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Trees realize multi-objective optimization to fulfill growth and reproduction (Farnsworth & Niklas, 1995).
These are governed by several trade-offs among light and hydraulic efficiencies, storage capacity, and me-
chanical support functions (Pratt & Jacobsen, 2016). In resource-limited environments, or otherwise in
stressful conditions, these trade-offs become acute and crucial for the overall tree performance (Rasmussen
& Kollmann, 2004; Dobbertin, 2005; Hacket-Pain et al., 2018). Whole tree architecture, at any time of
its development, is the effect of the past interactions between the internal growth processes and exogenous
constraints exerted by the environment (Barthélémy & Caraglio, 2007). Thanks to the rapid progress in
close-range remote sensing methods to quantify tree architecture (Barbeito et al., 2017), many recent stud-
ies addressed the problem of encoding and extracting the information about tree functional fitness from
the structural information (Verbeeck et al., 2019; Nunes et al., 2023; McNeil et al., 2023). Much focus
was on the economically relevant, abundant large-statured trees, either mature or saplings, growing in good
conditions (McNeil et al., 2023). The small-statured trees or shrubs attained much less attention (Charles-
Dominique et al., 2012), although these may provide large fruit crops (Greene & Johnson, 1994), and while
often being stress-tolerant (Brzeziecki & Kienast, 1994), form stable elements of disturbance-prone ecosys-
tems (Żywiec & Ledwoń, 2007). In this paper we analyze a unique data from detailed tree measurements
of a fleshy-fruited phenotypically plastic tree species, growing near the upper distribution limit, to test the
idea that similar tree architectures may result in contrasting performances, represented by long-term fruit
yield, depending on the ecological context and canopy openness gradient.

Trait multi-functionality sets individual traits sub-optimal for specific functions (Sack & Buckley, 2019).
Whole-tree size structural traits are typically multi-functional (Poorter et al., 2003) and may be both poly-
genic and pleiotropic (Farnsworth & Niklas, 1995), resulting from hierarchical, emergent consolidation of
lower-level traits (Charles-Dominique et al., 2012). As a result, high co-linearity is usually found among
the tree size traits (Martin-Ducup et al., 2020; Verbeeck et al., 2019), making the contributions to indi-
vidual functions hard to disentangle (Messier et al., 2017; Sack & Buckley, 2019). Nonetheless, a division
of the size traits into vertical and horizontal extents was proposed (Seidel et al., 2019), reflecting the pre-
dominant linkages to functions of space exploration and light harvest, respectively (Hallé, 2001). A better
insight into the structure-function network in trees may be provided by including the so-called relative traits,
or architectural proportions (Iida et al., 2011; MacFarlane & Kane, 2017), with both a higher level of trait
orthogonality and specific trade-offs (negatively correlated traits) within the major trait dimensions (Martin-
Ducup et al., 2020; Kędra & Barbeito, 2022). Using this approach, it was revealed that trees may amplify
specific functions along ontogeny and increasing size, such as for light harvest and reproduction, resulting
in architecture convergence with increasing canopy position in large-statured trees (Martin-Ducup et al.,
2020). However, architecture divergence (Loubota Panzou et al., 2018) was also reported when both large-
and small-statured trees were included, suggesting two or more viable architectural trait combinations. The
architecture convergence-divergence hypotheses require further testing (Martin-Ducup et al., 2020; Loubota
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Panzou et al., 2018). Particularly, of interest are the intraspecific architecture-function trajectories in the
small-statured species of mixed life-history strategy, while it appears that such species have a predominant
effect on the community-level structural diversity (Iida et al., 2011; Loubota Panzou et al., 2018), exhibit-
ing more than a single architectural optimum depending on local environment and type of stress (Sack &
Buckley, 2019).

The intraspecific variability of rowan architecture has. . . . (Laurans et al., 2024)
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