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Abstract

To understand the future summer precipitation changes over the Great Lakes Region (GLR), we perform an ensemble of

regional climate simulations through the Pseudo-Global Warming (PGW) approach. We found that different types of convective

precipitation respond to the PGW signal differently. Isolated deep convection (IDC), which is usually concentrated in the

southern domain, shows an increase in precipitation to the north of the GLR. Mesoscale convective systems (MCSs), which are

usually concentrated upstream of the GLR, shows a shift to the downstream region with increased precipitation. Thermodynamic

variables such as convective available potential energy (CAPE) and convective inhibition energy (CIN) are found to be increased

in almost the entire studied domain, providing a potential environment more (less) favorable for stronger (weaker) convection

systems. Meanwhile, changes in lifting condensation level (LCL) and level of free convection (LFC) show a strong correlation with

variations in convective precipitation, underscoring the significance of these thermodynamic factors in controlling precipitation

over the domain. Results show that decreased LCL and LCF over places where convective precipitation is increased, is mainly

contributed by the atmospheric moisture increase. In response to the prescribed warming perturbation, MCSs show more

frequent occurrences downstream, while localized IDCs show more intense rain rate, longer duration, and larger rainfall area.
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Key Points: 16 

 The location of summer convective precipitation is shifted due to global and regional 17 

warming. 18 

 Changes in lifting condensation level (LCL) and level of free convection (LFC) are the 19 

critical factors driving changes in convective precipitation.  20 

 The lowered LCL and LFC are controlled by the low-level moisture, not by air 21 

temperature. 22 

 A large ensemble regional climate model run driven by various earth system models 23 

show similar future changes in summer convective precipitation. 24 

  25 
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Abstract 26 

To understand the future summer precipitation changes over the Great Lakes Region (GLR), we 27 

perform an ensemble of regional climate simulations through the Pseudo-Global Warming 28 

(PGW) approach. We found that different types of convective precipitation respond to the PGW 29 

signal differently. Isolated deep convection (IDC), which is usually concentrated in the southern 30 

domain, shows an increase in precipitation to the north of the GLR. Mesoscale convective 31 

systems (MCSs), which are usually concentrated upstream of the GLR, shows a shift to the 32 

downstream region with increased precipitation. Thermodynamic variables such as convective 33 

available potential energy (CAPE) and convective inhibition energy (CIN) are found to be 34 

increased in almost the entire studied domain, providing a potential environment more (less) 35 

favorable for stronger (weaker) convection systems. Meanwhile, changes in lifting condensation 36 

level (LCL) and level of free convection (LFC) show a strong correlation with variations in 37 

convective precipitation, underscoring the significance of these thermodynamic factors in 38 

controlling precipitation over the domain. Results show that decreased LCL and LCF over places 39 

where convective precipitation is increased, is mainly contributed by the atmospheric moisture 40 

increase. In response to the prescribed warming perturbation, MCSs show more frequent 41 

occurrences downstream, while localized IDCs show more intense rain rate, longer duration, and 42 

larger rainfall area.  43 

 44 

Plain Language Summary 45 

To understand how summer rainfall might change in the Great Lakes Region in a warmer future 46 

climate, several climate simulations are performed using the Pseudo-Global Warming approach. 47 

We found that different types of heavy rain events react differently to the warming signal. 48 

Smaller convective rain events are found to increase mainly over the northern domain, whereas 49 

the larger and sustained rain events are found to increase over the eastern domain. The increase 50 

in rainfall is found to be associated with low-level atmospheric moisture amount, which controls 51 

the atmospheric stability. With more moisture, the atmosphere is more unstable and therefore 52 

causes more rain. The lakes play an important role in providing moisture to its downwind 53 

regions. 54 

 55 

1 Introduction 56 

The Laurentian Great Lakes together form the largest freshwater lake system in the world and 57 

have a significant influence on the local and regional hydroclimate (Bates et al. 1993; Scott and 58 

Huff, 1996; Li et al. 2010; Wang et al. 2022). The Great Lakes provide vast amount of 59 

evaporation which facilitate the precipitation over and surrounding the lakes. Based on three 60 

different reanalyses, Yang et al. (2023a) estimated that the local recycled moisture from the 61 

Great Lakes Region (GLR) contributes to about 35% of its precipitation. The overall 62 

precipitation plays a paramount role in regulating water levels of the Great Lakes, thereby 63 

exerting significant impact on socioeconomic activities and ecosystem services (Gronewold et al. 64 

2013; Gronewold and Stow 2014; Kayastha et al. 2022). Several attempts have been made to 65 

understand precipitation climatology over the GLR, including the moisture sources of 66 

precipitation (Yang et al. 2023a), changes in historical precipitation characteristics (e.g., size and 67 

intensity), and the projected changes in extreme precipitation under global warming (e.g., 68 
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d’Orgeville et al. 2014; Zobel et al. 2018; Byun et al. 2022; Cherkauer and Sinha, 2010; Mishra 69 

and Cherkauer, 2011; Michalak et al., 2013; Basile et al. 2017, among others). These analyses 70 

have vastly advanced the general understanding of precipitation over the GLR, and have also 71 

shed lights on the risk assessment for hydrometeorological extremes (e.g., drought and flooding) 72 

and their implications for the regional water-energy-food nexus in a warmer climate (Tidwell et 73 

al. 2015).  74 

 75 

However, there are still large uncertainties in understanding the precipitation change in a warmer 76 

climate. Some major sources of these uncertainties include - limitations of both regional and 77 

global climate models for realistically capturing the hydrodynamics of the Great Lakes and their 78 

interactions with atmosphere (Sharma et al. 2018; Xue et al. 2017; 2022); poor constraints on the 79 

precipitation-related physical processes across the climate models (Notaro et al. 2021); 80 

uncertainties in projected future climate scenarios for the region; and biases arising from 81 

nonlinearities of hydrodynamic processes that are poorly described in the numerical climate 82 

models. For example, large uncertainties still exist in representing large lakes in the climate 83 

models, which limit the predictive skills in simulating precipitation near the lakes. In particular, 84 

global climate models (GCM) still lack realistic representations of lakes, partly due to the coarse 85 

resolution (Briley et al. 2021). In fact, most state-of-the-art Coupled Model Intercomparison 86 

Project (CMIP) models (version 5 and 6) either do not represent the Great Lakes or have major 87 

inconsistencies in how the lakes are simulated in terms of spatial representation and treatment of 88 

lake processes (Briley et al. 2021; Minallah and Steiner 2021; Notaro et al. 2022).  89 

 90 

Under future warming scenarios, higher air temperature increases the water holding capacity and 91 

usually leads to increased atmospheric water vapor. Therefore, future storms might be more 92 

intense and longer lasting (Trenberth et al. 2003; Sheffield and Wood 2008; Del Genio and 93 

Kovari 2002; Pall et al. 2007; O’Gorman and Schneider 2009; Kendon et al. 2012; Prein et al. 94 

2016; Rasmussen et al. 2020). Future mean precipitation is expected to increase with warming 95 

(Trenberth et al. 2011), with regional historical heavy precipitation reported to exceed the upper 96 

thermodynamic limit predicted by the CC relation. For example, extreme precipitation changes 97 

have been found to lie between 7 and 10% per degree of surface warming over the Great Lakes 98 

(d’Orgeville et al. 2014) and 11-14% for western Europe (Lenderink and van Meijgaard 2010).  99 

 100 

To understand future changes in precipitation, a few studies attempted to unveil the underlying 101 

physical mechanism. Most studies used convective available potential energy (CAPE) and 102 

convective inhibition (CIN) to quantify atmospheric stability and found both CAPE and CIN to 103 

increase in a warming climate, which could affect the precipitation frequency and intensity 104 

(Gensini and Mote, 2015; Mahoney et al. 2013; Rasmussen et al. 2020; Diffenbaugh et al. 2013). 105 

Over the United States, robust increases in CAPE and CIN have been reported by Diffenbaugh et 106 

al. (2013) and Seely and Romps (2015). In particular, the increase in CIN acts as a balancing 107 

force to suppress weak to moderate convection and provides an environment where CAPE can 108 

build to extreme levels that may result in more severe convection (Rasmussen et al. 2020). 109 

Rasmussen et al. (2020) also revealed the indispensable role of temperature on thermodynamic 110 

environments. Similarly, Chen et al. (2020) demonstrated that low-CAPE and low-CIN 111 

conditions are projected to decrease in a warmer climate, resulting in decrease in light to 112 

moderate precipitation events. Frequency of heavy precipitation events are projected to increase, 113 

primarily attributed to their increased probability under given CAPE and CIN. To better 114 
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understand how CAPE and CIN change in a warmer climate, Chen et al. (2019) found that the 115 

CAPE increase is mainly due to the moister low-level atmosphere, which leads to more latent 116 

heat and buoyancy and can lift a parcel above the level of free convection more easily. On the 117 

other hand, the enhanced CIN over land is mainly a result of reduced low-level relative humidity 118 

(RH). Meanwhile, Chen et al. (2019) also identified that over oceans, the RH is slightly 119 

increased, leading to slight weakening of CIN. Such opposite response of CIN to future warming 120 

between land and water body makes it interesting to understand how climate change would affect 121 

precipitation over the Great Lakes Region, a region comprising of both land and water bodies.  122 

 123 

Although changes in the overall precipitation and its extremes under future warming have been 124 

studied in the past, little is known about how different precipitation types change in the future. 125 

Historically, rainfall produced by mesoscale convective systems (MCSs) and non-MCS, 126 

including the isolated deep convections (IDCs), has vastly different characteristics (Li et al. 127 

2021). By definition, MCSs are much larger in spatial coverage and longer in lifetime compared 128 

with IDCs, although their rainfall rates are similar. Therefore, the hydrologic response of MCSs 129 

and non-MCSs could be very different (Hu et al. 2020). For example, there might be a larger 130 

portion of MCS precipitation that ended as surface and subsurface runoff; while the IDC 131 

precipitation may contribute more to the evapotranspiration. Over the GLR in particular, 132 

different convection types would lead to different partition into runoff or evaporation, potentially 133 

resulting in different water levels even with the same total precipitation amount. Moreover, the 134 

MCS are mostly over the upstream, while the IDC are over the downstream based on historic 135 

observations (Wang et al. 2022). With future warming and moisture increase over entire GLR, 136 

such spatial pattern of MCS and IDC may also change.  137 

 138 

While the previous studies investigated future precipitation changes over the GLR, there are 139 

several limitations. (1) Most of the dynamical downscaling studies directly use GCMs as 140 

boundary forcing, which may have issues properly representing lakes since lakes are not well 141 

resolved in GCMs, as discussed earlier; (2) coarse model resolution inevitably requires the use of 142 

convection parameterization, which likely hampers the accurate representation of precipitation; 143 

(3) previous studies using the Pseudo-Global Warming (PGW, Schär et al. 1996) approach 144 

usually adopt an ensemble mean of multiple Earth system models (ESMs), which prevents the 145 

possibility of uncertainty quantification; (4) besides CAPE/CIN, other thermodynamic variables 146 

such as lifting condensation level (LCL; m) and level of free convection (LFC; m) are seldomly 147 

discussed in future climate conditions; (5) how precipitation associated with different convection 148 

types will change in the future has rarely been discussed. Motivated by the previous studies 149 

focusing on future precipitation changes, the main objective of this study is to understand the 150 

physical mechanisms that lead to the respective changes in MCSs and IDCs by examining the 151 

thermodynamic environment described by CAPE, CIN, LCL and LFC. We use high-resolution 152 

convection permitting simulations and the PGW approach to study the changes by the end of this 153 

century. Using simulations with initial and boundary forcing derived from the Coupled Model 154 

Intercomparison Project Phase 6 (CMIP6) models that provide the necessary variables, we 155 

conducted a 12-member ensemble run that allows us to quantify the uncertainties in future 156 

summer precipitation due to different forcing data with regional climate simulations. This study 157 

contributes to a greater physical understanding of the future changes of different convection 158 

types over the GLR in a warmer climate. 159 
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2 Materials and Methods 160 

2.1 Pseudo-Global Warming approach 161 

Given the potential model errors in physics parameterizations representing the complex weather 162 

and earth system, model precipitation can differ considerably from that in observations. Thus, 163 

hydrological and agricultural impact assessments cannot directly use scenarios of future 164 

precipitation from even high-resolution models (e.g., Ines and Hansen 2006; Baigorria et al. 165 

2007; Teutschbein and Seibert 2012; Muerth et al. 2013). The two primary current approaches to 166 

address these biases are bias-correcting model output based on observations (of means or 167 

marginal distributions) (e.g., Ines and Hansen 2006; Christensen et al. 2008; Piani et al. 2010; 168 

Teutschbein and Seibert 2012) and “delta” methods that adjust observations by model projected 169 

changes (in means or marginal distributions) (e.g., Hay et al. 2000; Räisänen and Räty 2013; 170 

Räty et al. 2014). PGW approach is an extension of the delta method and has been widely used 171 

as an alternative regional climate modeling strategy (e.g., Schär et al. 1996; Sato et al. 2007; 172 

Hara et al. 2008; Lynn et al. 2009; Rasmussen et al. 2011; Ito et al. 2016; Hoogewind et al. 2017; 173 

Gutmann et al. 2018; Adachi and Tomita, 2020; Trapp et al. 2021; Brogli et al. 2023; among 174 

others). In other words, rather than asking what will happen (as in the traditional, scenario-driven 175 

approach), PGW approach allows us to ask about the effects of particular interventions—e.g. 176 

different climate forcing scenarios—across a range of plausible futures. This idea also falls in the 177 

concept of storyline approach concept by Shepherd (2018). By asking the question this way, one 178 

can avoid the possibly low confidence in the traditional scenario-driven future projection 179 

approach. We use the PGW approach to construct the initial and boundary conditions for future 180 

scenarios. Two sets of simulations were performed, the first set is baseline simulation, 181 

representing the historical period (see description in section 2.1.2). The second set is future 182 

simulations, driven by climate forcing derived from imposing changes in the ESMs. In a simple 183 

form, the PGW can be expressed as  184 

Future forcing = Baseline forcing + CMIP6ssp585 (1) 

where Future forcing represents the boundary conditions of the future climate and CMIP6ssp585 185 

is the future changes derived from the CMIP6 ESMs and can be expressed as  186 

CMIP6ssp585 = VAR2071-2100 – VAR1981-2010 (2) 

Where VAR2071-2100 represents the selected variables in the future time slice of a climate 187 

projection, and VAR1981-2010 represents variables in the historical time slice. These variables 188 

include two-dimensional near-surface air temperature, skin temperature, sea-level pressure, 189 

surface pressure and three-dimensional air temperature, specific humidity and geopotential 190 

height at 38 pressure levels, and are necessary to drive the regional climate model, see 191 

description in section 2.1.2. SSP585 represents shared socioeconomic pathway 5 (SSP5), with an 192 

additional radiative forcing of 8.5 W/m² by the year 2100. The SSP5 is a scenario where global 193 

markets are increasingly integrated, leading to innovations and technological progress. The 194 

social and economic development, however, is based on an intensified exploitation of fossil fuel 195 

resources with a high percentage of coal and an energy-intensive lifestyle worldwide (Riahi et al. 196 

2017). 197 

2.1.1 Earth system model (ESM) ensemble 198 

 199 

We chose 11 ESMs from the CMIP6 to construct the historical (1981-2010) and future (2071-200 

2100) under the SSP585 scenario based on data availability (Table 1). They include all the 201 
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variables needed to drive the regional climate model at monthly interval. To reduce the effect of 202 

interannual variability, we used 30-year averages for each month, with temporal interpolation 203 

applied between two consecutive months to avoid abrupt variabilities of the selected variables. 204 

The changes of zonal and meridional winds in the ESMs are not considered in the PGW 205 

approach, rather they are calculated in the regional climate model corresponding to the thermal-206 

dynamic changes. Among these 11 ESMs, we found all ESMs project increase in both air 207 

temperature and specific humidity under global warming. E3SM-1-1 projects the largest 208 

warming (9.9 K), followed by MPI; and FGOALS projects the smallest warming (4.8 K), 209 

followed by CanESM5. Lake surface temperature is an important lower boundary condition 210 

when running the regional climate model for a season-long simulation (Wang et al. 2022). While 211 

the lakes may not be realistically represented, their changes are the only available data source 212 

that we can use. However, we do find that EC-Earth3 shows a much stronger and unreasonable 213 

lake surface warming than the surrounding land compared with observations and fully coupled 214 

atmosphere and 3-D lake models (Xue et al. 2020). Therefore EC-Earth3 is excluded from our 215 

experiment.  216 

 217 

Table 1. Information of the selected 11 CMIP6 models. 218 

CMIP6* 

Model 
abbreviation Model full name (Reference) 

ACCESS-

CM21 
ACCESS 

The Australian Community Climate and Earth System Simulator 

coupled model, version 2 (Bi et al., 2020) 

CESM2-

WACCM 
CESM 

The Community Earth System Model version 2 coupled with the 

Whole Atmosphere Community Climate Model, Version 6 

(Danabasoglu et al., 2020) 

CMCC-

CM2-SR5 
CMCC 

The Euro-Mediterranean Centre on Climate Change (CMCC) coupled 

climate model with standard configuration (Cherchi et al., 2019) 

CanESM5 CanESM5 The Canadian Earth System Model, version 5 (Swart et al., 2019) 

E3SM-1-1 E3SM 
The U.S. Department of Energy (DOE) new Energy Exascale Earth 

System Model, version 1.1 (Golaz et al., 2019) 

FGOALS-

f3-L 
FGOALS 

The Chinese Academy of Sciences (CAS) Flexible Global Ocean-

Atmosphere-Land System (He et al., 2019) 

GFDL-

CM4 
GFDL 

The Geophysical Fluid Dynamics Laboratory’s atmosphere-ocean 

coupled climate model, version 4 (Held et al., 2019) 

IPSL-

CM6A-LR 
IPSL 

The Institut Pierre-Simon Laplace (IPSL) climate model, version 6A 

with low resolution (Boucher et al., 2020) 

MIROC6 MIROC 
The Model for Interdisciplinary Research on Climate, version 6 

(Tatebe et al., 2019) 

MPI-

ESM1-2-

LR 

MPI 
The Max Planck Institute for Meteorology Earth System Model, 

version 1.2 with low resolution (Mauritsen et al., 2019) 

NorESM2-

LM 
Nor 

The coupled Norwegian Earth System Model, version 2 with low-

resolution atmosphere–land and medium-resolution ocean–sea ice 

(Seland et al., 2020) 
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*We only use the “r1i1p1f1” variant of each selected CMIP6 model. 219 
 220 

2.1.2 Regional Climate Model (RCM) Setup 221 

Our RCM is the Weather and Research Forecasting (WRF) model version 4.2.2 with the 222 

Advanced Research WRF dynamic core (Skamarock et al, 2008). The model domain is centered 223 

at 45.5°N and 85.0°W and has 544 × 485 grid points in the west–east and south–north directions 224 

covering the GLR, with a grid spacing of 4 km (Figure 1). There are 50 stretched vertical levels 225 

topped at 50 hPa. The WRF model incorporates Thompson microphysics (Thompson et al., 226 

2004, 2008), the Rapid Radiative Transfer Model for GCMs longwave and shortwave schemes 227 

(Iacono et al., 2008), and Unified Noah land surface model by Chen and Dudhia (2001). Mellor–228 

Yamada–Janjic (MYJ) (Janjic, 1990, 1994) planetary boundary layer (PBL) scheme and Monin-229 

Obukhov surface layer scheme are also used and coupled with an updated multilayer building 230 

environment parameterization model and a multilayer building energy model (BEP_BEM, 231 

Salamanca et al. 2009; 2010). While the use of urban models coupled to climate models requires 232 

higher computational costs, Wang et al. (2023) found that such coupled modeling can better 233 

captures urban locations’ diurnal pattern of surface air temperature, skin temperature and relative 234 

humidity. No sub-grid cloud cover or shallow cumulus parameterizations are used. No boundary 235 

nudging is applied, so that the model can develop its own variability (e.g., spatial and internal 236 

variability) across the region. For the baseline, the initial and boundary conditions are 237 

constructed from 3-hourly 0.25° European Centre for Medium-Range Weather Forecasts 238 

atmospheric reanalysis of the global climate, version 5 (ERA5; Hersbach et al., 2020). The lower 239 

boundary conditions for the lake, which is the lake surface temperature is constructed from 240 

National Oceanic and Atmospheric Administration (NOAA) Great Lakes Surface Environmental 241 

Analysis (GLSEA) data set (Schwab et al., 1992) at a spatial resolution of 1.3 km. This setup 242 

was found by Wang et al. (2022) to be able to produce better air temperature and heat flux 243 

compared with observations. The simulations started on 0000 UTC on 12 May 2018 and ended 244 

on 0000 UTC 1 September 2018 for both baseline and PGW scenarios. The resulting simulations 245 

were all analyzed starting 1 June 2018. For the future scenarios, long-term (30-yr) monthly mean 246 

changes (1981-2010 versus 2071-2100) are first spatiotemporally interpolated onto the WRF 247 

grid; and then added to the baseline files (built from ERA5) during the WRF pre-processing. 248 

Then a new set of WRF simulations forced by the constructed initial and boundary conditions is 249 

conducted to represent the future scenario. When the monthly changes derived from ESMs are 250 

used for driving the WRF simulations, they need to be interpolated from monthly scale 251 

(including nearby months) to 6 hourly scale, because we update the boundary conditions for 252 

WRF every 6 hours. While there is only one summer (2018) for the baseline, the PGW signal is 253 

derived from a 30yr average and from 11 ESMs. We have conducted in total 12 WRF PGW 254 

ensemble runs, with 11 of them driven by the newly constructed initial and boundary conditions 255 

from each of the ESMs, and one driven by the ensemble mean of all these 11 ESMs. These 12 256 

WRF ensemble runs allow us to study (1) the robustness of the future changes in different types 257 

of precipitation and the uncertainties caused by the various ESM forcing; (2) the difference 258 

between two sets of datasets: one is the WRF run driven by ESM ensemble mean (hereafter 259 

PGW_GCMavg; and this is a typical practice given limited computational resource available), 260 

and the other is ensemble mean of all 11 individual WRF runs (PGW_RCMavg; this requires 261 

much more computing resources but allows us to examine the uncertainties).   262 

 263 



manuscript in preparation for JGR-atmosphere 

 8 

 264 

 
Figure 1: WRF domain setup and the simulated precipitation against reference datasets. a) WRF 

model domain with 2172 km  1936 km on the west-east and south-north directions. b-c) 

Domain averaged seasonal mean difference in temperature (Ta) and specific humidity (Q) 

between future (2071-2100) and historical (1981-2010) period in each of the selected ESMs. d-g) 

Evaluation of the simulated precipitation against reference precipitation datasets. JJA 

precipitation from d) TRMM, e) Stage IV and f) PRISM, g) simulated precipitation from the 

baseline simulation (CTRL). h-m) Evaluation of the different precipitation types against 

reference precipitation datasets. 

 265 

2.2 Precipitation Decomposition 266 

 267 

As introduced in Section 1, different convective systems show clearly different temporal and 268 

geospatial patterns over the GLR as well as the central and eastern continental United States (Li 269 

et al. 2021). While both MCS and IDC rainfall amount nearly doubled during the spring and 270 
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summer (~100 mm) compared to the autumn and winter (~56 mm), MCS occurs earlier and over 271 

upstream of GLRs, and IDC occurs later and over downstream of GLRs (Wang et al. 2022). 272 

Therefore, it is important to distinguish the different types of these storms over GLR. We applied 273 

the Flexible Object Tracker (FLEXTRKR) algorithm, developed by Feng et al. (2018; 2019) and 274 

enhanced by Li et al. (2021). Compared with other tracking algorithms (e.g., Workoff et al., 275 

2012; Prein et al., 2020), which only examine the horizontal dimensions, FLEXTRKR identifies 276 

the three-dimensional structure of convective systems and can distinguish different convective 277 

systems such as the MCS and IDC. By tracking the MCS and IDC in the baseline simulation and 278 

future projections, we analyze how the MCS and IDC characteristics, including intensity, life 279 

length, initiation location, number of events, rainfall area and total rainfall amount would change 280 

under the PGW scenarios. 281 

 282 

 283 

2.3 Thermodynamic environment 284 

 285 

In this study, thermodynamic variables, including CAPE, CIN, LCL and LFC are derived from 286 

the WRF output. Here we use the most unstable convective available potential energy which is a 287 

measure of instability in the troposphere that represents the total amount of potential energy 288 

available to air parcel with the maximum equivalent potential temperature within the 289 

atmosphere. To find the CAPE, air parcels from various pressure surfaces within the lowest 300 290 

hPa in the atmosphere are released and the trajectory of a parcel that produces the maximum 291 

amount of CAPE has the most unstable CAPE. A parcel is defined as a 500-m deep parcel, with 292 

actual temperature and moisture averaged over that depth. For simplicity, we refer MUCAPE to 293 

CAPE hereafter unless otherwise noted. CIN is defined as the accumulated negative buoyant 294 

energy from the parcel starting point to the LFC. It is the amount of energy inhibiting convection 295 

and can help determine whether an environment is conducive or unfavorable for promoting 296 

convection development. In fact, as demonstrated in Rasmussen et al. (2020), CIN and CAPE are 297 

important indicators for convections. For example, environment with low CIN and high CAPE 298 

likely promotes convections but with limited strength. Environments with moderate CIN would 299 

allow CAPE to build up to higher levels; and with proper lifting mechanism, explosive 300 

convection can occur. However, if CIN is too large, then the inhibition or negative buoyant is too 301 

strong for convection to break through, so convection is suppressed (Rasmussen et al. 2020). 302 

LCL is the level at which a parcel becomes saturated and is a good estimation of cloud base 303 

height. LFC is the level at which a lifted parcel begins a free acceleration upward to the 304 

equilibrium level due to positive buoyancy. Similar to CAPE and CIN, LCL and LFC are 305 

calculated based on the parcel with maximum equivalent potential temperature within the lowest 306 

300 hPa of the atmosphere. 307 

 308 

2.4 Reference datasets 309 

 310 

Three precipitation reference datasets are chosen to better validate the model performance and 311 

understand the potential discrepancy across different data products. The reference datasets are 312 

based on various data sources, including in-situ measurement and remote sensing such as radar 313 

and satellite detection. The selection of the reference data is also driven by their availability and 314 

accuracy over the Great Lakes. Details of these datasets are described as follows.  315 

 316 
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2.4.1 Parameter‐Elevation Relationships on Independent Slopes Model (PRISM) 317 

 318 

PRISM compiles climate data from various monitoring networks with rigorous quality control, 319 

and serves as the official U.S. Department of Agriculture spatial climate dataset. PRISM 320 

precipitation is available at 4‐km resolution at daily time scale, factoring in terrain elements like 321 

location, elevation, coastal proximity, topographic facet orientation, vertical atmospheric layer, 322 

topographic position, and orographic effectiveness (Daly et al., 2008). PRISM data is only 323 

available over continental United States and not available over the lakes.  324 

 325 

2.4.2 Stage IV Precipitation 326 

Stage IV precipitation, based on radar and gauge data, is a near-real-time product processed by 327 

the Next Generation Weather Radar precipitation system and the National Weather Service River 328 

Forecast Center (RFC) precipitation processing system (Fulton et al., 1998; Seo & Breidenbach, 329 

2002). The precipitation data is mosaicked data from the 12 RFCs, compiled by the National 330 

Center for Environmental Prediction (NCEP), providing gridded precipitation estimates at 4 km 331 

with 1‐hourly and 6‐hourly intervals (Nelson et al., 2016). Nelson et al. (2016) confirmed its 332 

good performance for medium to heavy precipitation. The Stage IV precipitation suffers 333 

discontinuity issues due to varied processing algorithms at different RFCs, especially in the 334 

western US. Stage IV precipitation is available over both land and the lakes.  335 

  336 

2.4.3 TRMM  337 

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between National 338 

Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency 339 

(JAXA) designed to monitor and study tropical rainfall (Huffman et al., 2007). Utilizing the 340 

3B42 algorithm, it generates rain gauge-adjusted multi-satellite precipitation rates and root-341 

mean-square precipitation-error estimates. The TRMM 3B42 dataset offers 3-hourly 342 

precipitation data with a spatial resolution of 0.25°, covering the region between 50°S and 50°N 343 

since March 2000.  344 

3 Results 345 

3.1 Evaluation of precipitation  346 

Precipitation simulated by WRF for the baseline (summer of 2018) is first evaluated against the 347 

reference datasets to ensure the WRF model performance is reasonable for studying the future 348 

precipitation changes. Figure 1 (d-g) shows the comparison between TRMM, PRISM, Stage-IV, 349 

as well as WRF simulated total precipitation amount from June, July and August (JJA) of 2018. 350 

First of all, all 3 observational data sources show similar geospatial pattern of precipitation over 351 

land, with larger precipitation of about 7 mm day
-1

 over Iowa at the upstream of the lakes and 352 

even larger precipitation amount at the southeast downstream of the lakes in Pennsylvania, 353 

Delaware. Although there is slight precipitation overestimation in Indiana and Ohio, the WRF 354 

model driven by ERA5 can decently capture such overall dipole pattern in precipitation, 355 

including that over the Canadian side.  356 

 357 

When divided into different convection types, the MCS precipitation is mainly located upstream 358 

to the west of the lakes (Figure 1h), whereas IDC precipitation is mainly distributed over the 359 

southwest of the domain in the reference dataset (Figure 1i). Similarly, the non-convection 360 
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precipitation is also located over the southwest domain but with slightly larger magnitude 361 

(Figure 1j). The simulated precipitation associated with different convections can generally 362 

resemble that of the reference dataset (Figure 1k-1m), although the MCS precipitation is slightly 363 

underestimated compared to the reference datasets (Figure 1k). Similar to the reference, the 364 

simulated IDC precipitation is also mainly located in the southeast of the domain but with slight 365 

overestimation over the south and southwest (Figure 1l). The non-convection is again well-366 

captured by the baseline simulation (Figure 1m). Overall, the baseline simulation is reasonable 367 

for further investigation of future precipitation changes using this modeling configuration. 368 

 369 

3.2 Future precipitation changes 370 

3.2.1 Overall precipitation changes 371 

Precipitation in future scenarios and their changes compared with baseline are shown in Figure 2. 372 

Overall, the future summer precipitation shows clearly different spatial patterns with decreased 373 

precipitation upstream of the Great Lakes Basin and increase over the northeast and southeast of 374 

the domain (Figure 2a-b and 2d-e). Downscaled simulations with forcing derived from individual 375 

GCM generally agree with the overall pattern, though with slightly different magnitudes. For 376 

example, simulation driven by CanESM5, CMCC and FGOALS show the least, moderate and 377 

largest amount of precipitation increase (Figure 2g-i). It is also noteworthy that the spatial 378 

distribution of summer mean precipitation is very similar between PGW_GCMavg and 379 

PGW_RCMavg, although PGW_RCMavg shows a smoother spatial pattern because it averages 380 

across the 11 WRF simulations driven by individual ESMs. In fact, when we look at individual 381 

rainstorm events, PGW_GCMavg can still capture some rainfall peaks that are forced by 382 

individual ESM forcing. This indicates that, with limited computing resources, it can be 383 

reasonable to conduct the WRF simulations with the ESM ensemble mean. However, to quantify 384 

the uncertainty due to different forcings, it is still needed to run WRF simulations driven by 385 

individual ESMs, as we do in this study. For instance, the standard deviation of precipitation 386 

suggests that there might be larger uncertainties in the simulated precipitation over northeast 387 

Wisconsin, south Michigan (Figure 2c). Nevertheless, the summer averaged precipitation 388 

changes produced by PGW_GCMavg and PGW_RCMavg are very similar in spatial patterns 389 

(Figure 2f).  390 

 391 
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 392 
Figure 2. Simulated precipitation in future warmer climate and its changes against the baseline 393 

simulation. a-b) Simulated precipitation from PGW_GCMavg and PGW_RCMavg, c) standard 394 

deviation from the ensemble of 11 ESMs, d-e) precipitation difference between PGW_GCMavg, 395 

PGW_RCMavg and baseline, f) the difference between PGW_GCMavg and PGW_RCMavg 396 

(PGW_GCMavg minus PGW_RCMavg), g-i) difference between the selected coolest 397 

(FGOALS), moderate (CMCC), and warmest (CanESM5) ESM and the baseline simulation. The 398 

black line represents the cross-section shown in Figure 4. 399 

3.2.2 Changes in MCSs and IDCs and their Characteristics  400 

This section examines the future changes associated with different convection types, i.e., the 401 

MCSs and IDCs. Figure 3 displays the distribution of MCS precipitation in warmer climate 402 

(Figure 3a-b) and the changes in future projected by PGW_GCMavg and PGW_RCMavg 403 

(Figure 3c-d). In the historical period, MCS precipitation is distributed mainly over the west 404 

portion of the domain, and slightly extends to the northeast of the GLR (Figure 1k). In warmer 405 

climate, precipitation associated with MCSs seems to shift to the east with increase mainly over 406 

the southeast and east side of the domain, resulting in a decrease over its original location 407 

(Figure 3a-d) and an increase over downstream of GLR. Such spatial shift is clear and consistent 408 

in all WRF ensemble runs (not shown). 409 

 410 

 411 
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Figure 3. Spatial distribution of the different precipitation types and their changes from the 

baseline simulation. (a-b) Simulated MCS precipitation in a) PGW_GCMavg and b) 

PGW_RCMavg. (c-d) difference in MCS precipitation between c) PGW_GCMavg and CTRL d) 

PGW_RCMavg and CTRL. (e-h) similar as (a-d) but for IDC precipitation. (j-l) similar as (a-d) 

but for non-convective precipitation. 

 412 

Figure (3e-f) displays the distribution of IDC precipitation and the changes projected by 413 

PGW_GCMavg and PGW_RCMavg (Figure 3g-h). Historical IDC precipitation spreads over the 414 

entire domain, with larger portion to the south and southeast side of the domain (Figure 1l). In 415 

the future scenarios, the IDC precipitation shifts further to the north and northeast side of the 416 

domain (Figure 3g-h) and agrees among all individual ensemble model (not shown). The non-417 

convection precipitation generally shows a decreasing pattern almost over the entire domain, 418 

with the exception of the northeast domain (Figure 3i-l). Notably, although variabilities exist in 419 

the spatial distribution of different convective precipitation among different ensemble members, 420 

the general pattern agrees reasonably well between PGW_GCMavg and PGW_RCMavg, again 421 

supporting the applicability of using ensemble mean of ESM deltas as forcing to downscale 422 

future scenarios.  423 

 424 

3.2.3 Physical Mechanisms 425 

This section aims to understand the mechanisms for the MCS and IDC precipitation changes at 426 

the specific locations as identified in the previous section. To do so, we first study the 427 

environmental conditions for overall precipitation by examining the thermodynamic variables 428 

including CAPE, CIN, LCL and LFC. This is done for the entire domain as well as after 429 
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separating it into upwind and downwind regions to specifically understand the moisture 430 

contribution of the Great Lakes. We then study these thermodynamic factors separately for MCS 431 

and IDC events, and also investigate the characteristic changes in MCS and IDC to understand 432 

the common and unique factors causing their respective future changes.  433 

 434 

To explore the mechanisms of the overall precipitation changes, Figure 4 shows the cross-section 435 

analysis of thermodynamic environment from the upwind to the downwind of the Great Lakes. 436 

The CAPE and CIN shown here represents the amount of available potential energy or inhibition 437 

from each level to the equilibrium level, and is different from CAPE and CIN, which represent 438 

the maximum out of these levels. In the baseline simulation, the upwind region is featured with 439 

high CAPE, relatively low LCL and LFC compared to the downwind region (Figure 4a-c), and 440 

therefore more conducive for convection at the upwind regions (Figure 1g). In a warmer climate, 441 

the existence of the Great Lakes increases evaporation and acts as a moisture source for the 442 

surrounding and downwind regions (Figure 4d-f & 4g-i). As a result of the moisture increase, it 443 

causes an increase in CAPE especially at the immediate downwind of water bodies (Figure 4e & 444 

4h). Meanwhile, LCL also shows a decrease downwind of GLR (Figure 4e & 4h). Moreover, 445 

LFC shows an even larger decrease in this downwind region (Figure 4f and 4i). Overall, the 446 

warming-induced changes in thermodynamic environment leads to a more stable environment at 447 

the upwind with higher LCL and larger CIN; and more unstable at the downwind regions with 448 

lower LCL and LFC as well as larger CAPE and ET. These changes ultimately decrease 449 

precipitation at the interior inland region at the upstream and increase precipitation at the 450 

downwind of the Great Lakes. These changes may explain why MCS decreases upstream and 451 

IDC increases downstream of the GLR. 452 

 453 
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 454 

 455 

 
Figure 4: Cross-sectional analysis along the cross-section shown in Figure 2g, which pass over southern Lake Michigan (shown 

between 42.08-44.07 N) and Lake Huron (shown between 44.07- 46 N). a) Color shading indicates the specific humidity (units: g kg
-

1
), the black curve indicates the evapotranspiration along the cross-section from the land and water bodies (magnitude corresponds to 

y-axis on the right). d and g) color shading shows the difference in specific humidity, while the black curve indicates the difference in 

evapotranspiration between PGW_GCMavg, PGW_RCMavg and baseline simulation, respectively. b, e and h) are similar to a, d and 

g) expect that the color shading displays the CAPE, the black curve shows the height of LCL (magnitude corresponds to the left y-

axis). c, f and i) are similar to b, e, h) except that the color shading shows the CIN and black curve shows the level of LFC multiplied 

by a factor of 0.25. 
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 456 

Figure 5a and 5b display regions with the same sign of changes as a result of warming for MCS 457 

and IDC precipitation among all individual ensembles. Moreover, the diurnal cycles of MCS and 458 

IDC precipitation over the identified regions are shown to pinpoint the time at which the largest 459 

differences in MCS and IDC occur. Figure 5c and 5d show that over places where MCS or IDC 460 

precipitation is increased, the largest differences occur both around local early evenings around 461 

18 local time (LT, corresponds to 00 UTC). Alternatively, when MCS or IDC precipitation is 462 

decreased in the PGW simulations, as shown in Figure 5e and 5f, MCS precipitation decreases 463 

the most near local midnight to early morning, while IDC precipitation decreases the most near 464 

the same time. Nevertheless, we select thermodynamic environment at 18 LT to further 465 

understand the corresponding changes, both increase and decrease, in MCS and IDC 466 

precipitation. We have also looked at other timings and the general conclusions remain the same 467 

regardless of the timing selected. 468 

 469 

 
Figure 5: Identification of location and time where MCS and IDC precipitation increase and 

decrease due to PGW perturbation. a) Model agreement of MCS precipitation change due to 

the PGW perturbation, red and blue indicates MCS precipitation decrease and increase 

consistently among all ESM ensemble members. (c) Diurnal cycle of MCS precipitation over 

places where all models agree that MCS is increased in the PGW simulations (i.e., blue region 

in a). Black curve represents the CTRL simulation, the blue shading indicates the ensemble 

range, blue line with circle represents the mean of individual models (i.e., PGW_RCMavg), 

blue line with cross represents the simulation forced by the ESM mean as forcing (i.e., 

PGW_GCMavg). (e) Same as (c) except the diurnal cycle of MCS precipitation is over places 

where MCS is decreased (i.e., red region in a). (b, d and f) are similar as (a, c and e) but for 
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IDC.  

To further understand the role of each of these thermodynamic factors in modulating the future 470 

precipitation changes in both MCS and IDC, Figure 6 displays the relationships between changes 471 

in CAPE and CIN as well as LCL and LFC and changes in precipitation. Surprisingly, we found 472 

that, regardless of the precipitation types (MCS or IDC) and changes (increase or decrease), 473 

CAPE and CIN always increase, suggesting that CAPE and CIN may not be the factors 474 

determining precipitation changes. In other words, regardless of precipitation increase or 475 

decrease, the negative buoyant energy air parcels need to overcome before freely ascending is 476 

universally increased. Once air parcels become positively buoyant, air parcels are more unstable 477 

with more convective potential (i.e., CAPE). The greater values of CAPE and CIN in a warmer 478 

climate have also been reported in previous studies (Rasmussen et al. 2020). Interestingly, LFC 479 

and LCL demonstrate a relatively clearer relationship between their changes and precipitation 480 

changes. Specifically, when the LCL and LFC decrease (increase), there are precipitation 481 

increase (decrease), shown in Figure 6b. This is physically intuitive because with lower LCL and 482 

LFC it is easier for air parcels to form clouds and grow into organized convection.  483 

 484 

 485 

 486 

 
Figure 6. Scatter plots demonstrating the relationship between changes in CAPE and CIN and 

future precipitation change (left), as well as changes in LCL and LFC and future precipitation 

change (right). Color represents precipitation increase (blue) or decrease (brown) due to the 

PGW perturbation. 

 487 

In summary, we find that there is a precipitation decrease upstream of GLR, and a precipitation 488 

increase downstream. Such changes are promoted by an environment with increased ET, CAPE, 489 

and CIN, and lower LCL and LFC over and downstream of the Great Lakes (Figure 4). 490 

However, CAPE and CIN increase is not the determining factors of the precipitation increase, 491 

instead, lower LCL and LFC are the key players increasing precipitation downstream of Great 492 

Lakes. We next examine how the warmer and moister (in terms of specific humidity) 493 

atmospheric, respectively and collectively, contribute to these changes seen in LFC and LCL.  494 

 495 

LCL and LFC are derived as a function of vertical profiles of water vapor mixing, 496 

temperature,geopotential height, and surface pressure. These could be simplified as the equation 497 

[LFC, LCL] = f(water vapor mixing ratio, temperature, geopotential height, surface pressure, …). 498 

When these input values from baseline or PGW simulations are plugged into the equation, the 499 

respective LCL and LFC can be obtained. In this study, to estimate the first order effects of 500 

temperature (moisture) on LCL or LFC changes, we swap the temperature (moisture) values 501 
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from the baseline simulation with temperature (moisture) from the PGW simulations. These 502 

sensitivity calculations are designed such that no oversaturation would occur in either scenario 503 

while eliminating the need to re-run PGW simulations considering only temperature or moisture 504 

change.  505 

 506 

Figure 7 shows the opposite effect of PGW-induced temperature and moisture on LCL and LFC 507 

changes for MCS precipitation (same for IDC; not shown). Based on Figure 6, we know that 508 

over places where precipitation is increased (decreased) both the future LCL and LFC are 509 

decreasing (increasing), which is also shown in Figure 7. However, when we only change the air 510 

temperature based on our PGW simulation output, and keep everything else the same, it leads to 511 

a higher LCL and LFC, making it more difficult for convection to occur (i.e., PGW_T; red dots). 512 

On the contrary, the future moisture changes lead to a lower LCL and LFC, which can result in 513 

more conducive environment for convection to occur (i.e., PGW_Q; yellow dots). This is 514 

because with warmer temperature, there are much higher saturated water vapor pressure 515 

following the CC relation. If specific humidity is fixed, then relative humidity will be decreased, 516 

making the vapor pressure deficit larger and more difficult to reach saturation in the lower 517 

atmosphere, resulting in higher LCL and LFC. Conversely, higher moisture amount with fixed 518 

temperature gives rise to much higher relative humidity and therefore lower LCL and LFC, and 519 

ultimately leading to more convective conducive environment.  520 

 521 

 

 
Figure 7. Scatter plots of LCL (left) and LFC (right) for baseline and perturbed calculations by 

changing air temperature only (indicated by orange color), and moisture only (yellow), 
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respectively. Left and right columns are for locations where MCS is increased and decreased 

in the PGW simulations (i.e., blue and red region in Figure 5a respectively). The general 

conclusion is the same regardless locations. The same also holds true for IDC cases and 

therefore not shown.   

 522 

This finding highlights the importance of low-level moisture for the formation of MCS 523 

precipitation, which has been also highlighted by previous studies (e.g., Schumacher and Peters, 524 

2017; Peters et al. 2017; Yang et al. 2023b). Schumacher and Peters (2017) found that the low-525 

level moisture strongly regulates the amount of precipitation produced by MCSs, i.e., a 3.4% 526 

increase in vertically integrated water vapor leads to an increased by nearly 60% in the area 527 

integrated MCS precipitation. Given the importance of low-level moisture in conditioning the 528 

thermodynamic environment (Schumacher and Peters, 2017; Yang et al. 2023b), vertical profiles 529 

of RH are shown in Figure 8. For places where MCS or IDC are increased (1st and 3rd column), 530 

the RH profiles of PGW simulations are very similar to or slightly smaller than that of the 531 

baseline simulations. This is because the temperature is much warmer in PGW simulations, and 532 

the amount of moisture carried by the atmosphere is much more in the PGW simulations than the 533 

CTRL simulation. If a proper lifting mechanism exists along with the much higher CAPE 534 

(Figure 4e & 4h), both MCS and IDC precipitation would be increased in PGW simulations 535 

compared with the baseline. On the other hand, for places where MCS or IDC are decreased (2nd 536 

and 4th column), the RH profiles in PGW simulations are much drier than the baseline 537 

simulations. Such drier conditions lead to higher LFC/LCL (Figure 4, 6 & 7), making it difficult 538 

for convection to occur, which ultimately cause less precipitation associated with MCS and IDC 539 

events (Figure 3 & 5).   540 

 541 

 542 

 
Figure 8. Relative humidity profiles over regions where MCS/IDC are increased (1

st
 and 3

rd
 

columns) and decreased (2
nd

 and 4
th 

columns) for selected GCMs at 18 LT. All other GCMs 

show the same behavior and are not shown. 

 

The analysis above suggests that the key thermodynamic factors that cause the precipitation 



manuscript in preparation for JGR-atmosphere 

 20 

increase overall is the lower LCL and LFC; and that the increased moisture in future is the main 

driver of such decrease in LCL and LFC. This mechanism is true for both MCS and IDC when 

study the entire domain as a whole. However, from Figures 2-3, we know that the changes in 

MCS and IDC are spatially distinct. Here we further examine the differences between these two 

types of precipitation changes. To explain the differences in spatial coverage of MCS 

precipitation between the baseline and the PGW simulations, Figure 9 displays all the MCS 

tracks from initiation to dissipation for the entire season. The MCS tracks agree with the overall 

spatial pattern of MCS precipitation amount (Figure 1k, 3a & 3b). For example, MCS tracks 

gather towards the western portion of the domain with only two MCS events initiated in the 

south and southeast of GLR in the baseline simulation (Figure 9a). In contrast, in the PGW 

simulations, there are more tracks that originate over the central and southern domain and bring 

precipitation to the southeast of GLR (Figure 9b), which explains the increase in MCS 

precipitation in Ohio, Pennsylvania and West Virginia (Figure 3c-d). MCS events are less 

frequent near the US-Canada border in Wisconsin and Michigan (Figure 9a & 9b), resulting in 

MCS precipitation decrease over these regions in PGW_GCMavg (Figure 3c-d). there are also 

fewer MCS tracks in PGW simulations compared with the baseline simulation (e.g., 28 in 

PGW_GCMavg compared to 32 in CTRL). 

 

Given their relative short life length and travel distance, IDC initiation locations are considered 

to be good proxies for the IDC event locations. The total number of IDCs witnesses a 40% 

decrease from 8887 in the baseline to 5418 in PGW_GCMavg. Such a reduction in IDC 

frequency is consistent with previous studies that show decrease in frequency in light to 

moderate precipitation (Chen et al.2019, Rasmussen et al. 2020). We also found that the 

reduction is almost universal in the entire domain (Figure 9c-d). Nevertheless, there are still 

increase in IDC precipitation amount in PGW simulations over the domain as shown in Figures 

3g-h. This increase is due to more intense precipitation rate, longer duration, and large spatial 

coverage (Figure 9e-h). Therefore, the mechanisms for the changes in MCS and IDC 

precipitation in future are different. The shift of the MCS precipitation from upstream to 

downstream is mainly due to the changes in MCS tracks, whereas the increase of IDC 

precipitation can be explained by a combination of increase in precipitation intensity, duration 

and spatial coverage, despite the decreased frequency over entire domain.  
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Figure 9: MCS and IDC characteristics for CTRL and PGW_GCMavg. a and b) the MCS 

tracks from initiation to dissipation through their entire life cycles. c and d) the zonal and 

meridional frequency of IDCs. e-h) IDC characteristics including stratiform rain rate, 

convective rain rate, duration and convective area for CTRL, PGW_GCMavg and 

PGW_RCMavgs, the error bars in the third columns indicate the standard deviation across 

different ensemble members.  
 

 543 

4 Summary and Discussions 544 

We performed an ensemble of regional climate simulations through the Pseudo-Global Warming 545 

(PGW) approach to understand the future summer precipitation change over the Great Lakes 546 

Region (GLR). Results show that the location of future precipitation is shifted for different 547 

convection types in the PGW simulations. More intense, long-lasting MCS induced precipitation 548 

move to the east and southeast of the GLR. Due to the shift in precipitation systems, there is a 549 

net precipitation decrease upwind and precipitation increase downwind of the Great Lakes. The 550 

variation in different convective precipitation is mainly associated with thermodynamic changes 551 

in LCL and LFC, rather than CAPE and CIN, although they are found to be increased almost 552 

over the entire domain, similar to those found in previous studies. This suggests that CAPE and 553 
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CIN are not the determining factor in controlling the changes in precipitation. Instead, LCL and 554 

LFC changes play more critical roles. Specifically, over places where LCL and LFC are lower, 555 

the amount of precipitation is likely to increase for both MCSs and IDCs in the PGW 556 

simulations. Our results further suggest that PGW induced moisture and temperature change 557 

exert the opposite effect on the LCL and LFC, i.e., PGW induced moisture increase is more 558 

likely to lower the LCL and LFC whereas PGW induced temperature increase is more likely to 559 

lift LCL and LFC.  560 

The cross-section analysis indicates a reduction in evaporation at the upwind region, likely 561 

attributable to the concurrent precipitation decrease. As a result of the decrease in latent heat 562 

flux, more energy is partitioned into sensible heat, thus increasing the surface air temperature. 563 

The warmer and drier atmosphere at the upwind region become less favorable for convection to 564 

occur, as indicated by higher LCL. However, the existence of the Great Lakes serves as an 565 

abundant source of moisture for its surrounding and downwind region. The increase in 566 

atmospheric moisture lowers the LCL and LFC and thereby facilitating convection, especially 567 

for the downwind regions.  568 

While many previous studies utilize the PGW approach with the ensemble mean of GCM deltas 569 

providing the future forcing, the uncertainty of ensemble members driven by individual GCMs 570 

has rarely been evaluated. In this study, we evaluated the ensemble mean of GCM forcings by 571 

running the PGW simulation derived from each individual GCM model and compared with the 572 

ensemble mean. Overall, while there exist variabilities in terms of MCS or IDC characteristics 573 

among the PGW simulations based on individual GCMs, the mean of simulations driven by each 574 

individual GCM forcings is very similar to that of the simulation driven by the mean of GCM 575 

forcings. As such, our results indicate that it would be appropriate for future analysis containing 576 

more years to adopt the ensemble mean of GCM forcings to drive regional climate models, as 577 

our results show that this approach would adequately capture the overarching signals and 578 

physical mechanism induced by perturbations. 579 

While this study analyzes one summer in 2018, the findings are important due to the following 580 

reasons. First, 2018 was a neutral year over the Great Lakes region, and its MCS and IDC 581 

patterns are similar to the multi-year climatology, as presented in Wang et al. (2022). Second, the 582 

12 ensemble members in the PGW simulations show consistent results in terms of the future 583 

summer precipitation changes although the magnitude varies across ESMs. While we present the 584 

ensemble mean results in the main manuscript, all analyses have been done for each ensemble 585 

member, and results are consistent between all ensemble members. This suggests that the 586 

physical mechanisms, for both the MCS and IDC precipitation changes, are consistent across all 587 

the ensemble members.  588 
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