).

2.2.1 OMO 2015

200

224

The aircraft campaign OMO (Oxidation Mechanism Observations) took place in 201 July and August 2015 over the Indian Ocean and the Middle East using the HALO (High 202 Altitude LOng range) research aircraft. The campaign comprised 17 research flights (some 203 on the same day) with campaign bases in Paphos in Cyprus (34.72°N, 32.49°E) and Gan 204 in the Maldives $(0.69^{\circ}\text{S}, 73.16^{\circ}\text{E})$. More details can be found in Lelieveld et al. (2018) 205 and Tomsche et al. (2019). Nitric oxide was measured via chemiluminescence with the 206 two-channel AENEAS (Atmospheric nitrogen oxides measuring system) instrument with 207 a detection limit of 7 pptv and a measurement uncertainty of 8% (for 0.5 ppbv) (Ziereis 208 et al., 2000; Stratmann et al., 2016). HO_2 was measured via laser-induced fluorescence 209 with the HORUS (Hydroxyl Radical Measurement Unit based on fluorescence Spectroscopy) 210 and the AirLIF instruments (Novelli et al., 2014; Marno et al., 2020; Künstler, 2020). 211 The HORUS instrument has a detection limit of 1.2 pptv for HO₂ at the surface and 0.23 pptv212 above 14 km. The accuracy is typically between 20% and 40%. The detection limit and 213 uncertainty for the Air-LIF instrument are also altitude-dependent. The detection limit 214 (signal-to-noise ratio = 2, 40 s time resolution) is generally less than 1 pptv and about 215 0.1 pptv above 5 km. The data accuracy is between 15 and 35 %. Neither of the HO₂ mea-216 surements was continuous over the entire campaign. The data from the five overlapping 217 flights showed good agreement and we therefore combined the data from the two instru-218 ments (research flights 1-6 (21.07.-06.08.2015) from AirLIF and 7-17 (08.08.-27.08.2015) 219 from HORUS) to obtain a full dataset. Ozone was measured with the FAIRO (Fast AIR-220 borne Ozone) instrument using a dry chemiluminescence detector, calibrated by a 2-channel 221 UV photometer, with an uncertainty (10 Hz) of 2.5% or 2 ppbv (Zahn et al., 2012; Ober-222 steiner, 2023). 223

2.2.2 ATom 2016-2018

The aircraft campaign ATom (Atmospheric Tomography Mission) consisted of four 225 deployments between 2016 and 2018 in summer 2016, winter 2017, fall 2017 and spring 226 2018 with the NASA DC-8 aircraft, operated by the NASA Armstrong (Dryden) Flight 227 Research Center. A total of 47 scientific flights were carried out over the almost 2-year 228 period. Each deployment circumnavigated the globe once. More details on the campaign, 229 including all flight tracks, can be found in Thompson et al. (2022) and via the campaign 230 website (NASA, 2022). For this study, we used the data measured in the tropical regions 231 between 30°S and 30°N latitude and additionally separated them into two geographic 232 regions over the Pacific and the Atlantic Ocean (see Figure 2 in cyan and orange, respec-233 tively). NO and O₃ were measured via chemiluminescence using an O₃-induced and a 234 NO-induced technique, respectively. The measurement uncertainties (1 Hz data) were 235

²³⁶ 5% for NO and 2% for O₃, with a precision of 6 pptv and 15 pptv, respectively (Bourgeois ²³⁷ et al., 2021, 2022). HO₂ was measured via laser-induced fluorescence with a 2σ accuracy ²³⁸ of 35%. Details can be found in Faloona et al. (2004).

239 2.2.3 CAFE Africa 2018

The Chemistry of the Atmosphere Field Experiment in Africa (CAFE Africa) took 240 place in August and September 2018 from Sal on Cabo Verde (16.75°N, 22.95°W). Four-241 teen scientific flights were performed with the HALO research aircraft, mostly over the 242 Atlantic Ocean. Details on the campaign and measurements can be found in Tadic et 243 al. (2021). Nitric oxide was measured with the chemiluminescence instrument (CLD 790 244 SR, ECO Physics, Dürnten, Switzerland) NOAH (Nitrogen Oxides Analyzer for HALO) 245 with a detection limit of 5 pptv (1 min) and an uncertainty of 6%. The instrument is 246 described in detail in Tadic et al. (2020) and Nussbaumer, Parchatka, et al. (2021). Ozone 247 was measured with the FAIRO instrument, as described in Section 2.2.1. HO_2 was mea-248 sured with the HORUS instrument and has an uncertainty of approximately 50%. Due 249 to the difficulty in determining an experimental calibration factor for the HO_2 data set, 250 a value of 2.5 was estimated based on comparison with the EMAC model and its per-251 formance in measuring hydrogen peroxide (H_2O_2) (Hamryszczak et al., 2023). 252

253 2.2.4 CAFE Brazil 2022-2023

The Chemistry of the Atmosphere Field Experiment in Brazil (CAFE Brazil) took 254 place in December 2022 and January 2023 with the HALO research aircraft from Man-255 aus in Brazil (3.03°S, 60.04°W). Twenty scientific flights (including four transfer flights 256 from Oberpfaffenhofen, Germany with a stopover in Sal, Cabo Verde) were carried out 257 over a two-month period over the pristine rain forest as well as deforested regions and 258 urbanized areas. The scientific goals of the campaign included the investigation of pho-259 to chemical processes impacted by high VOC/low NO_x environments, convective events 260 throughout the troposphere and particle formation. The campaign was timed to occur 261 at the seasonal transition which enabled capture of measurements during the dry sea-262 son in December and the rainy season in January. Nitric oxide was measured with the 263 NOAH instrument with a detection limit of 6 ppty $(1 \min)$ and an uncertainty of 5%. 264 O_3 data were obtained with the FAIRO instrument with a data uncertainty of 2.5 % or 265 2 ppbv. Final data for HO₂ measurements are not available at this point and we there-266 fore include modeled data from EMAC simulations, as described in Section 2.3 in our 267 analysis. 268

2.3 Modeling

269

Modeled data for NO, O_3 , HO_2 , temperature and pressure were obtained with the 270 EMAC model. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is a nu-271 merical chemistry and climate simulation system that includes sub-models describing tro-272 pospheric and middle atmosphere processes and their interaction with oceans, land and 273 human influences (Jöckel et al., 2016). It uses the second version of the Modular Earth 274 Submodel System (MESSy2) to link multi-institutional computer codes. The core at-275 mospheric model is the 5th generation European Centre Hamburg general circulation 276 model (Roeckner et al., 2006, ECHAM5). The physics subroutines of the original ECHAM 277 code have been modularized and reimplemented as MESSy submodels and have contin-278 uously been further developed. Only the spectral transform core, the flux-form semi-Lagrangian 279 large scale advection scheme, and the nudging routines for Newtonian relaxation are re-280 maining from ECHAM. Here we use different numerical results from different integra-281 tions and with different set-up, mostly presented in previous publications. Description 282 of the set-up of the EMAC model for CAFE Africa, OMO and ATom campaigns can be 283 found in Tadic et al. (2021), Lelieveld et al. (2018) and Nussbaumer et al. (2022), respec-284

Figure 3. Overview of the model performance, presented in a Taylor diagram (Taylor, 2001). Triangles represent modeled data for the CAFE Brazil campaign, circles the CAFE Africa campaign, diamonds the ATom campaign and squares show modeled data for the OMO campaign. Blue colors represent NO, red shows O_3 and HO_2 data is cyan.

tively. The simulation for the CAFE Brazil measurement campaign was performed at 285 a spectral horizontal resolution of T63, equivalent to approximately 180 x 180 km at the 286 equator, with 90 vertical levels up to an altitude of 0.1 hPa. Weak "nudging" was ap-287 plied, guiding the simulation towards meteorological reanalysis data (ERA5, Hersbach 288 et al., 2020) from the European Centre for Medium-Range weather forecasts (ECMWF). 289 Global anthropogenic emissions of reactive gases and aerosols at the surface were obtained 290 from the Community Emission Data System (CEDS, McDuffie et al., 2020) and aircraft 291 emission data were taken from the CAMS Global aviation emissions (CAMS-GLOB-AIR; 292 Granier et al., 2019), both for the year 2019. Updated emission inventories tailored to 293 the campaign timeframe were not available yet. Additionally, NO_x emissions from lightning were integrated into the simulation using the parameterization proposed by Grewe 295 et al. (2001), scaled to 2.6 Tg (N) per year. This value falls within the lower end of the 296 estimate of 2–8 Tg (N) per year provided by Schumann and Huntrieser (2007), yields 297 consistent tropospheric O_3 and demonstrates the best agreement with observations. 298 While this study is based on in situ observations, we include the modeled data for a com-299 parison to identify how well the data sets align. Additionally, we use HO_2 modeled data 300 for CAFE Brazil as final experimental data are not available at this point. 301

302 **3 Results**

303

3.1 Model Performance

Figure 3 shows a normalized Taylor diagram presenting the model performance for each campaign and trace gas investigated in this analysis (Taylor, 2001). The experimental data is represented by the black hexagram, with a normalized standard deviation of 1, a correlation coefficient of 1 and root-mean-square difference of 0. The closer the colored data points, representing the model data sets, are located to the experimental reference value, the better the model performance. For most of the modeled data sets, stan-

dard deviations are similar to those from their experimental counterparts. Deviations 310 are observed for NO (blue): CAFE Brazil (triangles) and OMO data sets (squares) have 311 lower standard deviations by a factor of 2 and the CAFE Africa data set (circles) has 312 a larger standard deviation (almost twice as large). The latter additionally shows only 313 an intermediate correlation coefficient of around 0.3. All other modeled data sets show 314 a good correlation with the experiment with a correlation coefficient of 0.5 or larger. The 315 ATom data set (diamonds) for O_3 even reaches values of > 0.8. The O_3 (red) and HO_2 316 data sets (cyan) for the different campaigns show a similar model performance, whereas 317 differences could be seen between the quality of the different NO data sets. This could 318 be due to the difficulty in accurately representing lightning in the model. A further com-319 parison between modeled and measured data can be found in Figures S1–S5 of the Sup-320 porting Information, where we show the vertical profiles of each trace gas. Tables S1-321 S5 show an overview of the number of data points per altitude bin used to create the ver-322 tical profiles. The model may have difficulties representing the intermittent nature of con-323 vection and lightning, illustrated by the larger spread in the upper troposphere (UT). 324 HO₂ modeled and experimental vertical profiles align well for OMO, CAFE Africa and 325 ATom and the Taylor diagram also shows a good model performance, which verifies the 326 use of the modeled HO_2 data set for CAFE Brazil. 327

3.2 Vertical Distribution

328

Figure 4 presents the vertical profiles of (a) NO, (b) O_3 and (c) HO_2 measured dur-329 ing the investigated campaigns. During CAFE Brazil, CAFE Africa and ATom over the 330 Pacific and the Atlantic Ocean, NO was low in the lower and middle troposphere with 331 median values below 20 pptv up to 8 km altitude. The values during the OMO campaign 332 were much larger up to $5-6\,\mathrm{km}$; however, only around $5\,\%$ of all data points were mea-333 sured at these low altitudes and they were exclusively located in proximity to airports. 334 Therefore, it can be assumed that the large NO mixing ratios represent localized airport 335 emissions. At high altitudes, the profiles show elevated mixing ratios. Above 10 km, NO 336 median values were overall highest during CAFE Africa with 118 pptv, followed by OMO 337 with 108 pptv and CAFE Brazil with 61 pptv. These campaigns were also characterized 338 by large maximum values for NO, sometimes above 2 ppby, which indicates strong light-339 ning activity. Median and peak values were generally lower during the ATom campaign 340 with mixing ratios of 51 pptv and 0.43 ppbv, respectively, over the Atlantic and only 20 pptv 341 and 0.48 ppbv, respectively, over the Pacific Ocean. These observations underline the im-342 pact of lightning at these altitudes and latitudes. We have determined a filter for light-343 ning activity which defines data points above 2 km with NO mixing ratios above 100 pptv 344 as impacted by lightning. This includes both fresh and aged lightning emissions. For OMO, 345 this identifies approximately 50% of the data points as being impacted by lightning, fol-346 lowed by CAFE Africa with around 40% and CAFE Brazil with approximately 20%. 347 For ATom, only few data points were impacted by lightning with below 10% over the 348 Atlantic Ocean and less than 5% over the Pacific Ocean, the latter explaining the al-349 most unchanging (with altitude) cyan vertical profile. 350

These observations demonstrate two important features impacting lightning, which 351 are the time of year and the distance from tropical landmasses. The maximum of deep 352 convection, which is associated with lightning activity and large NO emissions, changes 353 its location throughout the year due to seasonal, meridional changes in convective ac-354 tivity. While over the year as a whole, this maximum is located close to the equator $(\pm 5^{\circ})$, 355 in January, it is mostly found in the Southern Hemisphere and in July in the Northern 356 Hemisphere (compare Figure I2 in Yan (2005)). The region of maximum deep convec-357 358 tion is also referred to as the ITCZ (Inter Tropical Convergence Zone). CAFE Africa and OMO were carried out in August/September mostly coinciding with the location of the 359 ITCZ, explaining high lightning intensity. CAFE Brazil took place in December and Jan-360 uary and the flight track latitudes tended to be slightly northward, but still close to the 361 location of the ITCZ at that time of the year, which could be a potential explanation 362

Figure 4. Vertical profiles of (a) NO, (b) O_3 and (c) HO_2 for tropical latitudes for the investigated aircraft campaigns. Lines and shades represent the median values and the 25th/75th percentiles, respectively. Dots show the mean values in the center of each 1 km altitude bin.

for fewer data points with identified lightning impact. The impact of the time of year 363 can be neglected for the ATom campaign as the vertical profiles present medians and av-364 erages across all four deployments. Lightning was lowest over the remote Pacific Ocean 365 during ATom, in line with our understanding of lightning formation, which is thought 366 to require solid particles for the formation of light ice particles. In fact, solid particles, 367 such as dust or sand, are usually more abundant over or in proximity to land masses, 368 which makes lighting strongest over the (tropical) continents (Christian et al., 2003; Verma 369 et al., 2021; Nussbaumer, Tadic, et al., 2021). Likewise, low lightning activity was ob-370 served over the Atlantic Ocean during ATom. The NO observations for CAFE Africa were 371 much larger in comparison to the ATom Atlantic data in the upper troposphere, although 372 the two data sets are derived from neighboring geographical areas. The location of the 373 ITCZ throughout the year cannot explain the difference, as the median NO mixing ra-374 tios measured during the ATom deployment in August were similar to the one in Febru-375 ary. However, the ATom Atlantic data set shrinks when filtering the tropical latitudes 376 for different times of the year, whereas CAFE Africa ran many flights in the same re-377 gion and therefore provides an improved representation of the region. Additional differ-378 ences may arise from meteorological conditions or differences in wildfire activity between 379 years (ATom Atlantic in August 2016 and CAFE Africa in August 2018). 380

Figure 4 (b) presents the vertical profiles of O_3 . Generally, O_3 increased with al-381 titude and increasing proximity to the stratosphere, where O_3 is abundant. The lowest 382 mixing ratios were observed during ATom over the Pacific Ocean with median values be-383 low 15 ppbv at the surface and 28 ppbv above 10 km. This correlates well with low NO 384 mixing ratios throughout the tropospheric column, which when oxidized to NO_2 is the 385 photochemical source of tropospheric O_3 . The low mixing ratio between 11 and 12 km 386 altitude could indicate convective updraft from the O₃-poor marine boundary layer. CAFE 387 Brazil O_3 mixing ratios were similar to those observed during ATom Pacific up to 5 km 388 altitude. Above this altitude, O_3 median values during CAFE Brazil were approximately 389 10 to 15 ppbv higher. The vertical profile also shows the typical S-shape observed for con-390 vective updraft to the upper troposphere. The ATom Atlantic O₃ vertical profile shows 391 a similar shape to the one observed during CAFE Brazil with median mixing ratios of 392 26 ppbv at the surface and 52 ppbv above 10 km. The vertical O_3 profile for OMO does 393 not show a particular trend with altitude, but a quite strong fluctuation with median 394 values between 30 and 80 ppbv is evident. O_3 mixing ratios during CAFE Africa were 395

around 30 ppbv (median) at the surface and increased strongly up to 60-70 ppbv at 7 km, above which they remained mostly unaffected by altitude. The large difference of around 20 ppbv between O₃ mixing ratios for CAFE Africa and ATom Atlantic in the free troposphere could have likely arised from the time of year as the profiles align well when only considering August data from the ATom campaign. This could be due to wildfire emissions in the Southern Hemisphere at that time of year.

Figure 4 (c) presents the vertical profiles of HO₂. Mixing ratios were mostly low 402 and comparable to upper tropospheric values at the surface and showed a maximum in 403 the free troposphere between 3 and 7 km altitude. Quite large differences between the campaigns can be observed at the surface with median values ranging from around 2 pptv 405 for CAFE Africa and approximately 20 pptv for ATom. However, the uncertainties of 406 the HO_2 measurements were usually highest at low altitudes and the profiles mostly show 407 large and overlapping error shades (representing the 25th and 75th percentiles). In the 408 upper troposphere, HO₂ measured during OMO and ATom Atlantic was lowest with a 409 median of 4 pptv above 12 km, followed by CAFE Africa with 7 pptv and CAFE Brazil 410 and ATom Pacific with 10-11 pptv. 411

3.3 O₃ Sensitivity

412

As described above, $\alpha(CH_3O_2)$ can be used to determine O_3 sensitivity to its pre-413 cursors. $\alpha(CH_3O_2)$ is plotted in Figure 5 (a)-(c) for all campaigns. The black line shows 414 the average $\alpha(CH_3O_2)$ binned to NO mixing ratios for all available data points and there-415 fore presents the tropical "background". The individual curves for each campaign do not 416 show significant differences. As expected, $\alpha(CH_3O_2)$ increases strongly with NO for low 417 ambient NO mixing ratios, which demonstrates NO_x -sensitive O_3 chemistry. For an in-418 crease in NO from 1 to 10 pptv, $\alpha(CH_3O_2)$ increases by almost 0.5. For higher NO, $\alpha(CH_3O_2)$ 419 becomes unresponsive to changes in NO, which is characteristic of VOC-sensitive O_3 chem-420 istry. For an NO increase from 10 to 50 pptv, $\alpha(CH_3O_2)$ shows an increase of less than 421 0.1. Panel (c) additionally shows the number of data points in each NO bin by the gray 422 dashed line. The vast majority of the data points is characterized by NO mixing ratios 423 below 0.1 ppby. The number decreases to a few dozen data points for the high-NO bins. 424 The colored data points represent the campaign averages and the three panels of each 425 row show different altitudes. Figure 5 (a) presents the averages below 2 km altitude. CAFE 426 Brazil, CAFE Africa, ATom Pacific and ATom Atlantic showed a clear NO_r -sensitive chem-427 istry at the surface, as the averages are located in the rising part of the background curve 428 of $\alpha(CH_3O_2)$ vs. NO. Average values for $\alpha(CH_3O_2)$ were around 0.4 for ATom and close 429 to 0.6 for CAFE Africa and CAFE Brazil, which means that 60 and 40%, respectively, 430 of the available peroxy radicals reacted with HO_2 and terminated the O_3 -forming HO_x 431 cycle. This is expected given low NO mixing ratios in the remote tropical regions or over 432 tropical waters. The OMO data set showed VOC-sensitive O_3 chemistry at the surface 433 with $\alpha(CH_3O_2)=0.96$, indicating that almost all peroxy radicals reacted with NO instead 434 of HO_2 . However, as mentioned above, the very limited number of data points available 435 at low altitude for the OMO campaign were all captured in proximity to airports and 436 therefore do not represent surface conditions in the Middle East or over the Indian Ocean. 437 Figure 5 (b) shows the results for the free troposphere between 2 and $10 \,\mathrm{km}$ altitude. All 438 campaigns showed a clear NO_x -sensitive O_3 chemistry, which again is expected in the 439 absence of NO sources at these altitudes and aligns with the observations from the ver-440 tical profiles in Figure 4. In Figure 5 (c), upper tropospheric data (above 10 km) are pre-441 sented. The upper troposphere over the remote Pacific Ocean was clearly NO_x -sensitive. 442 The remaining areas were located in a transition regime with average values for $\alpha(CH_3O_2)$ 443 444 of between 0.78 and 0.92 and for NO of between 0.07 and 0.15 ppbv, whereby ATom Atlantic tended towards NO_x sensitivity and the remaining campaigns towards VOC-sensitive 445 O_3 chemistry. The data points additionally show a large 1 σ standard deviation in the 446 order of 100% for NO. This underlines the large variability of NO mixing ratios in the 447 upper troposphere caused by clean NO-free air transported from the boundary layer via 448

Figure 5. Overview of determination of O₃ sensitivity via (a)-(c) α (CH₃O₂) and (d)-(f) O₃ versus NO mixing ratios separated into the surface below 2 km ((a) and (d)), the free troposphere between 2 and 10 km ((b) and (e)) and the upper troposphere above 10 km ((c) and (f)). Black lines represent the tropical background as an average of all available data points binned to NO, with 1 σ standard deviations shown as gray areas. The colored data points and error bars present the campaign averages and 1 σ standard deviations, respectively. CAFE Brazil averages are shown in blue, CAFE Africa in red, ATom Pacific in cyan, ATom Atlantic in orange and OMO in green. The gray dotted line in panels (c) and (f) shows the number of data points in each NO bin.

convective processes and strong, local NO emissions from lightning. We identified < 5%and < 10% of data points as being impacted by lightning for ATom Pacific and ATom Atlantic, respectively, demonstrating NO_x-sensitive chemistry. For the remaining campaigns, lightning impacted a much higher share of data points ($\sim 20\%$ for CAFE Brazil, $\sim 40\%$ for CAFE Africa and $\sim 50\%$ for OMO), resulting in higher values for α (CH₃O₂).

These observations are confirmed when looking at O_3 versus NO mixing ratios as 454 displayed in the lower panels (d)-(f) of Figure 5. The black line and gray error shading 455 represent background O_3 binned to NO, including all available data points. For NO_x -456 sensitive chemistry approximately up to 0.1-0.15 ppbv NO, O₃ increases from 30 to 60 ppbv 457 with increasing NO. Our hypothesis is that in this rising part both peroxy self-reaction 458 and NO to NO_2 oxidation via peroxy radicals play a significant role, the latter path lead-459 ing to O_3 formation in the presence of sunlight and oxygen. With increasing amounts 460 of NO, O_3 levels rise. In turn, when NO is present in excess over peroxy radicals, O_3 lev-461 els reach a maximum, as its formation is limited by the availability of peroxy radicals. 462 At the surface, as shown in Figure 5 (d), O_3 average values for CAFE Brazil, CAFE Africa, 463 ATom Atlantic and ATom Pacific were low, ranging from 20 to 35 ppbv. O₃ for OMO 464 was higher which correlated with higher NO captured from airport emissions. Slightly 465 higher O_3 levels between 35 and 55 ppbv were observed for the free troposphere, which 466 can be seen in Figure 5 (e). These elevated values compared to the surface cannot be 467 explained by photochemical formation in the NO-poor free troposphere, but are likely 468 rather an outcome of transport processes. Upper tropospheric values for O_3 versus NO 469 are presented in Figure 5 (f) and show similar features compared to $\alpha(CH_3O_2)$ in panel 470 (c). Low average O_3 (37 ppbv) and NO (0.04 ppbv) indicate NO_x-sensitive chemistry in 471 the upper troposphere over the remote Pacific Ocean during the ATom campaign. The 472

Figure 6. Overview of determination of O_3 sensitivity via (a)-(b) $\alpha(CH_3O_2)$ and (c)-(d) O_3 versus NO mixing ratios separated into data with ((b) and (d)) and without impact from lightning ((a) and (c)).

remaining data points were located mostly in the transition area. Maximum average val-473 ues of O_3 of > 60 ppbv were observed for CAFE Africa, going hand-in-hand with high 474 shares of lightning-impacted data. In contrast, O₃ average values for ATom Atlantic (56 ppbv) 475 were much higher than those observed for OMO (46 ppbv), even though less than 10%476 of the data points were impacted by lightning during ATom versus 50% during OMO. 477 This underlines that while the correlation of O_3 with NO can provide valuable hints for 478 sensitivity investigations, it cannot be solely captured by photochemistry and could also 479 be impacted by transport process from the stratosphere or tropospheric events, e.g., biomass 480 burning, and has a longer upper tropospheric lifetime than NO. The O_3 -NO correlation 481 should therefore be used in combination with a reliable metric such as $\alpha(CH_3O_2)$. 482

483 3.4 Impact of Lightning

We have investigated the role of lightning in O_3 sensitivity by applying a filter for 484 lightning impact. We categorize data points above 2 km altitude and with NO mixing 485 ratios higher than 0.1 ppbv as impacted by lightning. If the observed NO value is lower, 486 we assume that the data point was not directly impacted by lightning. We expect the 487 contribution of aircraft to the overall NO_x emissions in the tropical troposphere to be 488 insignificant (Grewe, 2007; Nussbaumer et al., 2023). Figure 6 presents the O_3 sensitiv-489 ity analysis based on $\alpha(CH_3O_2)$ and O_3 vs. NO, following the similar scheme as in Fig-490 ure 5, separated into data points impacted and not impacted by lightning. The share 491 of data points in each average value depends on the campaign, for example, for ATom 492 Pacific more than 95% fall into the category without lightning, whereas it is 50% for 493 OMO. The background curves are the same as those presented in Figure 5. 494

Figure 6 (a) shows $\alpha(CH_3O_2)$ vs. NO for data points without lightning impact. All five campaign averages were located in the rising part of the background curve with values for $\alpha(CH_3O_2)$ between 0.56 and 0.82, indicating distinct NO_x-sensitive O₃ chemistry. In comparison, Figure 6 (b) presents data points with lightning impact. In all cases, independent of the latitude, $\alpha(CH_3O_2)$ was high and close to 1. This shows that available peroxy radicals dominantly reacted with NO resulting in the formation of O₃, indicating VOC-sensitive chemistry. The 1 σ standard deviations (shown by the error bars) are quite large because lightning induces highly variable amounts of NO and additionally, we do not distinguish between fresh and aged lightning in this view. For CAFE Brazil, for example, we observed peak values of more than 2 ppbv NO (factor 4 compared to the shown scale).

Figure 6 (c) shows O_3 vs. NO for data points not impacted by lightning. O_3 average values ranged between 35 and 55 ppbv. In comparison, the average values impacted by lightning were located at much higher O_3 mixing ratios (between 55 and 80 ppbv) and in the part of the background where O_3 becomes unresponsive to NO, as shown in panel (d). These results support the findings from $\alpha(CH_3O_2)$ and show that lightning plays an important role in the sensitivity of O_3 formation towards its precursors.

512 4 Conclusion and Outlook

In this study, we presented in situ measurements of NO, O₃ and HO₂ from four dif-513 ferent research aircraft campaigns in the tropical troposphere. These are the OMO cam-514 paign in 2015 over the Middle East and the Indian Ocean, the CAFE Africa campaign 515 in 2018 over the Atlantic Ocean, the ATom campaign between 2016 and 2018 around the 516 American continent and the CAFE Brazil campaign in 2022/23 over Brazil. We sepa-517 rated the ATom campaign into a part over the remote Pacific Ocean and a part over the 518 Atlantic Ocean. All data is filtered for the troposphere ($< 100 \text{ ppby O}_3$) and for trop-519 ical latitudes $(30^{\circ}\text{S} - 30^{\circ}\text{N})$. We compared the in situ measurements with modeled data 520 by the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model and found good agree-521 ment with a correlation coefficient mostly ranging between 0.5 and 0.8 and standard de-522 viations mostly similar to the respective experimental data set. The largest discrepan-523 cies were found for the modeled NO for CAFE Africa. Based on these findings, we used 524 the HO_2 modeled data for CAFE Brazil, as final experimental data were not available. 525 We found low mixing ratios for NO at the surface and in the free troposphere across the 526 remote tropical latitudes, underlining the absence of sources at these altitudes. Mixing 527 ratios in the upper troposphere were elevated compared to the lower altitudes with high-528 est values over tropical continents (compared to tropical waters), and coincided with the 529 location of maximum deep convection and the ITCZ, where lighting activity peaks. HO_2 530 was mostly similar in the campaign inter-comparison and large variability made it dif-531 ficult to identify significant differences. O₃ vertical profiles show signs of deep convec-532 tive processes, especially for the CAFE Brazil campaign. Mixing ratios were lowest over 533 the remote Pacific Ocean and higher for areas impacted by emissions, e.g., biomass burn-534 ing, such as CAFE Africa. 535

We investigated O_3 sensitivity using O_3 mixing ratios and the metric $\alpha(CH_3O_2)$ 536 correlated with ambient NO. We found that O_3 chemistry at the surface and the free tro-537 posphere was almost exclusively sensitive to NO_x . The only exception was the OMO cam-538 paign, where we observed VOC-sensitive O_3 chemistry at the surface due to the capture 539 of anthropogenic pollution from airports. For the upper troposphere, we found NO_x -sensitive 540 O₃ chemistry over the remote Pacific Ocean during ATom and a transition regime for 541 the other campaigns, with the value for $\alpha(CH_3O_2)$ increasing with the amount of light-542 ning observed. Separating data points with and without lightning impact showed that 543 lightning is the most important factor controlling O₃ sensitivity in the tropical tropo-544 sphere. In the absence of lightning, chemistry was NO_x -sensitive, while it was strongly 545 VOC-sensitive in the presence of lightning, independent of the exact location in the trop-546 ical region. 547

These results are in line with our previous findings in the upper tropical troposphere, which were based entirely on modeling simulations (Nussbaumer et al., 2023). This un-

derlines effectively that $\alpha(CH_3O_2)$ is a powerful metric for identifying O_3 sensitivity and 550 it is applicable both to modeled data and in situ observations. It also shows that NO_x 551 is the predominant factor determining O_3 sensitivity and in the tropics its major source 552 is lightning, which in turn depends on the time of year and the distance to tropical land-553 masses. Photochemical O_3 formation is capped by the availability of peroxy radicals in 554 areas impacted by lightning. From this, we conclude that potential increases in light-555 ning in these regions will likely not impact the amount of O_3 , given that levels of per-556 oxy radicals remain unchanged. In turn, increases in lightning in regions that are cur-557 rently not or only mildly impacted by lightning might lead to increase of O_3 levels up 558 to a factor of 2, which could strongly impact the radiative forcing (especially at high al-559 titudes). The remote tropical lower troposphere currently has only a small number of 560 NO sources. This could change in the future if biomass burning events would become 561 more frequent with increasing temperature and decreasing precipitation and if countries 562 in the Global South increase NO_x emissions associated with the expansion of their economies. 563 Combined with NO_x -sensitive O_3 chemistry, this would lead to strong increases of O_3 564 levels, which could locally harm plants and human health or, given the lifetime of O_3 of 565 a few weeks, be transported to areas where it has adverse effects. 566

Looking into the future, further research should investigate the changing role of NO_x in tropospheric O_3 chemistry. While we can say that NO_x is the most important driver of O_3 sensitivity, future changes and North-South re-locations in NO_x emissions, such as expected changes in emissions from anthropogenic combustion processes or increases in biomass burning, will profoundly influence tropospheric photochemistry, and in turn air quality and climate change.

573 Open Research Section

The dataset for the OMO campaign can be obtained from the HALO database (last access: 23.10.2023) (Deutsches Zentrum für Luft- und Raumfahrt (DLR), 2021). The ATom dataset is available at Wofsy et al. (2021) (last access: 15.09.2023). The datasets for CAFE Africa and CAFE Brazil are not yet published and will be uploaded upon acceptance of the manuscript.

579 Acknowledgments

We thank Uwe Parchatka for his support with the NO_x measurements. We acknowledge the German Aerospace Center (DLR) for the collaboration during CAFE Africa and CAFE Brazil.

583 References

- Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D.
 (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual review of plant biology, 63(1), 637–661.
 doi: 10.1146/annurev-arplant-042110-103829
- Akimoto, H., & Tanimoto, H. (2022). Rethinking of the adverse effects of noxcontrol on the reduction of methane and tropospheric ozone-challenges toward a denitrified society. *Atmospheric Environment*, 277, 119033. doi: 10.1016/j.atmosenv.2022.119033
- Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Cooper, O. R., Young, P. J.,
 Akiyoshi, H., ... Zeng, G. (2020). Tropospheric ozone assessment report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100. *Elementa: Science of the Anthropocene*, 8(1), 034. doi: 10.1525/elementa.2020.034
- ⁵⁹⁷ Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Allen, H. M., Campuzano-

598	Jost, P., Ryerson, T. B. (2022). Comparison of airborne measurements of
599 600	no, no ₂ , hono, no _y , and co during firex-aq. Atmospheric Measurement Tech- niques, $15(16)$, $4901-4930$. doi: $10.5194/amt-15-4901-2022$
601	Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Thompson, C. R., Aikin,
602	K. C., Ryerson, T. B. (2021). Large contribution of biomass burn-
603	ing emissions to ozone throughout the global remote troposphere. Pro-
604	ceedings of the National Academy of Sciences, 118(52), e2109628118. doi:
605	10.1073/pnas.2109628118
606	Brasseur, G. P., Müller, JF., & Granier, C. (1996). Atmospheric impact of nox
607	emissions by subsonic aircraft: A three-dimensional model study. Jour-
608	nal of Geophysical Research: Atmospheres, 101(D1), 1423–1428. doi:
609	10.1029/95JD02363
610	Bray, C. D., Battye, W. H., Aneja, V. P., & Schlesinger, W. H. (2021). Global emis-
611	sions of nh3, nox, and n20 from biomass burning and the impact of climate
612	change. Journal of the Air & Waste Management Association, $71(1)$, 102–114.
613	doi: 10.1080/10962247.2020.1842822
614	Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E.,
615	Driscoll, K. T., Stewart, M. F. (2003). Global frequency and distri-
616	bution of lightning as observed from space by the optical transient detec-
617	tor. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-4. doi:
618	10.1029/2002JD002347
619	Cooper, O. R., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally, I.,
620	Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone:
621	All observation-based review. Elementa: Science of the Anthropocene, 2. doi: 10.12052/journal.elementa.000020
622	Crutzen D. J. (1089). Therearcharis even a An evention. Springer dai: 10.1007/078
623	Orutzen, P. J. (1966). Tropospheric ozone: An overview. Springer. doi: 10.1007/978
624	-94-009-2913-5_1 Doutsches Zontrum für Luft und Doumschut (DLD) (2021) Mission (MO
625	(https://holo-db.po. op. dlr. do/mission/0_lost_access op 23 10 2023)
020	Falcona I C Tan D Loshor B I Hazon N I Frame C I Simpas I B
628	Brune W H (2004) A laser-induced fluorescence instrument for detecting
629	tropospheric oh and ho 2: Characteristics and calibration. Journal of Atmo-
630	spheric Chemistry, 47, 139–167. doi: 10.1023/B:JOCH.0000021036.53185.0e
631	Gaudel, A., Bourgeois, I., Li, M., Chang, KL., Ziemke, J., Sauvage, B., Cooper,
632	O. R. (2024). Tropical tropospheric ozone distribution and trends from in situ
633	and satellite data. EGUsphere, 2024, 1–51.
634	Gough, W. A., & Anderson, V. (2022). Changing air quality and the ozone week-
635	end effect during the covid-19 pandemic in toronto, ontario, canada. <i>Climate</i> ,
636	10(3), 41. doi: $10.3390/cli10030041$
637	Granier, C., Darras, S., Denier van der Gon, H., Doubalova, J., Elguindi, N., Galle,
638	B., Sindelarova, K. (2019). The copernicus atmosphere monitoring service
639	global and regional emissions (april 2019 version). Copernicus Atmosphere
640	Monitoring Service (CAMS) report. doi: 10.24380/d0bn-kx16
641	Grewe, V. (2007). Impact of climate variability on tropospheric ozone. Science of the
642	total environment, 374(1), 167–181. doi: 10.1016/j.scitotenv.2007.01.032
643	Grewe, V., Brunner, D., Dameris, M., Grenfell, J., Hein, R., Shindell, D., & Stae-
644	helin, J. (2001). Origin and variability of upper tropospheric nitrogen oxides
645	and ozone at northern mid-latitudes. Atmospheric Environment, 35(20),
646	3421-3433. doi: 10.1016/S1352-2310(01)00134-0
647	Hamryszczak, Z., Diennart, D., Brendel, B., Ronion, R., Marno, D., Martinez, M.,
048 640	tropical troposphere over the atlantic ocean and western africa during the
650	cafe-africa aircraft campaign. Atmospheric Chemistry and Physics 23(10)
651	5929–5943. doi: 10.5194/acp-23-5929-2023
652	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horánvi, A., Muñoz-Sabater J
	, , , _ , _ , _ , _ , _ , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ ,

653	Thépaut, JN. (2020). The era5 global reanalysis. Quarterly Journal of
654	the Royal Meteorological Society, $146(730)$, 1999-2049. doi: $10.1002/qj.3803$
655	Iglesias-Suarez, F., Kinnison, D. E., Rap, A., Maycock, A. C., Wild, O., & Young,
656	P. J. (2018). Key drivers of ozone change and its radiative forcing over the
657	21st century. Atmospheric Chemistry and Physics, 18(9), 6121–6139. doi:
658	10.5194/acp-18-6121-2018
659	IPCC. (2023). Sections. in: Climate change 2023: Synthesis report. contribution of
660	working groups i, ii and iii to the sixth assessment report of the intergovern-
661	mental panel on climate change [core writing team, h. lee and j. romero (eds.)].
662	, 35–115. doi: 10.59327/IPCC/AR6-9789291691647
663	Jaeglé, L., Jacob, D. J., Brune, W., Faloona, I., Tan, D., Kondo, Y., others
664	(1999). Ozone production in the upper troposphere and the influence of
665	aircraft during sonex: Approach of nox-saturated conditions. <i>Geophysical</i>
666	Research Letters, 26(20), 3081–3084. doi: 10.1029/1999GL900451
667	Jaeglé, L., Jacob, D. J., Brune, W., Tan, D., Faloona, I., Weinheimer, A.,
668	Sachse, G. (1998). Sources of hox and production of ozone in the upper
669	troposphere over the united states. $Geophysical Research Letters, 25(10),$
670	1709–1712. doi: 10.1029/98GL00041
671	Jaffe, D. A., Ninneman, M., & Chan, H. C. (2022). Nox and o3 trends at us non-
672	attainment areas for 1995–2020: Influence of covid-19 reductions and wildland
673	fires on policy-relevant concentrations. Journal of Geophysical Research: At-
674	mospheres, 127(11), e2021JD036385. doi: $10.1029/2021JD036385$
675	Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A.,
676	Zahn, A. (2016). Earth system chemistry integrated modelling (escimo) with
677	the modular earth submodel system (messy) version 2.51. Geoscientific Model
678	Development, 9(3), 1153-1200. doi: $10.5194/gmd-9-1153-2016$
679	Künstler, C. (2020). Measurements of atmospheric oh and ho2 radicals by
680	laser-induced fluorescence on the halo aircraft during the omo-asia 2015
681	campaign (Doctoral dissertation, Universität zu Köln). Retrieved from
682	http://kups.ub.uni-koeln.de/id/eprint/11702
683	Lacis, A. A., Wuebbles, D. J., & Logan, J. A. (1990). Radiative forcing of climate by
684	changes in the vertical distribution of ozone. Journal of Geophysical Research:
685	Atmospheres, 95(D7), 9971-9981. doi: $10.1029/JD095iD07p09971$
686	Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs, H., Harder, H.,
687	Ziereis, H. (2018). The south asian monsoon—pollution pump and purifier.
688	Science, 361(6399), 270–273. doi: 10.1126/science.aar2501
689	Lelieveld, J., & Dentener, F. J. (2000). What controls tropospheric ozone? Jour-
690	nal of Geophysical Research: Atmospheres, 105(D3), 3531–3551. doi: 10.1029/
691	1999JD901011
692	Lelieveld, J., Gromov, S., Pozzer, A., & Taraborrelli, D. (2016). Global tropospheric
693	hydroxyl distribution, budget and reactivity. Atmospheric Chemistry and
694	<i>Physics</i> , 16(19), 12477–12493. doi: 10.5194/acp-16-12477-2016
695	Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., & Bates, K. H. (2019). Anthro-
696	pogenic drivers of 2013–2017 trends in summer surface ozone in china. Proceed-
697	ings of the National Academy of Sciences, 116(2), 422–427. doi: 10.1073/pnas
698	
699	Liu, C., & Shi, K. (2021). A review on methodology in o3-nox-voc sensitivity study.
700	Environmental Pollution, 291, 118249. doi: 10.1016/j.envpol.2021.118249
701	Marno, D., Ernest, C., Hens, K., Javed, U., Klimach, T., Martinez, M., Harder,
702	n . (2020). Calibration of an airborne ho x instrument using the all pressure altitude based calibration for he as are
703	annual Dased calibrator for no x experimentation (apache). Atmospheric measurement techniques 12(5) 2711 2721 doi: 10.5104/omt 12.2711.2020
704	MaDonald P. C. Do Courre I. A. Cilman, J. D. Jother, C. H. Althersti, A.
705	Cappa C D Trainer M (2018) Volatila chamical products are surfaced and distance of the state of
706	Largest patrochemical source of unban excercise emissions — Geieree 250(6277)
707	Largest petrochemical source of urban organic emissions. Science, 339(0311),

708	760–764. doi: 10.1126/science.aaq0524
709	McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C.,
710	Marais, E. A., Martin, R. V. (2020). A global anthropogenic emission in-
711	ventory of atmospheric pollutants from sector- and fuel-specific sources (1970–
712	2017): an application of the community emissions data system (ceds). Earth
713	System Science Data, 12(4), 3413-3442. doi: 10.5194/essd-12-3413-2020
714	NASA. (2022). Atom. Retrieved from "https://espo.nasa.gov/atom" (accessed
715	on 2023-11-15)
716	Novelli, A., Hens, K., Tatum Ernest, C., Kubistin, D., Regelin, E., Elste, T.,
717	Harder, H. (2014). Characterisation of an inlet pre-injector laser-induced
718	fluorescence instrument for the measurement of atmospheric hydroxyl rad-
719	icals. Atmospheric measurement techniques, $7(10)$, $3413-3430$. doi:
720	10.5194/amt-7-3413-2014
721	Nussbaumer, C. M. (2023). Nitrogen oxides and their involvement in photochem-
722	ical processes throughout the troposphere (Doctoral dissertation, Universität
723	Mainz). doi: 10.25358/openscience-9272
724	Nussbaumer, C. M., & Cohen, R. C. (2020). The role of temperature and no_r in
725	ozone trends in the los angeles basin. Environmental Science & Technology,
726	54, 15652–15659. doi: 10.1021/acs.est.0c04910
727	Nussbaumer, C. M., Crowley, J. N., Schuladen, J., Williams, J., Hafermann,
728	S., Reiffs, A., Fischer, H. (2021). Measurement report: Photo-
729	chemical production and loss rates of formaldehyde and ozone across eu-
730	rope. Atmospheric Chemistry and Physics, 21(24), 18413–18432. doi:
731	10.5194/acp-21-18413-2021
732	Nussbaumer, C. M., Fischer, H., Lelieveld, J., & Pozzer, A. (2023). What con-
733	trols ozone sensitivity in the upper tropical troposphere? Atmospheric Chem-
734	istry and Physics, 23(19), 12651–12669. doi: 10.5194/acp-23-12651-2023
735	Nussbaumer, C. M., Parchatka, U., Tadic, I., Bohn, B., Marno, D., Martinez,
736	M., J. Lelieveld, H. F. (2021). Modification of a conventional pho-
737	tolytic converter for improving aircraft measurements of no ₂ via chemilumi-
738	nescence. Atmospheric measurement techniques, $14(10)$, 6759–6776. doi:
739	10.5194/amt-14-6759-2021
740	Nussbaumer, C. M., Pozzer, A., Tadic, I., Röder, L., Obersteiner, F., Harder, H.,
741	Fischer, H. (2022). Tropospheric ozone production and chemical regime
742	analysis during the covid-19 lockdown over europe. Atmospheric Chemistry
743	and Physics, 22(9), 6151–6165. doi: 10.5194/acp-22-6151-2022
744	Nussbaumer, C. M., Tadic, I., Dienhart, D., Wang, N., Edtbauer, A., Ernle, L.,
745	Fischer, H. (2021). Measurement report: In situ observations of deep convec-
746	tion without lightning during the tropical cyclone florence 2018. Atmospheric
747	Chemistry and Physics, 21(10), 7933–7945. doi: 10.5194/acp-21-7933-2021
748	Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human
749	health. Environmental Science and Pollution Research, 25(9), 8074–8088.
750	doi: 10.1007/s11356-017-9239-3
751	Obersteiner, F. (2023). Fairo. Retrieved from https://gitlab.kit.edu/
752	FObersteiner/FAIROmeta/-/blob/main/science/FAIRO_Description.md
753	(accessed on 2024-03-07)
754	Pope, R. J., Arnold, S. R., Chipperfield, M. P., Reddington, C. L., Butt, E. W.,
755	Keslake, T. D., others (2020). Substantial increases in eastern amazon and
756	cerrado biomass burning-sourced tropospheric ozone. Geophysical Research
757	Letters, $47(3)$, e2019GL084143. doi: 10.1029/2019GL084143
758	Pusede, S. E., Steiner, A. L., & Cohen, R. C. (2015). Temperature and recent trends
759	in the chemistry of continental surface ozone. Chemical reviews, $115(10)$,
760	3898-3918. doi: $10.1021/cr5006815$
761	Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L.,
762	Schulzweida, U. (2006). Sensitivity of simulated climate to horizontal

763 764	and vertical resolution in the echam5 atmosphere model. Journal of Climate, $19(16)$, $3771-3791$.
765	Schumann, U., & Huntrieser, H. (2007). The global lightning-induced nitrogen ox-
766	ides source Atmospheric Chemistry and Physics 7(14) 3823–3907 doi: 10
767	.5194/acp-7-3823-2007
768	Sicard P Paoletti E Agathokleous E Araminienė V Projetti C Coulibaly
769	F., & De Marco, A. (2020). Ozone weekend effect in cities: Deep insights
770	for urban air pollution control. Environmental Research, 191, 110193. doi:
771	10.1016/i.envres.2020.110193
772	Sillman, S. (1995). The use of NO ₄ , H ₂ O ₂ , and HNO ₃ as indicators for ozone-NO _{π} -
773	hydrocarbon sensitivity in urban locations. Journal of Geophysical Research:
774	Atmospheres, $100(D7)$, $14175-14188$. doi: $10.1029/94JD02953$
775	Skeie, R. B., Myhre, G., Hodnebrog, Ø., Cameron-Smith, P. J., Deushi, M., Heg-
776	glin, M. I., Wu, T. (2020). Historical total ozone radiative forcing derived
777	from cmip6 simulations. Npj Climate and Atmospheric Science, 3(1), 32. doi:
778	10.1038/s41612-020-00131-0
779	Staehelin, J., Harris, N. R., Appenzeller, C., & Eberhard, J. (2001). Ozone
780	trends: A review. Reviews of Geophysics, 39(2), 231–290. doi: 10.1029/
781	1999 m RG000059
782	Stratmann, G., Ziereis, H., Stock, P., Brenninkmeijer, C., Zahn, A., Rauthe-Schöch,
783	A., Volz-Thomas, A. (2016). No and noy in the upper troposphere: Nine
784	years of caribic measurements onboard a passenger aircraft. Atmospheric Envi-
785	ronment, 133, 93-111. doi: https://doi.org/10.1016/j.atmosenv.2016.02.035
786	Tadic, I., Crowley, J. N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Fis-
787	cher, H. (2020). Net ozone production and its relationship to nitrogen oxides
788	and volatile organic compounds in the marine boundary layer around the ara-
789	bian peninsula. Atmospheric Chemistry and Physics, 20(11), 6769–6787. doi:
790	10.5194/acp-20-6769-2020
791	adic, I., Nussbaumer, C., Bonn, B., Harder, H., Marno, D., Martinez, M., Fis-
792	tropical tropognhare even the atlantic occur and west africa.
793	Chemistry and Physics 21(10) 8195–8211 doi: 10.5194/acp-2021-52
794	Taylor K E (2001) Summarizing multiple aspects of model performance in a single
796	diagram. Journal of geophysical research: atmospheres, 106(D7), 7183–7192.
797	doi: 10.1029/2000JD900719
798	Thompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco, T. F.,
799	Rverson, T. B., Zeng, L. (2022). The nasa atmospheric tomography
800	(atom) mission: Imaging the chemistry of the global atmosphere.
801	letin of the American Meteorological Society, 103(3), E761–E790. doi:
802	10.1175/BAMS-D-20-0315.1
803	Tomsche, L., Pozzer, A., Ojha, N., Parchatka, U., Lelieveld, J., & Fischer, H. (2019).
804	Upper tropospheric ch_4 and co affected by the south asian summer monsoon
805	during the oxidation mechanism observations mission. Atmospheric Chemistry
806	and Physics, 19(3), 1915–1939. doi: 10.5194/acp-19-1915-2019
807	Verma, S., Yadava, P. K., Lal, D., Mall, R., Kumar, H., & Payra, S. (2021). Role
808	of lightning nox in ozone formation: A review. Pure and Applied Geophysics,
809	178, 1425 - 1443. doi: $10.1007 / s00024 - 021 - 02710 - 5$
810	Wennberg, P., Hanisco, T., Jaegle, L., Jacob, D., Hintsa, E., Lanzendorf, E.,
811	others (1998). Hydrogen radicals, nitrogen radicals, and the pro-
812	duction of o3 in the upper troposphere. science, $279(5347)$, 49–53. doi:
813	10.1120/science. 2(9.534/.49)
814	Wolsy, S., Alsnar, S., Allen, H., Apel, E., Asner, E., Barletta, B., Vieznor,
815	aerosale version 2 OBNI. Distributed Active Archive Contor Potrioved
817	from https://daac.ornl.gov/cgi-bin/dsviewer_pl?ds_id=1925doi:
~~.	

818	10.3334/ORNLDAAC/1925
819	Yan, Y. Y. (2005). Intertropical convergence zone (itcz). In Encyclopedia of world
820	climatology (pp. 429–432). Dordrecht: Springer Netherlands. doi: 10.1007/1
821	-4020-3266-8_110
822	Zahn, A., Weppner, J., Widmann, H., Schlote-Holubek, K., Burger, B., Kühner, T.,
823	& Franke, H. (2012). A fast and precise chemiluminescence ozone detector
824	for eddy flux and airborne application. Atmospheric Measurement Techniques,
825	5(2), 363-375. doi: $10.5194/amt-5-363-2012$
826	Zhao, Y., Li, Y., Kumar, A., Ying, Q., Vandenberghe, F., & Kleeman, M. J. (2022).
827	Separately resolving nox and voc contributions to ozone formation. Atmo-
828	spheric Environment, 285, 119224. doi: 10.1016/j.atmosenv.2022.119224
829	Ziereis, H., Schlager, H., Schulte, P., Van Velthoven, P., & Slemr, F. (2000). Distri-
830	butions of no, no_x , and no_y in the upper troposphere and lower stratosphere
831	between 28 and 61 n during polinat 2. Journal of Geophysical Research: Atmo-
832	spheres, $105(D3)$, $3653-3664$. doi: $10.1029/1999JD90087$

O₃ formation sensitivity to precursors and lightning in the tropical troposphere based on airborne observations

Clara M. Nussbaumer¹, Matthias Kohl¹, Andrea Pozzer^{1,2}, Ivan Tadic¹, 3 Roland Rohloff¹, Daniel Marno¹, Hartwig Harder¹, Helmut Ziereis³, Andreas Zahn⁴, Florian Obersteiner⁴, Andreas Hofzumahaus⁵, Hendrik Fuchs⁵, Christopher Künstler⁵, William H. Brune⁶, Tom B. Ryerson⁷, Jeff Peischl^{8,9}, Chelsea R. Thompson⁸, Ilann Bourgeois^{8,9,a}, Jos Lelieveld^{1,2}and Horst Fischer¹ 4 5 6 7 ¹Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany ²Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus 8 9 ³Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, 10 Oberpfaffenhofen, Germany 11 ⁴Institute of Meteorology and Climate Research – Atmospheric Trace Gases and Remote Sensing 12 (IMK-ASF), Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany 13 ⁵Institute of Energy and Climate Research – Troposphere (IEK-8), Forschungszentrum Jülich GmbH, 14 ⁶Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, 15 16 PA 16802, USA ⁷Scientific Aviation, Boulder, CO 80301, USA ⁸National Oceanic and Atmospheric Administration (NOAA) Chemical Sciences Laboratory (CSL), 17 18 19 Boulder, CO 80305, USA 20 ⁹Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, 21 CO 80309, USA 22 ^anow at: Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France 23

24 Key Points:

25	• $\alpha(CH_3O_2)$ correlated with NO is a powerful metric for indicating O_3 sensitivity
26	and is valid throughout the troposphere.
27	• O_3 chemistry in the remote tropical lower troposphere is found to be NO_x -sensitive.
28	• NO emissions from lightning drive O_3 sensitivity in the tropical upper troposphere
29	and induce highly VOC-sensitive chemistry.

Corresponding author: Clara M. Nussbaumer, clara.nussbaumer@mpic.de

30 Abstract

Tropospheric ozone (O_3) is an important greenhouse gas that is also hazardous to hu-31 man health. O_3 is formed photochemically from nitrogen dioxide (NO₂) (with oxygen 32 and sunlight), which in turn is generated through oxidation of nitric oxide (NO) by per-33 oxy radicals (HO₂ or RO₂). The formation of O_3 can be sensitive to the levels of its pre-34 cursors NO_x ($\equiv NO + NO_2$) and peroxy radicals, e.g., generated by the oxidation of volatile 35 organic compounds (VOCs). A better understanding of this sensitivity will show how 36 changes in the levels of these trace gases could affect O₃ levels today and in the future, 37 and thus air quality and climate. In this study, we investigate O_3 sensitivity in the trop-38 ical troposphere based on in situ observations of NO, HO₂ and O₃ from four research 39 aircraft campaigns between 2015 and 2023, namely, OMO (Oxidation Mechanism Ob-40 servations), ATom (Atmospheric Tomography Mission), CAFE Africa (Chemistry of the 41 Atmosphere Field Experiment in Africa) and CAFE Brazil, in combination with sim-42 ulations using the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model. We use 43 the metric $\alpha(CH_3O_2)$ together with NO to show that O_3 formation chemistry is gener-44 ally NO_x -sensitive in the lower and middle tropical troposphere and in a transition regime 45 in the upper troposphere. By distinguishing observations, which are either impacted by 46 lightning or not, we show that NO from lightning is the most important driver of O_3 sen-47 sitivity in the tropics. Areas affected by lightning exhibit strongly VOC-sensitive O_3 chem-48 istry, whereas NO_x -sensitive chemistry predominates in regions without lightning impact. 49

50 1 Introduction

Ozone (O_3) in the stratosphere is essential to life on this planet through its shield-51 ing of the Earth's surface from the sun's shortwave radiation (Staehelin et al., 2001). In 52 contrast, in the troposphere O_3 has adverse effects for plants, human health and the cli-53 mate (Ainsworth et al., 2012; Nuvolone et al., 2018). O_3 is an important anthropogenic 54 greenhouse gas (besides CO_2 and CH_4) and its impact on global warming is strongest 55 in the upper troposphere where it is most abundant (relative to tropospheric levels), tem-56 peratures are coldest and water vapor, which acts as a natural greenhouse gas, is sparse 57 (Cooper et al., 2014; Iglesias-Suarez et al., 2018; IPCC, 2023). This influence of O_3 on 58 the radiative budget is particularly pronounced in tropical latitudes $(30^{\circ}S \text{ to } 30^{\circ}N)$ (Lacis 59 et al., 1990; Iglesias-Suarez et al., 2018; Skeie et al., 2020). O_3 is additionally an impor-60 tant precursor for OH radicals, which in turn control the atmospheric oxidizing capac-61 ity (Lelieveld et al., 2016). 62

Ozone in the troposphere can originate from transport processes from the strato-63 sphere and photochemical formation. While the exact source distribution has not yet been 64 fully understood up to this point, it is almost certain that photochemical production is 65 the dominant source of O_3 in the troposphere (Lelieveld & Dentener, 2000; Cooper et 66 al., 2014; Archibald et al., 2020). Nitrogen oxides ($NO_x \equiv NO + NO_2$) and volatile or-67 ganic compounds (VOCs) are photochemical precursors for O_3 in the troposphere. NO_x is mostly emitted in the form of NO and converted to NO_2 in the presence of peroxy rad-69 icals (mostly HO_2 and CH_3O_2), shown in Reactions (R1) and (R2). Peroxy radicals in 70 turn are formed through oxidation of VOCs or carbon monoxide (CO) by OH radicals 71 (Crutzen, 1988; Pusede et al., 2015; Nussbaumer & Cohen, 2020). 72

$$NO + HO_2 \longrightarrow NO_2 + OH$$
 (R1)

$$NO + RO_2 \longrightarrow NO_2 + RO$$
 (R2)

 $_{73}$ NO₂ forms O₃ in the presence of sunlight and oxygen from the air via Reaction (R3).

$$NO_2 + O_2 \xrightarrow{h\nu} NO + O_3$$
 (R3)

Precursor sources at the surface are combustion processes (vehicle engines, vessels,
industrial activities, etc.), biomass burning and soil emissions for NO and mostly evaporative emissions, including volatile chemical products (personal care products, detergents, etc.), as well as biogenic emissions from vegetated areas for VOCs (Pusede et al.,
2015; McDonald et al., 2018). Aircraft and lightning are sources of NO at higher altitudes in the troposphere.

Depending on the precursor concentrations, O_3 formation can be sensitive to ei-80 ther NO_x or VOCs, the latter represented by peroxy radicals. A detailed analysis and 81 discussion of our current understanding of O₃ sensitivity can be found in Nussbaumer 82 et al. (2023). Briefly, for low NO_x , referred to as NO_x -sensitive O_3 chemistry, VOCs and 83 therefore peroxy radicals are present in excess. Peroxy radicals undergo Reactions (R1) 84 and (R2) with NO and further react with themselves in radical recombination reactions 85 or undergo auto oxidation. O_3 formation generally increases with increasing NO. O_3 chem-86 istry is VOC-sensitive when NO_x is available in excess. A maximum level of ozone pro-87 duction is reached when the available peroxy radicals react with NO to form NO₂. The 88 impact of increases in NO_x on O_3 concentrations for VOC-sensitive O_3 chemistry changes 89 with the altitude, which we hypothesize is due to the fraction of NO_2 . At the surface, 90 O_3 formation decreases with increasing NO_x due to the reaction of OH radicals with NO_2 91 (instead of VOCs to generate peroxy radicals), which becomes relevant when NO_x is more 92 abundant than reactive VOCs. Observations of decreasing O_3 at high NO_x are often re-93 ported in literature, for example, Nussbaumer and Cohen (2020), Sicard et al. (2020) or 94 Gough and Anderson (2022). In the upper troposphere, the reaction of NO_2 with OH 95 only plays a minor role - likely because daytime NO₂ is sparse as the NO_x equilibrium 96 is shifted towards NO. Consequently, O_3 is much less responsive to NO changes. We have 97 shown this effect of O_3 in the upper troposphere in Nussbaumer et al. (2023). 98

In order to understand and predict the response of O_3 towards changes in NO_x and 99 VOCs, it is essential to investigate which precursor O_3 is sensitive to, given its impor-100 tance for air quality and climate. Various metrics exist to determine which sensitivity 101 prevails, including the response of ozone production $P(O_3)$ to changes in NO_x , the week-102 end effect or the HCHO to NO₂ ratio. A detailed review and comparison of the most com-103 mon metrics in the literature is presented in Liu and Shi (2021) for the surface and Nussbaumer 104 et al. (2023) for the global troposphere. We found that most of these metrics are only 105 applicable at the surface, but not in the upper troposphere. Briefly, mixing ratios of trace 106 gases vary significantly throughout the troposphere and definitions for the surface, for 107 example, $P(O_3)$ changes with NO_x or a specific threshold for the HCHO to NO_2 ratio 108 do not apply at high altitudes. A detailed discussion can be found in Nussbaumer et al. 109 (2023). Instead, we have developed a new metric, $\alpha(CH_3O_2)$, to determine O_3 sensitiv-110 ity, which is valid throughout the entire troposphere (Nussbaumer, Crowley, et al., 2021; 111 Nussbaumer et al., 2022). $\alpha(CH_3O_2)$ presents the ratio of methyl peroxy radicals CH_3O_2 112 (a proxy for VOCs) which react with NO and promote O_3 formation in competition with 113 the peroxy radical self-reaction which inhibits O₃ formation. We present more details 114 including the calculation of $\alpha(CH_3O_2)$ in Section 2.1. 115

 $\alpha(CH_3O_2)$ was originally proposed as an indicator for formaldehyde formation and 116 applied to three stationary ground-site measurements across Europe in Cyprus, Germany 117 and Finland (Nussbaumer, Crowley, et al., 2021). α (CH₃O₂) identified NO_x-sensitive 118 O_3 chemistry in southeastern Europe and VOC-sensitive O_3 chemistry in central Europe, 119 which is in line with results obtained via the HCHO to NO_2 ratio, a metric dating back 120 to studies by Sillman (1995). In Nussbaumer et al. (2022), we used $\alpha(CH_3O_2)$ to indi-121 cate a change in upper tropospheric O_3 sensitivity in response to reduced air traffic (and 122 a 55% reduction in NO_x mixing ratios) during the COVID-19 lockdowns over Europe, 123

which common metrics would have failed to identify. We have recently investigated O_3 sensitivity in the upper tropical troposphere based on modeling simulations by a general circulation model and found lightning as the most important driver of VOC-sensitive O_3 chemistry (Nussbaumer et al., 2023). Generally, these studies have underlined that NO_x is most relevant in O_3 formation and sensitivity and that the abundance of VOCs only plays a subordinate role.

There are numerous studies that have investigated O_3 sensitivity to NO_x and VOC 130 levels at the surface and they almost exclusively focus on urban areas (Li et al., 2019; 131 Jaffe et al., 2022; Zhao et al., 2022; Akimoto & Tanimoto, 2022). While this is highly 132 relevant with respect to air quality and human health, it is also important to investigate 133 more remote locations particularly in regard to future emission changes. For example, 134 with increasing temperatures and decreasing precipitation one could expect to see in-135 creases in biomass burning, resulting in emission of NO_x in the remote rainforest (Bray 136 et al., 2021). In combination with the high levels of VOCs in these areas, O_3 could in-137 crease drastically locally, and in turn harm the natural vegetation and agricultural crops 138 (Ainsworth et al., 2012; Pope et al., 2020). At the same time, ongoing industrialization 139 in the Global South will likely impact ozone concentrations in the tropical troposphere 140 (Gaudel et al., 2024). In contrast to surface-based analyzes, research on O_3 sensitivity 141 in the upper troposphere is scant and has not been investigated in detail since the stud-142 ies of Brasseur et al. (1996), Jaeglé et al. (1998), Wennberg et al. (1998) and Jaeglé et 143 al. (1999) around 25 years ago, who concluded that O_3 chemistry was NO_x -sensitive in 144 the upper troposphere over the United States based on box-model simulations. Of note, 145 the observations for high NO_x did not match the model predictions in Jaeglé et al. (1998) 146 and Jaeglé et al. (1999). We suggest that O_3 production is an unsuitable metric for in-147 dicating O_3 sensitivity at high altitudes. This could be (partly) due to the terminating 148 reaction $OH + NO_2$ (forming HNO₃), which does not seem to play a significant role for 149 low NO_2 mixing ratios in the upper troposphere. 150

This study investigates O_3 chemistry in the tropical troposphere based on airborne observations during four aircraft campaigns, namely OMO, ATom, CAFE Africa and CAFE Brazil, between 2015 and 2023. We compare in situ observations with modeled data by the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model and we investigate the differences in trace gas concentrations and vertical profiles between the individual campaigns (and regions). We use $\alpha(CH_3O_2)$ to identify O_3 sensitivity towards its precursors in the tropical troposphere, with a particular focus on the role of lightning.

¹⁵⁸ While we have previously analyzed O_3 chemistry in the upper tropical troposphere ¹⁵⁹ based on model simulations (Nussbaumer et al., 2023), this is the first study to inves-¹⁶⁰ tigate the question of O_3 sensitivity at these altitudes based on in situ observations us-¹⁶¹ ing the metric $\alpha(CH_3O_2)$. To our knowledge, $\alpha(CH_3O_2)$ is currently the only available ¹⁶² metric reliably indicating which precursor O_3 is sensitive to at altitudes at which com-¹⁶³ mon tools fail and the impact of O_3 as a greenhouse gas is strongest.

¹⁶⁴ 2 Observation and Methods

165

2.1 O₃ Sensitivity Metric α (CH₃O₂)

 $\alpha(CH_3O_2)$ was originally developed for identifying HCHO (formaldehyde) produc-166 tion pathways. It presents the share of CH_3O_2 (methyl peroxy radicals) reacting with 167 NO or OH radicals forming HCHO versus the peroxy self-reaction $(CH_3O_2 + HO_2)$ form-168 ing CH₃OOH (Nussbaumer, Crowley, et al., 2021). The reaction of CH₃O₂ with NO also 169 yields NO_2 , which forms O_3 via Reaction (R3), while the reaction of CH_3O_2 with HO_2 170 represents a termination reaction of the O₃ formation process (which is relevant for a 171 low-NO_x environment). The reaction of CH₃O₂ with OH contributes to HCHO, but not 172 to O_3 formation, and generally only plays a minor role compared to the pathway via NO 173

Figure 1. Identifying the dominant O_3 sensitivity using $\alpha(CH_3O_2)$ (adapted from Nussbaumer, 2023).

and HO₂. Therefore, it can be disregarded when studying O₃ sensitivity. Hence, α (CH₃O₂) 174 is calculated via Equation (2). We only use positive values for determining $\alpha(CH_3O_2)$ 175

to ensure that the resulting value is between 0 and 1. 176

$$\alpha(\mathrm{CH}_{3}\mathrm{O}_{2}) = \frac{k_{\mathrm{CH}_{3}\mathrm{O}_{2}^{+}\mathrm{NO}} \times [\mathrm{NO}]}{k_{\mathrm{CH}_{3}\mathrm{O}_{2}^{+}\mathrm{NO}} \times [\mathrm{NO}] + k_{\mathrm{CH}_{3}\mathrm{O}_{2}^{+}\mathrm{HO}_{2}} \times [\mathrm{HO}_{2}]}$$
(2)

A detailed description of $\alpha(CH_3O_2)$ can be found in Nussbaumer, Crowley, et al. 178 (2021), Nussbaumer et al. (2022) and Nussbaumer et al. (2023). Briefly, for low NO_x con-179 centrations, CH_3O_2 react with both NO and HO_2 and increases in NO lead to increases 180 in $\alpha(CH_3O_2)$. O₃ chemistry is NO_x-sensitive. For high NO_x concentrations, most avail-181 able CH_3O_2 reacts with NO and changes in NO have no impact on $\alpha(CH_3O_2)$, as O_3 182 sensitivity is limited by the availability of peroxy radicals (which represent the abundance 183 of VOCs). Figure 1 schematically shows how to use $\alpha(CH_3O_2)$ to identify prevailing O_3 184 sensitivity (Nussbaumer, 2023). O_3 concentrations increase with increasing NO_x when 185 O_3 chemistry is NO_x -sensitive. For VOC-sensitive O_3 chemistry at the surface, O_3 for-186 mation decreases with increasing NO_x due to the reaction of OH and NO_2 . In the up-187 per troposphere, O_3 concentrations reach a maximum and remain unresponsive to changes 188 in NO_x . 189

2.2 Aircraft Campaigns 190

177

Figure 2 presents an overview of the flight tracks of the four research aircraft cam-191 paigns discussed in this paper. These are OMO (Oxidation Mechanism Observations), 192 ATom (Atmospheric Tomography Mission), CAFE Africa (Chemistry of the Atmosphere 193 Field Experiment in Africa) and CAFE Brazil. The ATom campaign was divided into 194 measurements over the Atlantic and the Pacific Ocean. Detailed information on the in-195 dividual campaigns and the respective measurements are provided in the following sub-196 sections. We filtered all data for the tropical latitudes between 30° S and 30° N and for 197 the troposphere with a threshold of 100 ppbv for O_3 . We use a 1-minute average of the 198 measurements, brought to the NO timestamp, for this analysis. 199

Figure 2. Overview of the flight tracks (filtered by tropical latitudes between 30°S and 30°N) for the four aircraft campaigns OMO (green), ATom, CAFE Africa (red) and CAFE Brazil (blue). The ATom campaign was separated into data over the Atlantic (orange) and the Pacific Ocean (cyan).

2.2.1 OMO 2015

200

224

The aircraft campaign OMO (Oxidation Mechanism Observations) took place in 201 July and August 2015 over the Indian Ocean and the Middle East using the HALO (High 202 Altitude LOng range) research aircraft. The campaign comprised 17 research flights (some 203 on the same day) with campaign bases in Paphos in Cyprus (34.72°N, 32.49°E) and Gan 204 in the Maldives $(0.69^{\circ}\text{S}, 73.16^{\circ}\text{E})$. More details can be found in Lelieveld et al. (2018) 205 and Tomsche et al. (2019). Nitric oxide was measured via chemiluminescence with the 206 two-channel AENEAS (Atmospheric nitrogen oxides measuring system) instrument with 207 a detection limit of 7 pptv and a measurement uncertainty of 8% (for 0.5 ppbv) (Ziereis 208 et al., 2000; Stratmann et al., 2016). HO_2 was measured via laser-induced fluorescence 209 with the HORUS (Hydroxyl Radical Measurement Unit based on fluorescence Spectroscopy) 210 and the AirLIF instruments (Novelli et al., 2014; Marno et al., 2020; Künstler, 2020). 211 The HORUS instrument has a detection limit of 1.2 pptv for HO₂ at the surface and 0.23 pptv212 above 14 km. The accuracy is typically between 20% and 40%. The detection limit and 213 uncertainty for the Air-LIF instrument are also altitude-dependent. The detection limit 214 (signal-to-noise ratio = 2, 40 s time resolution) is generally less than 1 pptv and about 215 0.1 pptv above 5 km. The data accuracy is between 15 and 35 %. Neither of the HO₂ mea-216 surements was continuous over the entire campaign. The data from the five overlapping 217 flights showed good agreement and we therefore combined the data from the two instru-218 ments (research flights 1-6 (21.07.-06.08.2015) from AirLIF and 7-17 (08.08.-27.08.2015) 219 from HORUS) to obtain a full dataset. Ozone was measured with the FAIRO (Fast AIR-220 borne Ozone) instrument using a dry chemiluminescence detector, calibrated by a 2-channel 221 UV photometer, with an uncertainty (10 Hz) of 2.5% or 2 ppbv (Zahn et al., 2012; Ober-222 steiner, 2023). 223

2.2.2 ATom 2016-2018

The aircraft campaign ATom (Atmospheric Tomography Mission) consisted of four 225 deployments between 2016 and 2018 in summer 2016, winter 2017, fall 2017 and spring 226 2018 with the NASA DC-8 aircraft, operated by the NASA Armstrong (Dryden) Flight 227 Research Center. A total of 47 scientific flights were carried out over the almost 2-year 228 period. Each deployment circumnavigated the globe once. More details on the campaign, 229 including all flight tracks, can be found in Thompson et al. (2022) and via the campaign 230 website (NASA, 2022). For this study, we used the data measured in the tropical regions 231 between 30°S and 30°N latitude and additionally separated them into two geographic 232 regions over the Pacific and the Atlantic Ocean (see Figure 2 in cyan and orange, respec-233 tively). NO and O₃ were measured via chemiluminescence using an O₃-induced and a 234 NO-induced technique, respectively. The measurement uncertainties (1 Hz data) were 235

²³⁶ 5% for NO and 2% for O₃, with a precision of 6 pptv and 15 pptv, respectively (Bourgeois ²³⁷ et al., 2021, 2022). HO₂ was measured via laser-induced fluorescence with a 2σ accuracy ²³⁸ of 35%. Details can be found in Faloona et al. (2004).

239 2.2.3 CAFE Africa 2018

The Chemistry of the Atmosphere Field Experiment in Africa (CAFE Africa) took 240 place in August and September 2018 from Sal on Cabo Verde (16.75°N, 22.95°W). Four-241 teen scientific flights were performed with the HALO research aircraft, mostly over the 242 Atlantic Ocean. Details on the campaign and measurements can be found in Tadic et 243 al. (2021). Nitric oxide was measured with the chemiluminescence instrument (CLD 790 244 SR, ECO Physics, Dürnten, Switzerland) NOAH (Nitrogen Oxides Analyzer for HALO) 245 with a detection limit of 5 pptv (1 min) and an uncertainty of 6%. The instrument is 246 described in detail in Tadic et al. (2020) and Nussbaumer, Parchatka, et al. (2021). Ozone 247 was measured with the FAIRO instrument, as described in Section 2.2.1. HO_2 was mea-248 sured with the HORUS instrument and has an uncertainty of approximately 50%. Due 249 to the difficulty in determining an experimental calibration factor for the HO_2 data set, 250 a value of 2.5 was estimated based on comparison with the EMAC model and its per-251 formance in measuring hydrogen peroxide (H_2O_2) (Hamryszczak et al., 2023). 252

253 2.2.4 CAFE Brazil 2022-2023

The Chemistry of the Atmosphere Field Experiment in Brazil (CAFE Brazil) took 254 place in December 2022 and January 2023 with the HALO research aircraft from Man-255 aus in Brazil (3.03°S, 60.04°W). Twenty scientific flights (including four transfer flights 256 from Oberpfaffenhofen, Germany with a stopover in Sal, Cabo Verde) were carried out 257 over a two-month period over the pristine rain forest as well as deforested regions and 258 urbanized areas. The scientific goals of the campaign included the investigation of pho-259 to chemical processes impacted by high VOC/low NO_x environments, convective events 260 throughout the troposphere and particle formation. The campaign was timed to occur 261 at the seasonal transition which enabled capture of measurements during the dry sea-262 son in December and the rainy season in January. Nitric oxide was measured with the 263 NOAH instrument with a detection limit of 6 ppty $(1 \min)$ and an uncertainty of 5%. 264 O_3 data were obtained with the FAIRO instrument with a data uncertainty of 2.5 % or 265 2 ppbv. Final data for HO₂ measurements are not available at this point and we there-266 fore include modeled data from EMAC simulations, as described in Section 2.3 in our 267 analysis. 268

2.3 Modeling

269

Modeled data for NO, O_3 , HO_2 , temperature and pressure were obtained with the 270 EMAC model. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is a nu-271 merical chemistry and climate simulation system that includes sub-models describing tro-272 pospheric and middle atmosphere processes and their interaction with oceans, land and 273 human influences (Jöckel et al., 2016). It uses the second version of the Modular Earth 274 Submodel System (MESSy2) to link multi-institutional computer codes. The core at-275 mospheric model is the 5th generation European Centre Hamburg general circulation 276 model (Roeckner et al., 2006, ECHAM5). The physics subroutines of the original ECHAM 277 code have been modularized and reimplemented as MESSy submodels and have contin-278 uously been further developed. Only the spectral transform core, the flux-form semi-Lagrangian 279 large scale advection scheme, and the nudging routines for Newtonian relaxation are re-280 maining from ECHAM. Here we use different numerical results from different integra-281 tions and with different set-up, mostly presented in previous publications. Description 282 of the set-up of the EMAC model for CAFE Africa, OMO and ATom campaigns can be 283 found in Tadic et al. (2021), Lelieveld et al. (2018) and Nussbaumer et al. (2022), respec-284

Figure 3. Overview of the model performance, presented in a Taylor diagram (Taylor, 2001). Triangles represent modeled data for the CAFE Brazil campaign, circles the CAFE Africa campaign, diamonds the ATom campaign and squares show modeled data for the OMO campaign. Blue colors represent NO, red shows O_3 and HO_2 data is cyan.

tively. The simulation for the CAFE Brazil measurement campaign was performed at 285 a spectral horizontal resolution of T63, equivalent to approximately 180 x 180 km at the 286 equator, with 90 vertical levels up to an altitude of 0.1 hPa. Weak "nudging" was ap-287 plied, guiding the simulation towards meteorological reanalysis data (ERA5, Hersbach 288 et al., 2020) from the European Centre for Medium-Range weather forecasts (ECMWF). 289 Global anthropogenic emissions of reactive gases and aerosols at the surface were obtained 290 from the Community Emission Data System (CEDS, McDuffie et al., 2020) and aircraft 291 emission data were taken from the CAMS Global aviation emissions (CAMS-GLOB-AIR; 292 Granier et al., 2019), both for the year 2019. Updated emission inventories tailored to 293 the campaign timeframe were not available yet. Additionally, NO_x emissions from lightning were integrated into the simulation using the parameterization proposed by Grewe 295 et al. (2001), scaled to 2.6 Tg (N) per year. This value falls within the lower end of the 296 estimate of 2–8 Tg (N) per year provided by Schumann and Huntrieser (2007), yields 297 consistent tropospheric O_3 and demonstrates the best agreement with observations. 298 While this study is based on in situ observations, we include the modeled data for a com-299 parison to identify how well the data sets align. Additionally, we use HO_2 modeled data 300 for CAFE Brazil as final experimental data are not available at this point. 301

302 **3 Results**

303

3.1 Model Performance

Figure 3 shows a normalized Taylor diagram presenting the model performance for each campaign and trace gas investigated in this analysis (Taylor, 2001). The experimental data is represented by the black hexagram, with a normalized standard deviation of 1, a correlation coefficient of 1 and root-mean-square difference of 0. The closer the colored data points, representing the model data sets, are located to the experimental reference value, the better the model performance. For most of the modeled data sets, stan-

dard deviations are similar to those from their experimental counterparts. Deviations 310 are observed for NO (blue): CAFE Brazil (triangles) and OMO data sets (squares) have 311 lower standard deviations by a factor of 2 and the CAFE Africa data set (circles) has 312 a larger standard deviation (almost twice as large). The latter additionally shows only 313 an intermediate correlation coefficient of around 0.3. All other modeled data sets show 314 a good correlation with the experiment with a correlation coefficient of 0.5 or larger. The 315 ATom data set (diamonds) for O_3 even reaches values of > 0.8. The O_3 (red) and HO_2 316 data sets (cyan) for the different campaigns show a similar model performance, whereas 317 differences could be seen between the quality of the different NO data sets. This could 318 be due to the difficulty in accurately representing lightning in the model. A further com-319 parison between modeled and measured data can be found in Figures S1–S5 of the Sup-320 porting Information, where we show the vertical profiles of each trace gas. Tables S1-321 S5 show an overview of the number of data points per altitude bin used to create the ver-322 tical profiles. The model may have difficulties representing the intermittent nature of con-323 vection and lightning, illustrated by the larger spread in the upper troposphere (UT). 324 HO₂ modeled and experimental vertical profiles align well for OMO, CAFE Africa and 325 ATom and the Taylor diagram also shows a good model performance, which verifies the 326 use of the modeled HO_2 data set for CAFE Brazil. 327

3.2 Vertical Distribution

328

Figure 4 presents the vertical profiles of (a) NO, (b) O_3 and (c) HO_2 measured dur-329 ing the investigated campaigns. During CAFE Brazil, CAFE Africa and ATom over the 330 Pacific and the Atlantic Ocean, NO was low in the lower and middle troposphere with 331 median values below 20 pptv up to 8 km altitude. The values during the OMO campaign 332 were much larger up to $5-6\,\mathrm{km}$; however, only around $5\,\%$ of all data points were mea-333 sured at these low altitudes and they were exclusively located in proximity to airports. 334 Therefore, it can be assumed that the large NO mixing ratios represent localized airport 335 emissions. At high altitudes, the profiles show elevated mixing ratios. Above 10 km, NO 336 median values were overall highest during CAFE Africa with 118 pptv, followed by OMO 337 with 108 pptv and CAFE Brazil with 61 pptv. These campaigns were also characterized 338 by large maximum values for NO, sometimes above 2 ppby, which indicates strong light-339 ning activity. Median and peak values were generally lower during the ATom campaign 340 with mixing ratios of 51 pptv and 0.43 ppbv, respectively, over the Atlantic and only 20 pptv 341 and 0.48 ppbv, respectively, over the Pacific Ocean. These observations underline the im-342 pact of lightning at these altitudes and latitudes. We have determined a filter for light-343 ning activity which defines data points above 2 km with NO mixing ratios above 100 pptv 344 as impacted by lightning. This includes both fresh and aged lightning emissions. For OMO, 345 this identifies approximately 50% of the data points as being impacted by lightning, fol-346 lowed by CAFE Africa with around 40% and CAFE Brazil with approximately 20%. 347 For ATom, only few data points were impacted by lightning with below 10% over the 348 Atlantic Ocean and less than 5% over the Pacific Ocean, the latter explaining the al-349 most unchanging (with altitude) cyan vertical profile. 350

These observations demonstrate two important features impacting lightning, which 351 are the time of year and the distance from tropical landmasses. The maximum of deep 352 convection, which is associated with lightning activity and large NO emissions, changes 353 its location throughout the year due to seasonal, meridional changes in convective ac-354 tivity. While over the year as a whole, this maximum is located close to the equator $(\pm 5^{\circ})$, 355 in January, it is mostly found in the Southern Hemisphere and in July in the Northern 356 Hemisphere (compare Figure I2 in Yan (2005)). The region of maximum deep convec-357 358 tion is also referred to as the ITCZ (Inter Tropical Convergence Zone). CAFE Africa and OMO were carried out in August/September mostly coinciding with the location of the 359 ITCZ, explaining high lightning intensity. CAFE Brazil took place in December and Jan-360 uary and the flight track latitudes tended to be slightly northward, but still close to the 361 location of the ITCZ at that time of the year, which could be a potential explanation 362

Figure 4. Vertical profiles of (a) NO, (b) O_3 and (c) HO_2 for tropical latitudes for the investigated aircraft campaigns. Lines and shades represent the median values and the 25th/75th percentiles, respectively. Dots show the mean values in the center of each 1 km altitude bin.

for fewer data points with identified lightning impact. The impact of the time of year 363 can be neglected for the ATom campaign as the vertical profiles present medians and av-364 erages across all four deployments. Lightning was lowest over the remote Pacific Ocean 365 during ATom, in line with our understanding of lightning formation, which is thought 366 to require solid particles for the formation of light ice particles. In fact, solid particles, 367 such as dust or sand, are usually more abundant over or in proximity to land masses, 368 which makes lighting strongest over the (tropical) continents (Christian et al., 2003; Verma 369 et al., 2021; Nussbaumer, Tadic, et al., 2021). Likewise, low lightning activity was ob-370 served over the Atlantic Ocean during ATom. The NO observations for CAFE Africa were 371 much larger in comparison to the ATom Atlantic data in the upper troposphere, although 372 the two data sets are derived from neighboring geographical areas. The location of the 373 ITCZ throughout the year cannot explain the difference, as the median NO mixing ra-374 tios measured during the ATom deployment in August were similar to the one in Febru-375 ary. However, the ATom Atlantic data set shrinks when filtering the tropical latitudes 376 for different times of the year, whereas CAFE Africa ran many flights in the same re-377 gion and therefore provides an improved representation of the region. Additional differ-378 ences may arise from meteorological conditions or differences in wildfire activity between 379 years (ATom Atlantic in August 2016 and CAFE Africa in August 2018). 380

Figure 4 (b) presents the vertical profiles of O_3 . Generally, O_3 increased with al-381 titude and increasing proximity to the stratosphere, where O_3 is abundant. The lowest 382 mixing ratios were observed during ATom over the Pacific Ocean with median values be-383 low 15 ppbv at the surface and 28 ppbv above 10 km. This correlates well with low NO 384 mixing ratios throughout the tropospheric column, which when oxidized to NO_2 is the 385 photochemical source of tropospheric O_3 . The low mixing ratio between 11 and 12 km 386 altitude could indicate convective updraft from the O₃-poor marine boundary layer. CAFE 387 Brazil O_3 mixing ratios were similar to those observed during ATom Pacific up to 5 km 388 altitude. Above this altitude, O_3 median values during CAFE Brazil were approximately 389 10 to 15 ppbv higher. The vertical profile also shows the typical S-shape observed for con-390 vective updraft to the upper troposphere. The ATom Atlantic O₃ vertical profile shows 391 a similar shape to the one observed during CAFE Brazil with median mixing ratios of 392 26 ppbv at the surface and 52 ppbv above 10 km. The vertical O_3 profile for OMO does 393 not show a particular trend with altitude, but a quite strong fluctuation with median 394 values between 30 and 80 ppbv is evident. O_3 mixing ratios during CAFE Africa were 395

around 30 ppbv (median) at the surface and increased strongly up to 60-70 ppbv at 7 km, above which they remained mostly unaffected by altitude. The large difference of around 20 ppbv between O₃ mixing ratios for CAFE Africa and ATom Atlantic in the free troposphere could have likely arised from the time of year as the profiles align well when only considering August data from the ATom campaign. This could be due to wildfire emissions in the Southern Hemisphere at that time of year.

Figure 4 (c) presents the vertical profiles of HO₂. Mixing ratios were mostly low 402 and comparable to upper tropospheric values at the surface and showed a maximum in 403 the free troposphere between 3 and 7 km altitude. Quite large differences between the campaigns can be observed at the surface with median values ranging from around 2 pptv 405 for CAFE Africa and approximately 20 pptv for ATom. However, the uncertainties of 406 the HO_2 measurements were usually highest at low altitudes and the profiles mostly show 407 large and overlapping error shades (representing the 25th and 75th percentiles). In the 408 upper troposphere, HO₂ measured during OMO and ATom Atlantic was lowest with a 409 median of 4 pptv above 12 km, followed by CAFE Africa with 7 pptv and CAFE Brazil 410 and ATom Pacific with 10-11 pptv. 411

3.3 O₃ Sensitivity

412

As described above, $\alpha(CH_3O_2)$ can be used to determine O_3 sensitivity to its pre-413 cursors. $\alpha(CH_3O_2)$ is plotted in Figure 5 (a)-(c) for all campaigns. The black line shows 414 the average $\alpha(CH_3O_2)$ binned to NO mixing ratios for all available data points and there-415 fore presents the tropical "background". The individual curves for each campaign do not 416 show significant differences. As expected, $\alpha(CH_3O_2)$ increases strongly with NO for low 417 ambient NO mixing ratios, which demonstrates NO_x -sensitive O_3 chemistry. For an in-418 crease in NO from 1 to 10 pptv, $\alpha(CH_3O_2)$ increases by almost 0.5. For higher NO, $\alpha(CH_3O_2)$ 419 becomes unresponsive to changes in NO, which is characteristic of VOC-sensitive O_3 chem-420 istry. For an NO increase from 10 to 50 pptv, $\alpha(CH_3O_2)$ shows an increase of less than 421 0.1. Panel (c) additionally shows the number of data points in each NO bin by the gray 422 dashed line. The vast majority of the data points is characterized by NO mixing ratios 423 below 0.1 ppby. The number decreases to a few dozen data points for the high-NO bins. 424 The colored data points represent the campaign averages and the three panels of each 425 row show different altitudes. Figure 5 (a) presents the averages below 2 km altitude. CAFE 426 Brazil, CAFE Africa, ATom Pacific and ATom Atlantic showed a clear NO_r -sensitive chem-427 istry at the surface, as the averages are located in the rising part of the background curve 428 of $\alpha(CH_3O_2)$ vs. NO. Average values for $\alpha(CH_3O_2)$ were around 0.4 for ATom and close 429 to 0.6 for CAFE Africa and CAFE Brazil, which means that 60 and 40%, respectively, 430 of the available peroxy radicals reacted with HO_2 and terminated the O_3 -forming HO_x 431 cycle. This is expected given low NO mixing ratios in the remote tropical regions or over 432 tropical waters. The OMO data set showed VOC-sensitive O_3 chemistry at the surface 433 with $\alpha(CH_3O_2)=0.96$, indicating that almost all peroxy radicals reacted with NO instead 434 of HO_2 . However, as mentioned above, the very limited number of data points available 435 at low altitude for the OMO campaign were all captured in proximity to airports and 436 therefore do not represent surface conditions in the Middle East or over the Indian Ocean. 437 Figure 5 (b) shows the results for the free troposphere between 2 and $10 \,\mathrm{km}$ altitude. All 438 campaigns showed a clear NO_x -sensitive O_3 chemistry, which again is expected in the 439 absence of NO sources at these altitudes and aligns with the observations from the ver-440 tical profiles in Figure 4. In Figure 5 (c), upper tropospheric data (above 10 km) are pre-441 sented. The upper troposphere over the remote Pacific Ocean was clearly NO_x -sensitive. 442 The remaining areas were located in a transition regime with average values for $\alpha(CH_3O_2)$ 443 444 of between 0.78 and 0.92 and for NO of between 0.07 and 0.15 ppbv, whereby ATom Atlantic tended towards NO_x sensitivity and the remaining campaigns towards VOC-sensitive 445 O_3 chemistry. The data points additionally show a large 1 σ standard deviation in the 446 order of 100% for NO. This underlines the large variability of NO mixing ratios in the 447 upper troposphere caused by clean NO-free air transported from the boundary layer via 448

Figure 5. Overview of determination of O₃ sensitivity via (a)-(c) α (CH₃O₂) and (d)-(f) O₃ versus NO mixing ratios separated into the surface below 2 km ((a) and (d)), the free troposphere between 2 and 10 km ((b) and (e)) and the upper troposphere above 10 km ((c) and (f)). Black lines represent the tropical background as an average of all available data points binned to NO, with 1 σ standard deviations shown as gray areas. The colored data points and error bars present the campaign averages and 1 σ standard deviations, respectively. CAFE Brazil averages are shown in blue, CAFE Africa in red, ATom Pacific in cyan, ATom Atlantic in orange and OMO in green. The gray dotted line in panels (c) and (f) shows the number of data points in each NO bin.

convective processes and strong, local NO emissions from lightning. We identified < 5%and < 10% of data points as being impacted by lightning for ATom Pacific and ATom Atlantic, respectively, demonstrating NO_x-sensitive chemistry. For the remaining campaigns, lightning impacted a much higher share of data points ($\sim 20\%$ for CAFE Brazil, $\sim 40\%$ for CAFE Africa and $\sim 50\%$ for OMO), resulting in higher values for α (CH₃O₂).

These observations are confirmed when looking at O_3 versus NO mixing ratios as 454 displayed in the lower panels (d)-(f) of Figure 5. The black line and gray error shading 455 represent background O_3 binned to NO, including all available data points. For NO_x -456 sensitive chemistry approximately up to 0.1-0.15 ppbv NO, O₃ increases from 30 to 60 ppbv 457 with increasing NO. Our hypothesis is that in this rising part both peroxy self-reaction 458 and NO to NO_2 oxidation via peroxy radicals play a significant role, the latter path lead-459 ing to O_3 formation in the presence of sunlight and oxygen. With increasing amounts 460 of NO, O_3 levels rise. In turn, when NO is present in excess over peroxy radicals, O_3 lev-461 els reach a maximum, as its formation is limited by the availability of peroxy radicals. 462 At the surface, as shown in Figure 5 (d), O_3 average values for CAFE Brazil, CAFE Africa, 463 ATom Atlantic and ATom Pacific were low, ranging from 20 to 35 ppbv. O₃ for OMO 464 was higher which correlated with higher NO captured from airport emissions. Slightly 465 higher O_3 levels between 35 and 55 ppbv were observed for the free troposphere, which 466 can be seen in Figure 5 (e). These elevated values compared to the surface cannot be 467 explained by photochemical formation in the NO-poor free troposphere, but are likely 468 rather an outcome of transport processes. Upper tropospheric values for O_3 versus NO 469 are presented in Figure 5 (f) and show similar features compared to $\alpha(CH_3O_2)$ in panel 470 (c). Low average O_3 (37 ppbv) and NO (0.04 ppbv) indicate NO_x-sensitive chemistry in 471 the upper troposphere over the remote Pacific Ocean during the ATom campaign. The 472

Figure 6. Overview of determination of O_3 sensitivity via (a)-(b) $\alpha(CH_3O_2)$ and (c)-(d) O_3 versus NO mixing ratios separated into data with ((b) and (d)) and without impact from lightning ((a) and (c)).

remaining data points were located mostly in the transition area. Maximum average val-473 ues of O_3 of > 60 ppbv were observed for CAFE Africa, going hand-in-hand with high 474 shares of lightning-impacted data. In contrast, O₃ average values for ATom Atlantic (56 ppbv) 475 were much higher than those observed for OMO (46 ppbv), even though less than 10%476 of the data points were impacted by lightning during ATom versus 50% during OMO. 477 This underlines that while the correlation of O_3 with NO can provide valuable hints for 478 sensitivity investigations, it cannot be solely captured by photochemistry and could also 479 be impacted by transport process from the stratosphere or tropospheric events, e.g., biomass 480 burning, and has a longer upper tropospheric lifetime than NO. The O_3 -NO correlation 481 should therefore be used in combination with a reliable metric such as $\alpha(CH_3O_2)$. 482

483 3.4 Impact of Lightning

We have investigated the role of lightning in O_3 sensitivity by applying a filter for 484 lightning impact. We categorize data points above 2 km altitude and with NO mixing 485 ratios higher than 0.1 ppbv as impacted by lightning. If the observed NO value is lower, 486 we assume that the data point was not directly impacted by lightning. We expect the 487 contribution of aircraft to the overall NO_x emissions in the tropical troposphere to be 488 insignificant (Grewe, 2007; Nussbaumer et al., 2023). Figure 6 presents the O_3 sensitiv-489 ity analysis based on $\alpha(CH_3O_2)$ and O_3 vs. NO, following the similar scheme as in Fig-490 ure 5, separated into data points impacted and not impacted by lightning. The share 491 of data points in each average value depends on the campaign, for example, for ATom 492 Pacific more than 95% fall into the category without lightning, whereas it is 50% for 493 OMO. The background curves are the same as those presented in Figure 5. 494

Figure 6 (a) shows $\alpha(CH_3O_2)$ vs. NO for data points without lightning impact. All five campaign averages were located in the rising part of the background curve with values for $\alpha(CH_3O_2)$ between 0.56 and 0.82, indicating distinct NO_x-sensitive O₃ chemistry. In comparison, Figure 6 (b) presents data points with lightning impact. In all cases, independent of the latitude, $\alpha(CH_3O_2)$ was high and close to 1. This shows that available peroxy radicals dominantly reacted with NO resulting in the formation of O₃, indicating VOC-sensitive chemistry. The 1 σ standard deviations (shown by the error bars) are quite large because lightning induces highly variable amounts of NO and additionally, we do not distinguish between fresh and aged lightning in this view. For CAFE Brazil, for example, we observed peak values of more than 2 ppbv NO (factor 4 compared to the shown scale).

Figure 6 (c) shows O_3 vs. NO for data points not impacted by lightning. O_3 average values ranged between 35 and 55 ppbv. In comparison, the average values impacted by lightning were located at much higher O_3 mixing ratios (between 55 and 80 ppbv) and in the part of the background where O_3 becomes unresponsive to NO, as shown in panel (d). These results support the findings from $\alpha(CH_3O_2)$ and show that lightning plays an important role in the sensitivity of O_3 formation towards its precursors.

512 4 Conclusion and Outlook

In this study, we presented in situ measurements of NO, O₃ and HO₂ from four dif-513 ferent research aircraft campaigns in the tropical troposphere. These are the OMO cam-514 paign in 2015 over the Middle East and the Indian Ocean, the CAFE Africa campaign 515 in 2018 over the Atlantic Ocean, the ATom campaign between 2016 and 2018 around the 516 American continent and the CAFE Brazil campaign in 2022/23 over Brazil. We sepa-517 rated the ATom campaign into a part over the remote Pacific Ocean and a part over the 518 Atlantic Ocean. All data is filtered for the troposphere ($< 100 \text{ ppby O}_3$) and for trop-519 ical latitudes $(30^{\circ}\text{S} - 30^{\circ}\text{N})$. We compared the in situ measurements with modeled data 520 by the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model and found good agree-521 ment with a correlation coefficient mostly ranging between 0.5 and 0.8 and standard de-522 viations mostly similar to the respective experimental data set. The largest discrepan-523 cies were found for the modeled NO for CAFE Africa. Based on these findings, we used 524 the HO_2 modeled data for CAFE Brazil, as final experimental data were not available. 525 We found low mixing ratios for NO at the surface and in the free troposphere across the 526 remote tropical latitudes, underlining the absence of sources at these altitudes. Mixing 527 ratios in the upper troposphere were elevated compared to the lower altitudes with high-528 est values over tropical continents (compared to tropical waters), and coincided with the 529 location of maximum deep convection and the ITCZ, where lighting activity peaks. HO_2 530 was mostly similar in the campaign inter-comparison and large variability made it dif-531 ficult to identify significant differences. O₃ vertical profiles show signs of deep convec-532 tive processes, especially for the CAFE Brazil campaign. Mixing ratios were lowest over 533 the remote Pacific Ocean and higher for areas impacted by emissions, e.g., biomass burn-534 ing, such as CAFE Africa. 535

We investigated O_3 sensitivity using O_3 mixing ratios and the metric $\alpha(CH_3O_2)$ 536 correlated with ambient NO. We found that O_3 chemistry at the surface and the free tro-537 posphere was almost exclusively sensitive to NO_x . The only exception was the OMO cam-538 paign, where we observed VOC-sensitive O_3 chemistry at the surface due to the capture 539 of anthropogenic pollution from airports. For the upper troposphere, we found NO_x -sensitive 540 O₃ chemistry over the remote Pacific Ocean during ATom and a transition regime for 541 the other campaigns, with the value for $\alpha(CH_3O_2)$ increasing with the amount of light-542 ning observed. Separating data points with and without lightning impact showed that 543 lightning is the most important factor controlling O₃ sensitivity in the tropical tropo-544 sphere. In the absence of lightning, chemistry was NO_x -sensitive, while it was strongly 545 VOC-sensitive in the presence of lightning, independent of the exact location in the trop-546 ical region. 547

These results are in line with our previous findings in the upper tropical troposphere, which were based entirely on modeling simulations (Nussbaumer et al., 2023). This un-

derlines effectively that $\alpha(CH_3O_2)$ is a powerful metric for identifying O_3 sensitivity and 550 it is applicable both to modeled data and in situ observations. It also shows that NO_x 551 is the predominant factor determining O_3 sensitivity and in the tropics its major source 552 is lightning, which in turn depends on the time of year and the distance to tropical land-553 masses. Photochemical O_3 formation is capped by the availability of peroxy radicals in 554 areas impacted by lightning. From this, we conclude that potential increases in light-555 ning in these regions will likely not impact the amount of O_3 , given that levels of per-556 oxy radicals remain unchanged. In turn, increases in lightning in regions that are cur-557 rently not or only mildly impacted by lightning might lead to increase of O_3 levels up 558 to a factor of 2, which could strongly impact the radiative forcing (especially at high al-559 titudes). The remote tropical lower troposphere currently has only a small number of 560 NO sources. This could change in the future if biomass burning events would become 561 more frequent with increasing temperature and decreasing precipitation and if countries 562 in the Global South increase NO_x emissions associated with the expansion of their economies. 563 Combined with NO_x -sensitive O_3 chemistry, this would lead to strong increases of O_3 564 levels, which could locally harm plants and human health or, given the lifetime of O_3 of 565 a few weeks, be transported to areas where it has adverse effects. 566

Looking into the future, further research should investigate the changing role of NO_x in tropospheric O_3 chemistry. While we can say that NO_x is the most important driver of O_3 sensitivity, future changes and North-South re-locations in NO_x emissions, such as expected changes in emissions from anthropogenic combustion processes or increases in biomass burning, will profoundly influence tropospheric photochemistry, and in turn air quality and climate change.

573 Open Research Section

The dataset for the OMO campaign can be obtained from the HALO database (last access: 23.10.2023) (Deutsches Zentrum für Luft- und Raumfahrt (DLR), 2021). The ATom dataset is available at Wofsy et al. (2021) (last access: 15.09.2023). The datasets for CAFE Africa and CAFE Brazil are not yet published and will be uploaded upon acceptance of the manuscript.

579 Acknowledgments

We thank Uwe Parchatka for his support with the NO_x measurements. We acknowledge the German Aerospace Center (DLR) for the collaboration during CAFE Africa and CAFE Brazil.

583 References

- Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D.
 (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual review of plant biology, 63(1), 637–661.
 doi: 10.1146/annurev-arplant-042110-103829
- Akimoto, H., & Tanimoto, H. (2022). Rethinking of the adverse effects of noxcontrol on the reduction of methane and tropospheric ozone-challenges toward a denitrified society. *Atmospheric Environment*, 277, 119033. doi: 10.1016/j.atmosenv.2022.119033
- Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Cooper, O. R., Young, P. J.,
 Akiyoshi, H., ... Zeng, G. (2020). Tropospheric ozone assessment report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100. *Elementa: Science of the Anthropocene*, 8(1), 034. doi: 10.1525/elementa.2020.034
- ⁵⁹⁷ Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Allen, H. M., Campuzano-

598	Jost, P., Ryerson, T. B. (2022). Comparison of airborne measurements of
599 600	no, no ₂ , hono, no _y , and co during firex-aq. Atmospheric Measurement Tech- niques, $15(16)$, $4901-4930$. doi: $10.5194/amt-15-4901-2022$
601	Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Thompson, C. R., Aikin,
602	K. C., Ryerson, T. B. (2021). Large contribution of biomass burn-
603	ing emissions to ozone throughout the global remote troposphere. Pro-
604	ceedings of the National Academy of Sciences, 118(52), e2109628118. doi:
605	10.1073/pnas.2109628118
606	Brasseur, G. P., Müller, JF., & Granier, C. (1996). Atmospheric impact of nox
607	emissions by subsonic aircraft: A three-dimensional model study. Jour-
608	nal of Geophysical Research: Atmospheres, 101(D1), 1423–1428. doi:
609	10.1029/95JD02363
610	Bray, C. D., Battye, W. H., Aneja, V. P., & Schlesinger, W. H. (2021). Global emis-
611	sions of nh3, nox, and n20 from biomass burning and the impact of climate
612	change. Journal of the Air & Waste Management Association, $71(1)$, 102–114.
613	doi: 10.1080/10962247.2020.1842822
614	Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E.,
615	Driscoll, K. T., Stewart, M. F. (2003). Global frequency and distri-
616	bution of lightning as observed from space by the optical transient detec-
617	tor. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-4. doi:
618	10.1029/2002JD002347
619	Cooper, O. R., Parrish, D., Ziemke, J., Balashov, N., Cupeiro, M., Galbally, I.,
620	Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone:
621	All observation-based review. Elementa: Science of the Anthropocene, 2. doi: 10.12052/journal.elementa.000020
622	Crutzen D. J. (1089). Therearcharis even a An evention. Springer dai: 10.1007/078
623	Orutzen, P. J. (1966). Tropospheric ozone: An overview. Springer. doi: 10.1007/978
624	-94-009-2913-5_1 Doutsches Zontrum für Luft und Doumschut (DLD) (2021) Mission (MO
625	(https://holo-db.po. op. dlr. do/mission/0_lost_access op 23 10 2023)
020	Falcona I C Tan D Loshor B I Hazon N I Frame C I Simpas I B
628	Brune W H (2004) A laser-induced fluorescence instrument for detecting
629	tropospheric oh and ho 2: Characteristics and calibration. Journal of Atmo-
630	spheric Chemistry, 47, 139–167. doi: 10.1023/B:JOCH.0000021036.53185.0e
631	Gaudel, A., Bourgeois, I., Li, M., Chang, KL., Ziemke, J., Sauvage, B., Cooper,
632	O. R. (2024). Tropical tropospheric ozone distribution and trends from in situ
633	and satellite data. EGUsphere, 2024, 1–51.
634	Gough, W. A., & Anderson, V. (2022). Changing air quality and the ozone week-
635	end effect during the covid-19 pandemic in toronto, ontario, canada. <i>Climate</i> ,
636	10(3), 41. doi: $10.3390/cli10030041$
637	Granier, C., Darras, S., Denier van der Gon, H., Doubalova, J., Elguindi, N., Galle,
638	B., Sindelarova, K. (2019). The copernicus atmosphere monitoring service
639	global and regional emissions (april 2019 version). Copernicus Atmosphere
640	Monitoring Service (CAMS) report. doi: 10.24380/d0bn-kx16
641	Grewe, V. (2007). Impact of climate variability on tropospheric ozone. Science of the
642	total environment, 374(1), 167–181. doi: 10.1016/j.scitotenv.2007.01.032
643	Grewe, V., Brunner, D., Dameris, M., Grenfell, J., Hein, R., Shindell, D., & Stae-
644	helin, J. (2001). Origin and variability of upper tropospheric nitrogen oxides
645	and ozone at northern mid-latitudes. Atmospheric Environment, 35(20),
646	3421-3433. doi: 10.1016/S1352-2310(01)00134-0
647	Hamryszczak, Z., Diennart, D., Brendel, B., Ronion, R., Marno, D., Martinez, M.,
048 640	tropical troposphere over the atlantic ocean and western africa during the
650	cafe-africa aircraft campaign. Atmospheric Chemistry and Physics 23(10)
651	5929–5943. doi: 10.5194/acp-23-5929-2023
652	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horánvi, A., Muñoz-Sabater J
	, , , _ , _ , _ , _ , _ , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , _ , , , _ ,

653	Thépaut, JN. (2020). The era5 global reanalysis. Quarterly Journal of
654	the Royal Meteorological Society, $146(730)$, 1999-2049. doi: $10.1002/qj.3803$
655	Iglesias-Suarez, F., Kinnison, D. E., Rap, A., Maycock, A. C., Wild, O., & Young,
656	P. J. (2018). Key drivers of ozone change and its radiative forcing over the
657	21st century. Atmospheric Chemistry and Physics, 18(9), 6121–6139. doi:
658	10.5194/acp-18-6121-2018
659	IPCC. (2023). Sections. in: Climate change 2023: Synthesis report. contribution of
660	working groups i, ii and iii to the sixth assessment report of the intergovern-
661	mental panel on climate change [core writing team, h. lee and j. romero (eds.)].
662	, 35–115. doi: 10.59327/IPCC/AR6-9789291691647
663	Jaeglé, L., Jacob, D. J., Brune, W., Faloona, I., Tan, D., Kondo, Y., others
664	(1999). Ozone production in the upper troposphere and the influence of
665	aircraft during sonex: Approach of nox-saturated conditions. <i>Geophysical</i>
666	Research Letters, 26(20), 3081–3084. doi: 10.1029/1999GL900451
667	Jaeglé, L., Jacob, D. J., Brune, W., Tan, D., Faloona, I., Weinheimer, A.,
668	Sachse, G. (1998). Sources of hox and production of ozone in the upper
669	troposphere over the united states. $Geophysical Research Letters, 25(10),$
670	1709–1712. doi: 10.1029/98GL00041
671	Jaffe, D. A., Ninneman, M., & Chan, H. C. (2022). Nox and o3 trends at us non-
672	attainment areas for 1995–2020: Influence of covid-19 reductions and wildland
673	fires on policy-relevant concentrations. Journal of Geophysical Research: At-
674	mospheres, 127(11), e2021JD036385. doi: $10.1029/2021JD036385$
675	Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A.,
676	Zahn, A. (2016). Earth system chemistry integrated modelling (escimo) with
677	the modular earth submodel system (messy) version 2.51. Geoscientific Model
678	Development, 9(3), 1153-1200. doi: $10.5194/gmd-9-1153-2016$
679	Künstler, C. (2020). Measurements of atmospheric oh and ho2 radicals by
680	laser-induced fluorescence on the halo aircraft during the omo-asia 2015
681	campaign (Doctoral dissertation, Universität zu Köln). Retrieved from
682	http://kups.ub.uni-koeln.de/id/eprint/11702
683	Lacis, A. A., Wuebbles, D. J., & Logan, J. A. (1990). Radiative forcing of climate by
684	changes in the vertical distribution of ozone. Journal of Geophysical Research:
685	Atmospheres, 95(D7), 9971-9981. doi: $10.1029/JD095iD07p09971$
686	Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs, H., Harder, H.,
687	Ziereis, H. (2018). The south asian monsoon—pollution pump and purifier.
688	Science, 361(6399), 270–273. doi: 10.1126/science.aar2501
689	Lelieveld, J., & Dentener, F. J. (2000). What controls tropospheric ozone? Jour-
690	nal of Geophysical Research: Atmospheres, 105(D3), 3531–3551. doi: 10.1029/
691	1999JD901011
692	Lelieveld, J., Gromov, S., Pozzer, A., & Taraborrelli, D. (2016). Global tropospheric
693	hydroxyl distribution, budget and reactivity. Atmospheric Chemistry and
694	<i>Physics</i> , 16(19), 12477–12493. doi: 10.5194/acp-16-12477-2016
695	Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., & Bates, K. H. (2019). Anthro-
696	pogenic drivers of 2013–2017 trends in summer surface ozone in china. Proceed-
697	ings of the National Academy of Sciences, 116(2), 422–427. doi: 10.1073/pnas
698	
699	Liu, C., & Shi, K. (2021). A review on methodology in o3-nox-voc sensitivity study.
700	Environmental Pollution, 291, 118249. doi: 10.1016/j.envpol.2021.118249
701	Marno, D., Ernest, C., Hens, K., Javed, U., Klimach, T., Martinez, M., Harder,
702	n . (2020). Calibration of an airborne ho x instrument using the all pressure altitude based calibration for he as are
703	annual Dased calibrator for no x experimentation (apache). Atmospheric measurement techniques 12(5) 2711 2721 doi: 10.5104/omt 12.2711.2020
704	MaDonald P. C. Do Courre I. A. Cilman, J. D. Jother, C. H. Althersti, A.
705	Cappa C D Trainer M (2018) Volatila chamical products are surfaced and distance of the state of
706	Largest patrochemical source of unban excercise emissions — Geieree 250(6277)
707	Largest petrochemical source of urban organic emissions. Science, 339(0311),

708	760–764. doi: 10.1126/science.aaq0524
709	McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C.,
710	Marais, E. A., Martin, R. V. (2020). A global anthropogenic emission in-
711	ventory of atmospheric pollutants from sector- and fuel-specific sources (1970–
712	2017): an application of the community emissions data system (ceds). Earth
713	System Science Data, 12(4), 3413-3442. doi: 10.5194/essd-12-3413-2020
714	NASA. (2022). Atom. Retrieved from "https://espo.nasa.gov/atom" (accessed
715	on 2023-11-15)
716	Novelli, A., Hens, K., Tatum Ernest, C., Kubistin, D., Regelin, E., Elste, T.,
717	Harder, H. (2014). Characterisation of an inlet pre-injector laser-induced
718	fluorescence instrument for the measurement of atmospheric hydroxyl rad-
719	icals. Atmospheric measurement techniques, $7(10)$, $3413-3430$. doi:
720	10.5194/amt-7-3413-2014
721	Nussbaumer, C. M. (2023). Nitrogen oxides and their involvement in photochem-
722	ical processes throughout the troposphere (Doctoral dissertation, Universität
723	Mainz). doi: 10.25358/openscience-9272
724	Nussbaumer, C. M., & Cohen, R. C. (2020). The role of temperature and no_r in
725	ozone trends in the los angeles basin. Environmental Science & Technology,
726	54, 15652–15659. doi: 10.1021/acs.est.0c04910
727	Nussbaumer, C. M., Crowley, J. N., Schuladen, J., Williams, J., Hafermann,
728	S., Reiffs, A., Fischer, H. (2021). Measurement report: Photo-
729	chemical production and loss rates of formaldehyde and ozone across eu-
730	rope. Atmospheric Chemistry and Physics, 21(24), 18413–18432. doi:
731	10.5194/acp-21-18413-2021
732	Nussbaumer, C. M., Fischer, H., Lelieveld, J., & Pozzer, A. (2023). What con-
733	trols ozone sensitivity in the upper tropical troposphere? Atmospheric Chem-
734	istry and Physics, 23(19), 12651–12669. doi: 10.5194/acp-23-12651-2023
735	Nussbaumer, C. M., Parchatka, U., Tadic, I., Bohn, B., Marno, D., Martinez,
736	M., J. Lelieveld, H. F. (2021). Modification of a conventional pho-
737	tolytic converter for improving aircraft measurements of no ₂ via chemilumi-
738	nescence. Atmospheric measurement techniques, $14(10)$, 6759–6776. doi:
739	10.5194/amt-14-6759-2021
740	Nussbaumer, C. M., Pozzer, A., Tadic, I., Röder, L., Obersteiner, F., Harder, H.,
741	Fischer, H. (2022). Tropospheric ozone production and chemical regime
742	analysis during the covid-19 lockdown over europe. Atmospheric Chemistry
743	and Physics, 22(9), 6151–6165. doi: 10.5194/acp-22-6151-2022
744	Nussbaumer, C. M., Tadic, I., Dienhart, D., Wang, N., Edtbauer, A., Ernle, L.,
745	Fischer, H. (2021). Measurement report: In situ observations of deep convec-
746	tion without lightning during the tropical cyclone florence 2018. Atmospheric
747	Chemistry and Physics, 21(10), 7933–7945. doi: 10.5194/acp-21-7933-2021
748	Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human
749	health. Environmental Science and Pollution Research, 25(9), 8074–8088.
750	doi: 10.1007/s11356-017-9239-3
751	Obersteiner, F. (2023). Fairo. Retrieved from https://gitlab.kit.edu/
752	FObersteiner/FAIROmeta/-/blob/main/science/FAIRO_Description.md
753	(accessed on 2024-03-07)
754	Pope, R. J., Arnold, S. R., Chipperfield, M. P., Reddington, C. L., Butt, E. W.,
755	Keslake, T. D., others (2020). Substantial increases in eastern amazon and
756	cerrado biomass burning-sourced tropospheric ozone. Geophysical Research
757	Letters, $47(3)$, e2019GL084143. doi: 10.1029/2019GL084143
758	Pusede, S. E., Steiner, A. L., & Cohen, R. C. (2015). Temperature and recent trends
759	in the chemistry of continental surface ozone. Chemical reviews, $115(10)$,
760	3898-3918. doi: $10.1021/cr5006815$
761	Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L.,
762	Schulzweida, U. (2006). Sensitivity of simulated climate to horizontal

763 764	and vertical resolution in the echam5 atmosphere model. Journal of Climate, $19(16)$, $3771-3791$.
765	Schumann, U., & Huntrieser, H. (2007). The global lightning-induced nitrogen ox-
766	ides source Atmospheric Chemistry and Physics 7(14) 3823–3907 doi: 10
767	.5194/acp-7-3823-2007
768	Sicard P Paoletti E Agathokleous E Araminienė V Projetti C Coulibaly
769	F., & De Marco, A. (2020). Ozone weekend effect in cities: Deep insights
770	for urban air pollution control. Environmental Research, 191, 110193. doi:
771	10.1016/i.envres.2020.110193
772	Sillman, S. (1995). The use of NO ₄ , H ₂ O ₂ , and HNO ₃ as indicators for ozone-NO _{π} -
773	hydrocarbon sensitivity in urban locations. Journal of Geophysical Research:
774	Atmospheres, $100(D7)$, $14175-14188$. doi: $10.1029/94JD02953$
775	Skeie, R. B., Myhre, G., Hodnebrog, Ø., Cameron-Smith, P. J., Deushi, M., Heg-
776	glin, M. I., Wu, T. (2020). Historical total ozone radiative forcing derived
777	from cmip6 simulations. Npj Climate and Atmospheric Science, $3(1)$, 32. doi:
778	10.1038/s41612-020-00131-0
779	Staehelin, J., Harris, N. R., Appenzeller, C., & Eberhard, J. (2001). Ozone
780	trends: A review. Reviews of Geophysics, 39(2), 231–290. doi: 10.1029/
781	1999 m RG000059
782	Stratmann, G., Ziereis, H., Stock, P., Brenninkmeijer, C., Zahn, A., Rauthe-Schöch,
783	A., Volz-Thomas, A. (2016). No and noy in the upper troposphere: Nine
784	years of caribic measurements onboard a passenger aircraft. Atmospheric Envi-
785	ronment, 133, 93-111. doi: https://doi.org/10.1016/j.atmosenv.2016.02.035
786	Tadic, I., Crowley, J. N., Dienhart, D., Eger, P., Harder, H., Hottmann, B., Fis-
787	cher, H. (2020). Net ozone production and its relationship to nitrogen oxides
788	and volatile organic compounds in the marine boundary layer around the ara-
789	bian peninsula. Atmospheric Chemistry and Physics, 20(11), 6769–6787. doi:
790	10.5194/acp-20-6769-2020
791	adic, I., Nussbaumer, C., Bonn, B., Harder, H., Marno, D., Martinez, M., Fis-
792	tropical tropognhare even the atlantic occur and west africa.
793	Chemistry and Physics 21(10) 8195–8211 doi: 10.5194/acp-2021-52
794	Taylor K E (2001) Summarizing multiple aspects of model performance in a single
796	diagram. Journal of geophysical research: atmospheres, 106(D7), 7183–7192.
797	doi: 10.1029/2000JD900719
798	Thompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco, T. F.,
799	Rverson, T. B., Zeng, L. (2022). The nasa atmospheric tomography
800	(atom) mission: Imaging the chemistry of the global atmosphere.
801	letin of the American Meteorological Society, 103(3), E761–E790. doi:
802	10.1175/BAMS-D-20-0315.1
803	Tomsche, L., Pozzer, A., Ojha, N., Parchatka, U., Lelieveld, J., & Fischer, H. (2019).
804	Upper tropospheric ch_4 and co affected by the south asian summer monsoon
805	during the oxidation mechanism observations mission. Atmospheric Chemistry
806	and Physics, 19(3), 1915–1939. doi: 10.5194/acp-19-1915-2019
807	Verma, S., Yadava, P. K., Lal, D., Mall, R., Kumar, H., & Payra, S. (2021). Role
808	of lightning nox in ozone formation: A review. Pure and Applied Geophysics,
809	178, 1425 - 1443. doi: $10.1007 / s00024 - 021 - 02710 - 5$
810	Wennberg, P., Hanisco, T., Jaegle, L., Jacob, D., Hintsa, E., Lanzendorf, E.,
811	others (1998). Hydrogen radicals, nitrogen radicals, and the pro-
812	duction of o3 in the upper troposphere. science, $279(5347)$, 49–53. doi:
813	10.1120/science. 2(9.534/.49)
814	Wolsy, S., Alsnar, S., Allen, H., Apel, E., Asner, E., Barletta, B., Vieznor,
815	aerosale version 2 OBNI. Distributed Active Archive Contor Potrioved
817	from https://daac.ornl.gov/cgi-bin/dsviewer_pl?ds_id=1925doi:
~~.	

818	10.3334/ORNLDAAC/1925
819	Yan, Y. Y. (2005). Intertropical convergence zone (itcz). In Encyclopedia of world
820	climatology (pp. 429–432). Dordrecht: Springer Netherlands. doi: 10.1007/1
821	-4020-3266-8_110
822	Zahn, A., Weppner, J., Widmann, H., Schlote-Holubek, K., Burger, B., Kühner, T.,
823	& Franke, H. (2012). A fast and precise chemiluminescence ozone detector
824	for eddy flux and airborne application. Atmospheric Measurement Techniques,
825	5(2), 363-375. doi: $10.5194/amt-5-363-2012$
826	Zhao, Y., Li, Y., Kumar, A., Ying, Q., Vandenberghe, F., & Kleeman, M. J. (2022).
827	Separately resolving nox and voc contributions to ozone formation. Atmo-
828	spheric Environment, 285, 119224. doi: 10.1016/j.atmosenv.2022.119224
829	Ziereis, H., Schlager, H., Schulte, P., Van Velthoven, P., & Slemr, F. (2000). Distri-
830	butions of no, no_x , and no_y in the upper troposphere and lower stratosphere
831	between 28 and 61 n during polinat 2. Journal of Geophysical Research: Atmo-
832	spheres, $105(D3)$, $3653-3664$. doi: $10.1029/1999JD90087$

Supporting Information for " O_3 formation sensitivity to precursors and lightning in the tropical troposphere based on airborne observations"

Clara M. Nussbaumer¹, Matthias Kohl¹, Andrea Pozzer^{1,2}, Ivan Tadic¹,

Roland Rohloff¹, Daniel Marno¹, Hartwig Harder¹, Helmut Ziereis³, Andreas

Zahn⁴, Florian Obersteiner⁴, Andreas Hofzumahaus⁵, Hendrik Fuchs⁵,

Christopher Künstler⁵, William H. Brune⁶, Tom B. Ryerson⁷, Jeff Peischl^{8,9},

Chelsea R. Thompson⁸, Ilann Bourgeois^{8,9,a}, Jos Lelieveld^{1,2} and Horst

 $\operatorname{Fischer}^1$

 $^1\mathrm{Department}$ of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany

 $^2\mathrm{Climate}$ and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus

³Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

⁴Institute of Meteorology and Climate Research – Atmospheric Trace Gases and Remote Sensing (IMK-ASF), Karlsruhe Institute of

Technology, 76021 Karlsruhe, Germany

⁵Institute of Energy and Climate Research – Troposphere (IEK-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

⁶Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA 16802, USA

⁷Scientific Aviation, Boulder, CO 80301, USA

⁸National Oceanic and Atmospheric Administration (NOAA) Chemical Sciences Laboratory (CSL), Boulder, CO 80305, USA

 9 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA

 a now at: Université Savoie Mont Blanc, INRAE, CARR
TEL, 74200 Thonon-les-Bains, France

March 12, 2024, 2:37pm

Contents of this file

- 1. Figures S1 to S5
- 2. Tables S1 to S5 $\,$

Introduction

The supporting information provides additional information on the comparison between in situ observations and model simulations. Figures S1–S5 provide the vertical profiles of NO, O_3 and HO_2 for the individual research aircraft campaigns. Tables S1–S5 show the number of available data points for each altitude bin used to create Figures S1–S5.

:

Figure S1. Vertical profiles of modeled (red) and experimental (blue) data of NO and O_3 for the research aircraft campaign CAFE Brazil. Lines and shades represent the median values and the 25th/75th percentiles, respectively. Dots show the mean values in the center of each 1km altitude bin.

Figure S2. Vertical profiles of modeled (red) and experimental (blue) data of NO, O_3 and HO₂ for the research aircraft campaign CAFE Africa. Lines and shades represent the median values and the 25th/75th percentiles, respectively. Dots show the mean values in the center of each 1km altitude bin.

Figure S3. Vertical profiles of modeled (red) and experimental (blue) data of NO, O_3 and HO_2 for the research aircraft campaign ATom (Atlantic Ocean). Lines and shades represent the median values and the 25th/75th percentiles, respectively. Dots show the mean values in the center of each 1km altitude bin.

Figure S4. Vertical profiles of modeled (red) and experimental (blue) data of NO, O_3 and HO₂ for the research aircraft campaign ATom (Pacific Ocean). Lines and shades represent the median values and the 25th/75th percentiles, respectively. Dots show the mean values in the center of each 1km altitude bin.

Figure S5. Vertical profiles of modeled (red) and experimental (blue) data of NO, O_3 and HO₂ for the research aircraft campaign OMO. Lines and shades represent the median values and the 25th/75th percentiles, respectively. Dots show the mean values in the center of each 1km altitude bin. Please note that the measurements in the lower troposphere were performed in the vicinity of the airport and may be locally influenced by aircraft NO_x emissions that are not well captured by the model with grid cells of about 180km in the horizontal direction.

Table	S 1.	Number	of	data	points	per	altitude	bin	for	the	research	aircraft	campaign
CAFE	Braz	il for crea	tin	g the	vertica	al pr	ofiles in l	Figu	re S	1.			

Altitude [m]	NO Exp	NO Model	$O_3 Exp$	O_3 Model
500	687	96	690	96
1500	359	51	367	51
2500	327	42	337	42
3500	154	26	187	26
4500	617	84	712	84
5500	264	38	286	38
6500	137	21	138	21
7500	144	14	144	14
8500	154	17	154	17
9500	305	44	317	44
10500	407	55	437	55
11500	1431	183	1504	183
12500	1813	241	1904	241
13500	491	63	513	63
14500	209	25	214	25
15500	0	0	0	0

March 12, 2024, 2:37pm

Table	S2 .	Number	of	data	points	per	altitude	bin	for	the	research	aircraft	campaign
CAFE	Afric	a for crea	atir	ng the	e vertica	al pr	ofiles in I	Figu	re S	2.			

:

Altitude [m]	NO Exp	NO Model	$O_3 Exp$	O_3 Model	$HO_2 Exp$	HO_2 Model
500	2	9	97	9	67	9
1500	86	22	151	22	110	22
2500	178	35	233	35	155	35
3500	229	61	397	61	220	61
4500	240	66	413	66	159	66
5500	67	12	95	12	76	12
6500	64	13	87	13	67	13
7500	237	46	298	46	215	46
8500	49	11	66	11	55	11
9500	139	28	191	28	153	28
10500	413	91	534	91	389	91
11500	147	47	286	47	173	47
12500	799	185	1136	185	792	185
13500	966	223	1344	223	835	223
14500	634	135	830	135	628	135
15500	0	9	49	9	0	9

Table	S3.	Number	of	data	points	per	altitude	bin	for	the	research	aircraft	campaign	
ATom	(Atla	ntic Ocea	n)	for ci	reating	the	vertical j	orofi	les i	n Fi	gure S3.			

Altitude [m]	NO Exp	NO Model	$O_3 Exp$	O_3 Model	$HO_2 Exp$	HO_2 Model
500	385	67	387	67	306	67
1500	158	25	158	25	142	25
2500	127	19	127	19	118	19
3500	154	31	154	31	140	31
4500	133	20	133	20	122	20
5500	159	23	159	23	147	23
6500	159	32	159	32	151	32
7500	168	20	168	20	161	20
8500	197	38	197	38	186	38
9500	285	50	293	50	275	50
10500	393	61	408	61	387	61
11500	327	51	335	51	319	51
12500	112	19	117	19	109	19
13500	35	6	38	6	38	6
14500	0	0	0	0	0	0
15500	0	0	0	0	0	0

:

Altitude [m]	NO Exp	NO Model	$O_3 Exp$	O ₃ Model	$HO_2 Exp$	HO_2 Model
500	614	102	630	102	439	102
1500	264	44	273	44	206	44
2500	229	42	235	42	184	42
3500	253	40	263	40	212	40
4500	225	38	230	38	186	38
5500	242	49	251	49	201	49
6500	259	44	267	44	225	44
7500	265	43	275	43	217	43
8500	320	52	327	52	260	52
9500	474	79	513	79	398	79
10500	738	128	784	128	617	128
11500	583	98	623	98	499	98
12500	268	37	295	37	256	37
13500	21	3	21	3	21	3
14500	0	0	0	0	0	0
15500	0	0	0	0	0	0

Table S5.	Number	of data	points	per	altitude	bin	for	the	research	aircraft	campaign
OMO for cr	eating the	e vertica	al profil	es in	Figure S	55.					

Altitude [m]	NO Exp	NO Model	$O_3 Exp$	O_3 Model	$HO_2 Exp$	HO_2 Model
500	47	1	53	1	12	1
1500	13	0	14	0	1	0
2500	19	1	21	1	6	1
3500	17	4	19	4	6	4
4500	19	1	24	1	6	1
5500	53	4	61	4	35	4
6500	20	1	28	1	15	1
7500	94	9	115	9	51	9
8500	71	8	81	8	52	8
9500	68	8	75	8	52	8
10500	35	4	42	4	16	4
11500	608	62	735	62	456	62
12500	764	68	888	68	499	68
13500	477	46	541	46	315	46
14500	303	27	360	27	130	27
15500	40	5	58	5	45	5