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Abstract

Second order vector-valued nonlinear differential equations occurring in science and engineering have been
considered which generally do not have closed-form solutions. Explicit incremental semi-analytical numeri-
cal solution procedures for nonlinear multiple-degree-of-freedom systems have been developed. Higher order
equivalent differential equations were formulated and then subsequent values of vectors were updated using
explicit Taylor series expansions. As the time-step tends to zero, the values of displacement and velocity are
exact in the Taylor series expansions involving as many higher order derivatives as necessary. Second order
differential equations considered were, the van der Pol equation, Duffing equation and nonlinear equation for
the pendulum. A linear second-order two-degrees-of-freedom system subjected to a history of loading, initial
conditions of displacement and velocity formed a vector-valued function which was shown to be easily extended
to multiple-degrees-of-freedom systems using mass, damping and stiffness matrices such as those obtained from
finite element methods. A two-state nonlinear first order differential equation has also been addressed, and the
three dimensional system equations derived by Lorenz that demonstrate the phenomenon of chaos. Further
applications of the semi-analytical procedures to time-dependent systems should also include, time-independent
equations that are differentiable in terms of other independent variables, such as partial differential equations
that have many independent variables.

Keywords

Nonlinear dynamical systems; nonlinear oscillatory systems; higher order equivalent differential equations; semi-
analytical procedures.

1 Introduction

This article gives details of robust semi-analytical numerical solution procedures for some nonlinear vector-
valued (m-dof) first-order, second-order and nth-order differential equations in science and engineering which
generally do not have closed-form solutions. Starting by acknowledging the early contributions of the Newmark
trapezoidal scheme [1], that possessed limited accuracy and stability characteristics, that was used for time-
integration of nonlinear finite element analysis of solids and structures, to further improved solution procedures,
such as, the improved numerical dissipation of Hilber et. al. [2], consistent tangent operators of Simo and Taylor
[3], time-stepping schemes of Wood [4], simple second order accurate implicit integration schemes of Bathe et.
al. [5], and finite element methods of Zienkiewicz et. al. [6].

1.1 Implicit schemes

Zienkiewicz et. al. [6] introduced an implicit generalised Newmark integration scheme from the truncated Taylor
series expansion of the displacement function u and its derivatives, as follows

un+1 = un + ∆tu̇n + ...+ ∆tp

p! u
(p)
n + βp

∆tp

p! (u
(p)
n+1 − u

(p)
n )

u̇n+1 = u̇n + ∆tün + ...+ ∆tp−1

(p−1)!u
(p)
n + βp−1

∆tp−1

(p−1)! (u
(p)
n+1 − u

(p)
n )

...

u
(p−1)
n+1 = u

(p−1)
n + ∆tu

(p)
n + β1∆t(u

(p)
n+1 − u

(p)
n )

(1)

where u, u̇, ü, are displacement, velocity and acceleration. Setting p = 2 forms the equivalent Newmark scheme [1]
which consists of two recurrence equations of displacement and velocity, and when combined with the governing
second order differential equation (4), gives three simultaneous equations in three unknowns. Carrying on from
these contributions, a forward-backward difference time-integration scheme was developed by Kaunda [7], using
Taylor series, for solutions of nonlinear oscillatory systems, giving birth to more accurate implicit generalised
one-step multiple-value algorithms [7],[8], repeated here for convenience.

sn+1 +

k=p∑
k=1

(−1)k

k!
[γ1k∆t

d

dt
]ksn+1 = s∗ = sn +

k=p∑
k=1

1

k!
[β1k∆t

d

dt
]ksn (2)

vn+1 +

k=p−1∑
k=1

(−1)k

k!
[γ2k∆t

d

dt
]kvn+1 = v∗ = vn +

k=p−1∑
k=1

1

k!
[β2k∆t

d

dt
]kvn (3)

where s = x denotes displacement, v = ẋ denotes velocity and a = ẍ represents acceleration. Equations
(2) and (3) provide the necessary extra equations to solve the differential equation (4) such that there are



three equations in three unknowns. The implicit algorithms presented in [6],[7],[8], permitted to determine
and optimise stability and accuracy of the recurrence equations by choosing appropriate tuneable integration
parameters, βp, γik, βik. Numerical dissipation or algorithmic damping, mostly desired in finite element methods,
may also be incorporated to filter out high frequency responses, as considered in Hilber et. al. [2].

1.2 Explicit schemes

With supporting literature [6]-[18], on convergence, stability and accuracy, new semi-analytical procedures are
now proposed for nonlinear multiple-degree-of-freedom systems with emphasis on reliable explicit incremental
solution procedures, as opposed to iterative schemes, which turn out to be fast and accurate and depend on
only differentiation (for continuously differentiable functions), as opposed to integration (usually difficult for
nonlinear equations), to solve nonlinear differential equations. As a result, stability of the algorithms is condi-
tional and for small increments, convergence, stability and accuracy are simultaneously achieved. The explicit
algorithm being focused in this paper is a subset of the implicit algorithms given by equations (1), (2) and (3),
where βp = 0, γik = 0, βik = 1. Semi-analytical methods for the n-th order governing differential equations use
higher order equivalent differential equations. For example, the second order differential equation (4), only dis-
placement and velocity recurrence equations (2) and (3), which are associated with prescribed initial conditions,
are updated using Taylor series.

The article is organised as follows: Section 2 develops the solution of nonlinear vector-valued oscillatory sys-
tems. Section 3 develops a two-degrees-of-freedom system, nonlinear two-state first order differential equations
and extension to multiple-degree-of-freedom systems using mass, damping and stiffness matrices such as those
obtained from finite element methods. Section 4 presents and discusses results, and Section 5 draws conclusions.

2 Nonlinear vector-valued oscillatory system

The differential equation describing a nonlinear vector-valued oscillatory system may have the general form

ẍ+ f(ẋ, x, t) = 0;x(0) = x0; ẋ(0) = ẋ0; t = t0 (4)

The superposed dot on x, represents differentiation with respect to time, t, and double-dot represents second
derivative. Closed-form solutions of most nonlinear systems do not exist.

2.1 Van der Pol equation

The van der Pol equation, which fits in the general case of equation (4), is described by the single-valued
differential equation (5), which is an example of soft nonlinear systems. The stable oscillations, also called
relaxation oscillations are a type of limit cycle in electrical circuits employing vacuum tubes. Attention is drawn
to an autonomous system where the time, t, is not an explicit variable.

ẍ+ µ(x2 − 1)ẋ+ x = 0;x(0) = x0; ẋ(0) = ẋ0;µ > 0 (5)

which may be written as

ẍ− µẋ+ x = −µẋx2 = −µ d
dt

(
1

3
x3) (6)

where µ, is a positive constant. Equation (5) represents a differential equation with variable damping, and
for |x| > 1 possesses a unique limit cycle, δ, which must surround the origin [13]. The earliest work on this
relaxation oscillator started by Appleton [19] and van der Pol [20], but various Russian authors had given very
general methods of establishing the existence of periodic, or almost periodic, solutions of a class of equations
which includes the van der Pol equation. These methods usually involved transforming the equation into a
pair of equations, and a good deal of manipulation; the methods depended on the general theory of differential
equations including the Poincare theory of solutions in powers of a small parameter. Cartwright and co-workers,
[21],[22],[23], dedicated their mathematical skills in solving the van der Pol system equations. However, a closed-
form solution remains elusive for µ >> 0, and this is the motivation for the present article.

Marios Tsatsos [24] conducted a theoretical and numerical study of the van der Pol equation in a thesis and
presented some theory of averaging, successive approximations and symbolic dynamics. A historical outline
was given regarding modern applications and modelling with the van der Pol oscillator, from experiments with
oscillations in a vacuum tube triode circuit such that all initial conditions converged to the same periodic orbit
of finite amplitude, to models concerning a variety of physical and biological phenomena, such as stability of
the human heart dynamics.



A very comprehensive historical paper was published in 2016 by Jean-Marc Ginoux [25]. It gives details of
the development of state of the art work, from nonlinear oscillations to chaos theory. No closed-form or general
analytical solution of the van der Pol equation exists, which is the motivation for the current numerical contri-
butions. Some graphical and limited methods of solution are given in Strogatz [12] and Jordan et. al. [17], who
also cite numerous examples such as: the beating of a heart; the periodic firing of a pacemaker neuron; daily
rhythms in human body temperature and hormone secretion; chemical reactions that oscillate spontaneously;
and dangerous self-excited vibrations in bridges and aeroplane wings. The period, waveform and amplitude of
oscillations are looked at in each of these examples. In this article, simple and robust semi-analytical solution
methods are considered.

2.1.1 Natural frequency and period of oscillation

It is observed, see Figure 2, that, as µ→ +∞, there is a positive infinite slope in displacement, x, in the interval
−1 ≤ x ≤ +2 and a negative infinite slope in displacement in the interval +1 ≥ x ≥ −2, and the velocity is
practically, ẋ << ẋmax, during the displacement intervals, −2 ≤ x ≤ −1 and +2 ≥ x ≥ +1 proceeding in a
clock-wise phase trajectory.

The period of oscillation for the van der Pol equation is derived from observing the displacement - time graph
of Figure 2, and the velocity - displacement graph of Figure 3. For µ >> 1, and choosing displacement, x1 = 2,
corresponding to time, t1 = τ/2, and next displacement x2 = 1, corresponding to t2 = τ , with corresponding
velocities, such that (ẋ2 − ẋ1) << µ 4

3 , as shown in Table 1. By integration over the time interval, dt

ẍ+ µ(x2 − 1)ẋ+ x = 0∫
ẍdt+

∫
µ(x2 − 1)ẋdt+

∫
xdt = 0

(7)

Recall

ẍdt = dẋ, ẋdt = dx, xave = (x1 + x2)/2 =
3

2
(8)

Then ∫
dẋ+

∫
µ(x2 − 1)dx+ xave

∫
dt = 0

ẋ+ µ(x
3

3 − x) + xavet+ C = 0 Indefinite integral

ẋ|ẋ2

ẋ1
+ µ(x

3

3 − x)|x2
x1

+ 3
2 t|

t2
t1 = 0 Definite integral

(ẋ2 − ẋ1)− µ 4
3 + 3

4τ = 0
τ = µ 16

9
ω = 1

µ
9π
8

(9)

where
∫ τ
τ/2

cdt was used to represent an average value, c = xave. Rewriting the van der Pol equation and
integrating,

ẍ+ µ(x2 − 1)ẋ+ x = 0∫
ẍdt+

∫
µ(x2 − 1)ẋdt+

∫
xdt = 0∫

dẋ+
∫
µ(x2 − 1)dx+

∫
xdt = 0

(10)

If
∫
dẋ = (ẋ2 − ẋ1) = 0, as is the case at (x1, x2), then the last equation is approximated by∫

µ(x2 − 1)dx+

∫
xdt ≈ 0 (11)

Dividing through by x, ∫
µ

(x2 − 1)

x
dx+

∫
dt ≈ 0 (12)

and integrating over (x1 = 2, x2 = 1) and (t1 = τ/2, t2 = τ), yields τ = µ(3 − 2ln2). For µ >> 1, the value
of period, τ = µ 16

9 , given by equation (9), compares favourably with τ = µ(3 − 2ln2) + 2αµ−0.333 + ..., where
α = 2.338, as derived in Strogatz [12], and the corresponding natural frequency is ω = 1

µ
9π
8 .

2.1.2 Maximum velocity and point of inflexion

At t = τ , the equation for maximum velocity is now derived by integration over the time interval, dt.

ẍ+ µ(x2 − 1)ẋ+ x = 0∫
ẍdt+

∫
µ(x2 − 1)ẋdt+

∫
xdt = 0∫

dẋ+
∫
µ(x2 − 1)dx+ xave

∫
dt = 0

ẋ|ẋmax
0 + µ(x

3

3 − x)|−1
−2 + 3

2 t|
τ
τ = 0

ẋmax = − 4
3µ or |ẋmax| = 4

3µ

(13)



Table 1: Relationships between displacement, velocity and acceleration for µ = 160

t xt ẋa ẍa ẋb ẍb
τ/2 2.0 0 -2 -213.3333 1.0240e+05
≈ 3τ/4 1.5000 120 -2.4002e+04 0 -1.5000
≈ τ 1.2500 191.6703 -1.7252e+04 -0.0036 -0.9272
τ 1 213.3333 -1 0 -1
τ 0.7500 195.0022 1.3649e+04 -0.0022 -0.9070
τ 0.5000 146.6667 1.7600e+04 0 -0.5000
τ 0.2500 78.3357 1.1750e+04 -0.0024 -0.6090
τ 0 0.5000 80 -0.5000 -6.4382
τ -0.2500 0.0024 0.6090 -78.3357 -1.1750e+04
τ -0.5000 0 0.5000 -146.6667 -1.7600e+04
τ -0.7500 -0.0016 0.6378 -194.9984 -1.3649e+04
τ -1 -0.0035 1 -213.3298 1
τ -1.2500 -0.0068 1.8663 -191.6598 1.7251e+04
τ -1.5000 -0.0167 4.8338 -119.9833 2.3998e+04
τ -1.7500 11.4204 -3.7670e+03 0.2463 -79.5191
τ -2 213.3158 -1.0239e+05 0.0176 -6.4382

Note:
τ/2 ≤ t ≤ τ
ẍ+ µ(x2 − 1)ẋ+ x = 0
ẋ2

2 + µ(x
3

3 − x)ẋ+ x2

2 + C = 0

x = x0, ẋ = ẋ0, C = −[
ẋ2
0

2 + µ(
x3
0

3 − x0)ẋ0 +
x2
0

2 ]
Solve for quadratic in ẋ given any −2 < xt < 2, see Figure 5

µx
3

3 ẋ+ x2

2 − µxẋ+ ẋ2

2 + C = 0
Solve for cubic in x given any −µ 4

3 < ẋt < µ 4
3 , see Figures 6, 7

ẍ = f(ẋ, x); ẋ = f(x),
From the table,
xmax = 2,
ẋmax = 213.3333 at x = 1 or x = −1,
ẍlarge = 1.0239e+ 05 > ẍmax when x = xmax outside limit cycle
(ẋ2 − ẋ1) = (ẋx=0 − ẋx=2) = (0.5000− 0) = 0.5000
τ = [ 4

3µ− (ẋ2 − ẋ1)]/ 3
4 = [ 16

9 µ−
4
3 (ẋ2 − ẋ1)] ≈ 16

9 µ
ω = 2π/τ

From Figure 3, this is the interval, −1 ≥ x ≥ −2, where x drops down steeply with t1 ≈ t2 = τ in a clockwise
phase trajectory. The relationship between τ and ẋmax is, µ = τ 9

16 = ẋmax
3
4 , which gives ẋmax = τ 3

4 = 2π
ω

3
4 = Ω.

Within the interval 0.5 ≥ x ≥ −0.5, there is a point of inflexion for velocity, see Figures 3 and 10, given by

ẍ+ µ(x2 − 1)ẋ+ x = 0∫
ẍdt+

∫
µ(x2 − 1)ẋdt+

∫
xdt = 0∫

dẋ+
∫
µ(x2 − 1)dx+ xave

∫
dt = 0

ẋ|ẋinf

0 + µ(x
3

3 − x)|−0.5
0.5 + 3

2 t|
τ
τ = 0

ẋinf = − 275
300µ or |ẋinf | = 275

300µ

(14)

This means that for a given value of µ, the inflexion point of velocity is |ẋinf | = 275
300µ, as seen on a plot of

velocity ẋ vs displacement x. Alternatively, by integration over dx

ẍ+ µ(x2 − 1)ẋ+ x = 0∫
ẍdx+

∫
µ d
dt (

x3

3 − x)dx+
∫
xdx = 0∫

ẋdẋ+ d
dt

∫
µ(x

3

3 − x)dx+
∫
xdx = 0∫

ẋdẋ+ d
dtµ(x

4

12 −
x2

2 ) +
∫
xdx = 0

ẋ2

2 |
ẋmax
0 + µ(x

3

3 − x)ẋ|(−1,ẋmax)
(−2,0) + x2

2 |
−1
−2 = 0

ẋmax = 0, ẋmax = − 4
3µ or |ẋmax| = 4

3µ for µ >> 1

(15)



One half-cycle of the van der Pol oscillator consists of intervals, 2 ≥ x ≥ 1, 1 ≥ x ≥ −1, and −1 ≥ x ≥ −2 in a
clockwise phase trajectory. The last interval is now considered by integration over dx.

ẍ+ µ(x2 − 1)ẋ+ x = 0∫
ẍdx+

∫
µ d
dt (

x3

3 − x)dx+
∫
xdx = 0∫

ẋdẋ+ d
dt

∫
µ(x

3

3 − x)dx+
∫
xdx = 0∫

ẋdẋ+ d
dtµ(x

4

12 −
x2

2 ) +
∫
xdx = 0

ẋ2

2 + µ(x
3

3 − x)ẋ+ x2

2 + C = 0 (Indefinite integral)
ẋ2

2 |
0
ẋmax

+ µ(x
3

3 − x)ẋ|(−2,0)
(−1,ẋmax) + x2

2 |
−2
−1 = 0 (Definite integral)

ẋmax = 0, ẋmax = − 4
3µ for µ >> 1

(16)

Again, the maximum velocity is, ẋmax = 4
3µ.

2.1.3 Maximum acceleration and point of inflexion

Given the acceleration in the form
ẍ = −(µ(x2 − 1)ẋ+ x) (17)

the acceleration, ẍ = 0, when (ẋ = x = 0). The maximum acceleration, ẍ = ẍmax, is approximately when
(x = −1.6, x = −0.4, x = 0.4, x = 1.6) and (ẋ = ẋinf , ẋ = −ẋinf ). Acceleration has a point of inflexion,
ẍ = ẍinf , when approximately (−0.25 ≤ x ≤ 0.25), see Figure 4, specifically for which ẋinf = µ 29375

60000 . The
maximum acceleration is found by differentiating acceleration with respect to displacement and velocity and
equating the result to zero for maxima or minima or point of inflexion.

d
dẋ (ẍ) = −µ(x2 − 1)
d
dx (ẍ) = −(µ(2x)ẋ+ 1)

(18)

such that (dẍdx + dẍ
dẋ ) = 0, or

−µ(x2 − 1)− (µ(2x)ẋ+ 1) = 0 (19)

Recall that
ẋ = dx

dt ; ẍ = dẋ
dt ;

...
x = dẍ

dt

dt = dx
ẋ = dẋ

ẍ = dẍ...
x

dẍ
dx =

...
x
ẋ = −(µ(2x)ẋ+ 1) and dẍ

dẋ =
...
x
ẍ = −µ(x2 − 1)

(20)

Therefore, the time-derivative of acceleration,
...
x = 0, since (dẍdx + dẍ

dẋ ) = (
...
x
ẋ +

...
x
ẍ ) = 0, it follows that

...
x = −[µ(x2 − 1)ẍ+ (2µxẋ+ 1)ẋ] = 0

ẍmax = − (2µxẋ+1)ẋ
µ(x2−1) ; x 6= 1;

....
x > 0 for ẍ = ẍmin;
....
x < 0 for ẍ = ẍmax;
....
x = −[(µ(6xẋ) + 1)ẍ+ µ2ẋ3] = 0 for ẍ = ẍinf

ẍinf = − 2µẋ3

1+6µxẋ

(21)

For µ = 160, the approximate observed local maxima of acceleration in one periodic cycle are shown in Table
2. It is observed that there is a point of asymptotes between the times 0.08200 and 0.08900 seconds where the
acceleration peaks at -17955.6 then suddenly jumps to 27701.7 (m/s2). This is also observed between the times
112.650 and 112.657 (0.4τ) seconds as well as between the times 242.378 and 242.384 (0.85τ) seconds. This is
confirmed in the graph of acceleration vs time in Figure 8.

Table 2: Maximum acceleration

t x ẋ ẍ
0.08200 -0.590700 -156.887 -17955.6
0.08900 -1.675090 -90.6957 27701.7
112.650 0.547982 186.977 22587.4
112.657 1.786850 88.6905 -35829.3
242.378 -0.441346 -173.106 -22301.6
242.384 -1.728500 -108.201 36126.8



The second order differential equation of the van der Pol oscillator may be recast as

ẍ = f(ẋ, x, t) = −[µ(x2 − 1)ẋ+ x] (22)

After differentiating the equation with respect to time
...
x = −[µ(x2 − 1)ẍ+ µ(2xẋ)ẋ+ ẋ]
....
x = −[µ(x2 − 1)

...
x + µ(2xẋ)ẍ

+ µ2(xẋ)ẍ+ µ2(ẋ2 + xẍ)ẋ+ ẍ]
x(5) = −[µ(x2 − 1)

....
x + µ(2xẋ)

...
x

+ µ2(xẋ)
...
x + µ2(ẋ2 + xẍ)ẍ

+ µ2(xẋ)
...
x + µ2(ẋ2 + xẍ)ẍ

+ µ2(ẋ2 + xẍ)ẍ+ µ2(2ẋẍ+ ẍ2 + x
...
x )ẋ+

...
x ]

...

x(N) = dN−2

dtN−2 f(ẋ, x, t)

(23)

These derivatives have been obtained analytically, which will be used in the solution of the waveform of the van
der Pol oscillator, using the semi-analytical procedures considered in Section 2.4.

2.2 Duffing oscillator

The Duffing equation is given by a nonlinear second order differential equation (24)

ẍ+ δẋ+ αx+ βx3 = γcos(ωt);x(0) = x0, ẋ(0) = ẋ0 (24)

where x, is the displacement, ẋ, velocity, ẍ, acceleration, and δ, α, β, γ, ω are constants. Such systems occur in
vibration of mechanical systems with nonlinear restoring forces, such as soft and hard nonlinear springs, which
do not obey Hooke’s law. The second order differential equation may be recast as

ẍ = f(ẋ, x, t) = γcos(ωt)− [δẋ+ αx+ βx3] (25)

After differentiating the equation with respect to time
...
x = −γωsin(ωt)− [δẍ+ αẋ+ 3βx2ẋ]
....
x = −γω2cos(ωt)− [δ

...
x + αẍ+ 3β(2xẋ2 + x2ẍ)]

x(5) = γω3sin(ωt)− [δ
....
x + α

...
x + 3β[2(ẋ3 + x2ẋẍ) + 2xẋẍ+ x2 ...

x ]]
x(6) = γω4cos(ωt)− [δx(5) + α

....
x + 3β[2(3ẋ2ẍ+ 2(ẋ2 + xẍ2 + xẋ

...
x ))

+ 2(ẋ2 + xẍ2 + xẋ
...
x ) + 2xẋ

...
x + x2 ....

x ]]
...

x(N) = dN−2

dtN−2 f(ẋ, x, t)

(26)

These derivatives have been obtained analytically, which will be used in the solution of the waveform of the
Duffing oscillator, using the semi-analytical procedures considered in Section 2.4.

2.3 Pendulum

A nonlinear equation of a simple pendulum oscillating about an equilibrium position is of the form

θ̈ +
g

L
sin(θ) = 0 (27)

where g, is the acceleration due gravity, and θ, is the angular deflection from equilibrium of the pendulum of
length, L. The second order differential equation may be recast as

θ̈ = f(θ) = − g
L
sin(θ) (28)

After differentiating the equation with respect to time
...
θ = − g

L θ̇cos(θ)....
θ = − g

L [θ̈cos(θ)− θ̇2sin(θ)]

θ(5) = − g
L [(

...
θ cos(θ)− θ̇θ̈sin(θ))

− (2θ̇θ̈sin(θ) + θ̇3cos(θ))]
...

x(N) = dN−2

dtN−2 f(θ)

(29)

These derivatives have been obtained analytically, which will be used in the solution of the waveform of the
nonlinear pendulum swing, using the semi-analytical procedures considered in Section 2.4.



2.4 Semi-analytical procedures for nonlinear vector-valued differential equations

For each of the above equations, in general homogeneous or non-homogeneous forms, the solution procedure is
carried out as follows

ẍ = f(ẋ, x, t), for x(0) = x0, ẋ(0) = ẋ0
...
x = d

dtf(ẋ, x, t) = ḟ(ẍ, ẋ, x, t)
....
x = d2

dt2 f(ẋ, x, t) = f̈(
...
x , ẍ, ẋ, x, t)

x(5) = d3

dt3 f(ẋ, x, t) =
...
f (

....
x ,

...
x , ẍ, ẋ, x, t)

...

x(N) = dN−2

dtN−2 f(ẋ, x, t)

(30)

These form higher-order equivalent differential equations [9] which are used in the solution of the waveform of
the nonlinear vectors. Further higher order derivatives may be necessary to increase accuracy, for N → ∞.
For the implicit iterative algorithms involving higher order derivatives exceeding the order of the differential
equation, initial conditions of the vectors are determined at the beginning of each iteration, where the higher
order equivalent differential equations come in handy. In contrast, for explicit algorithms, subsequent vector
values of displacements, xi, and velocities, ẋi, are determined and updated recursively from the explicit Taylor
series expansions

xn+1 = xn + ∆tẋn + ∆t2

2! ẍn + ∆t3

3!

...
x n + ..., n = 0, 1, 2, 3, ...

ẋn+1 = ẋn + ∆tẍn + ∆t2

2!

...
x n + ∆t3

3!

....
x n + ..., n = 0, 1, 2, 3, ...

(31)

where the analytically obtained acceleration and higher-order derivatives are evaluated from the higher order
equivalent differential equations. This is the first time in the procedure where errors are committed in the
algorithm because of terminating the Taylor series at an upper summation limit of N �∞. Then, for each of
the above equations, the solution procedure recursively proceeds as follows

ẍ = f(ẋ, x, t), for x(n) = xn, ẋ(n) = ẋn, n = 0, 1, 2, 3, ..
...

x(N) = dN−2

dtN−2 f(ẋ, x, t)

(32)

where the new accepted sub-initial conditions are x(n) = xn, ẋ(n) = ẋn, n = 1, 2, 3, ... Note that finite
difference methods, such as central difference or backward difference or implicit schemes, are not used in the
above algorithm. The procedure is therefore an explicit incremental forward difference method using the Taylor
series updates. Clearly, as the time-step, ∆t → 0, the values of displacement and velocity are exact in the
Taylor series expansions involving as many higher order derivatives as necessary, for N → ∞. The explicit
algorithm convergence, stability, accuracy and speed depend on the size of the time-step and number of higher-
order derivatives included. For most practical examples, this is not a set back when compared with implicit
algorithms. The convergence may be tested using the ratio test for both the displacement and velocity Taylor
series which have to be updated. The stability is conditional depending on the size of the time-step.

2.4.1 Practical termination of and error in recurrence equations

Ideally, the recurrence equations should be terminated at N →∞. Practically, for most accurate results

xn+1 = xn + ∆tẋn + ∆t2

2! ẍn + ∆t3

3!

...
x n + ...,+∆tN

N ! x
(N)
ζs

n < ζs = n(1 + 1
N+1 ) < n+ 1

n = 0, 1, 2, 3, ...

ẋn+1 = ẋn + ∆tẍn + ∆t2

2!

...
x n + ∆t3

3!

....
x n + ...+ ∆tN−1

(N−1)!x
(N)
ζv

n < ζv = n(1 + 1
N ) < n+ 1

n = 0, 1, 2, 3, ...

(33)

where n < ζs = n(1+ 1
N+1 ) < n+1 represents the point where the last term is evaluated, at time, tn < tζs < tn+1,

for the displacement, xn, and n < ζv = n(1 + 1
N ) < n+ 1, at time, tn < tζv < tn+1, for the velocity, ẋn and N

is the highest power of ∆t for each series, respectively. The best estimate for ζ = n(1 + 1
N ) is elegantly derived

in Irons et. al. [14]. The errors for displacement and velocity recurrence equations are, respectively, of order

O(∆tN

N ! x
(N)
ζs

) and O( ∆tN−1

(N−1)!x
(N)
ζv

).

2.4.2 Radius of convergence

The mathematical ratio test may be defined [18] for a power series centered at x = a by the radius of convergence

lim
n→∞

R =
|Cn|
|Cn+1|

(34)



In this article, the following algorithm was adopted:

limn→∞R1 = |Cn−1|
|Cn|

limn→∞R2 = |Cn−2|
|Cn−1|

limn→∞R3 = |Cn−3|
|Cn−2|

(35)

Then, the radius of convergence adopted was, R = min(R,R1, R2, R3), where Cn = f(n)

n! and Cn+1 = f(n+1)

(n+1)!

and f (n) = x(n) = dxn

dtn from the Taylor series given above.

1. If R =∞, then the series converges for all x

2. If 0 < R <∞, then the series converges for all |x− a| < R

3. If R = 0, then the series converges only for x = a

The ratio test needs to be done for both the displacement and velocity Taylor series, for the purpose of adjusting
the size of time increments, for example, monitoring that the increment, ∆t < R. If the time step is prescribed
at the beginning of the algorithm such that ∆t ≥ R, the ratio test could be applied to adjust the time-step
appropriately, especially in the first time increment. Repeating the ratio test after every time-step may increase
the overall execution time and cost of the algorithm. A similar adaptive time stepping has been considered and
presented in Y. Wang et. al. [26].

3 Vector-valued differential functionals

3.1 Two-degrees-of-freedom systems (2-dof)

A linear second-order two-degrees-of-freedom system subjected to a history of loading fi(t), initial conditions of
displacement xi(0), and velocity ẋi(0) forms a vector-valued function, and is shown in Figure 1.

m1, f1(t)

m2, f2(t)

k1

k2

b1

b2

f2(t)

Figure 1: 2-dof: Mass-spring-damper system

[
m11 m12

m21 m22

]{
ẍ1

ẍ2

}
+

[
b11 b12

b21 b22

]{
ẋ1

ẋ2

}
+

[
k11 k12

k21 k22

]{
x1

x2

}
=

{
f1

f2

}
(36)

which is differentiated once with respect to time to get a third-order differential equation, and so on, to form
higher-order equivalent differential equations [9].[

m11 m12

m21 m22

]{ ...
x 1...
x 2

}
+

[
b11 b12

b21 b22

]{
ẍ1

ẍ2

}
+

[
k11 k12

k21 k22

]{
ẋ1

ẋ2

}
=

{
ḟ1

ḟ2

}
(37)

After differentiating the third-order differential equation with respect to time a fourth-oder system is obtained[
m11 m12

m21 m22

]{ ....
x 1....
x 2

}
+

[
b11 b12

b21 b22

]{ ...
x 1...
x 2

}
+

[
k11 k12

k21 k22

]{
ẍ1

ẍ2

}
=

{
f̈1

f̈2

}
(38)



These form higher order equivalent differential equations [9] which are used in the solution of the waveform
of the nonlinear vectors, using the semi-analytical procedures considered in Section 2.4. Further higher order
derivatives may be neccessary to increase accuracy. The eigenvalues λ, are determined from the eigenvalue
problem or eigenproblem

Av = λv (39)

where

A =

[
m11 m12

m21 m22

]−1 [
k11 k12

k21 k22

]
(40)

and the corresponding natural frequencies are ωi = λ
1
2
i , and v is the eigenvector of the eigenproblem. Vector

values of displacements, xi, and velocities, ẋi, are then determined and updated recursively from the explicit
Taylor series expansions

xn+1 = xn + ∆tẋn + ∆t2

2! ẍn + ∆t3

3!

...
x n + ..., n = 0, 1, 2, 3, ...

ẋn+1 = ẋn + ∆tẍn + ∆t2

2!

...
x n + ∆t3

3!

....
x n + ..., n = 0, 1, 2, 3, ...

(41)

where the exact vector values of acceleration and higher-order derivatives are evaluated from the higher-order
equivalent differential equations.

3.2 Multiple-degrees-of-freedom systems (m-dof)

Vector-valued functions can be handled easily using matrices and vectors, such as mass matrices, M , damping
matrices, B, and stiffness matrices, K, for example, obtained from finite-element methods so that

[M ]{a}+ [B]{v}+ [K]{s} = {f} (42)

where {a}, {v}, {s}, {f}), are acceleration, velocity, displacement, and force vectors, respectively, and where the
exact values of higher-order derivatives are evaluated analytically from the higher order equivalent differential
equations.

3.3 Nonlinear first-order system state equations (1-dof)

Consider a first-order system of differential equations, a nonlinear two-degrees-of-freedom system taken from
Meirovitch [15], subject to initial conditions of displacements xi(0)

ẋ1 = x2 + x1(1− x2
1 − x2

2)
ẋ2 = −x1 + x2(1− x2

1 − x2
2)

(43)

The velocities ẋi, are obtained from the initial conditions x1, x2, given above. By differentiating the velocities
with respect to time, the accelerations, ẍi are then obtained as follows:

ẍ1 = ẋ2 + ẋ1(1− x2
1 − x2

2) + x1(−2x1ẋ1 − 2x2ẋ2)
ẍ2 = −ẋ1 + ẋ2(1− x2

1 − x2
2) + x2(−2x1ẋ1 − 2x2ẋ2)

(44)

and after differentiating the accelerations with respect to time, the third derivatives
...
x i, are obtained

...
x 1 = ẍ2 + ẍ1(1− x2

1 − x2
2) + ẋ1(−2x1ẋ1 − 2x2ẋ2)

+ ẋ1(−2x1ẋ1 − 2x2ẋ2) + x1(−2(ẋ2
1 + x1ẍ1)− 2(ẋ2

2 + x2ẍ2))
...
x 2 = −ẍ1 + ẍ2(1− x2

1 − x2
2) + ẋ2(−2x1ẋ1 − 2x2ẋ2)

+ ẋ2(−2x1ẋ1 − 2x2ẋ2) + x2(−2(ẋ2
1 + x1ẍ1)− 2(ẋ2

2 + x2ẍ2))

(45)

Again, differentiating the third time the equations with respect to time, the fourth derivatives
....
x i are

....
x 1 =

...
x 2 +

...
x 1(1− x2

1 − x2
2) + ẍ1(−2x1ẋ1 − 2x2ẋ2)

+ ẍ1(−2x1ẋ1 − 2x2ẋ2) + ẋ1(−2(ẋ2
1 + x1ẍ1)− 2(ẋ2

2 + x2ẍ2))
+ ẍ1(−2x1ẋ1 − 2x2ẋ2)
+ ẋ1(−2(ẋ2

1 + x1ẍ1)− 2(ẋ2
2 + x2ẍ2))

+ ẋ1(−2(ẋ2
1 + x1ẍ1)− 2(ẋ2

2 + x2ẍ2))
+ x1(−2(2ẋ1ẍ1 + ẋ1ẍ1 + x1

...
x 1)− 2(2ẋ2ẍ2 + ẋ2ẍ2 + x2

...
x 2))

....
x 2 = − ...

x 1 +
...
x 2(1− x2

1 − x2
2) + ẍ1(−2x1ẋ1 − 2x2ẋ2)

+ ẍ1(−2x1ẋ1 − 2x2ẋ2) + ẋ1(−2(ẋ2
1 + x1ẍ1)− 2(ẋ2

2 + x2ẍ2))
+ ẍ1(−2x1ẋ1 − 2x2ẋ2)
+ ẋ1(−2(ẋ2

1 + x1ẍ1)− 2(ẋ2
2 + x2ẍ2))

+ ẋ1(−2(ẋ2
1 + x1ẍ1)− 2(ẋ2

2 + x2ẍ2))
+ x1(−2(2ẋ1ẍ1 + ẋ1ẍ1 + x1

...
x 1)− 2(2ẋ2ẍ2 + ẋ2ẍ2 + x2

...
x 2))

(46)



These derivatives have been obtained analytically and form higher-order equivalent differential equations [9],
which are used in the solution of the waveform of the nonlinear vectors, using the semi-analytical procedures
considered in Section 2.4. Further higher order derivatives may be necessary to increase accuracy. Vector values
of displacements, xi, are then determined and updated recursively from the explicit Taylor series expansions.

xn+1 = xn + ∆tẋn + ∆t2

2! ẍn + ∆t3

3!

...
x n + ..., n = 0, 1, 2, 3, ... (47)

where the exact values of velocity, acceleration and higher-order derivatives are evaluated from the higher-order
equivalent differential equations.

3.4 Chaos: Lorenz equations

The three dimensional system derived by Lorenz demonstrates the phenomenon of chaos, and is given by

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = xy − bz

(48)

where σ, r, b > 0, are parameters. σ is the Prandtl number, r is the Rayleigh number, and b is related to the
aspect ratio of the rolls in the convection problem. This deterministic-looking system could have extremely
erratic dynamics over a wide range of parameters, the solutions oscillate irregularly, never repeating, but always
remaining in a bounded region of phase space. Lorenz looked at a model of convection rolls in the atmosphere.

In this article, the system is solved using semi-analytical procedures. The velocities ẋ, ẏ, ż, are obtained from
the initial conditions x, y, z, given above. By differentiating the velocities with respect to time, the accelerations,
ẍi are then obtained as follows: Differentiating the equations with respect to time, yields

ẍ = σ(ẏ − ẋ)
ÿ = rẋ− ẏ − (ẋz + xż)
z̈ = ẋy + xẏ − bż

(49)

Repeated differentiation of the equations gives

...
x = σ(ÿ − ẍ)
...
y = rẍ− ÿ − (ẍz + 2ẋż + xz̈)
...
z = ẍy + 2ẋẏ + xÿ − bz̈

....
x = σ(

...
y − ...

x )
....
y = r

...
x − ...

y − (
...
x z + 3(ẍż + ẋz̈) + x

...
z )

....
z =

...
x y + 3(ẍẏ + ẋÿ) + x

...
y − b ...

z

(50)

x(5) = σ(
....
y − ....

x )
y(5) = r

....
x − ....

y − (
....
x z +

...
x ż

+ 3(
...
x ż + 2ẍz̈ + ẋ

...
z ) + ẋ

...
z + x

....
z )

z(5) =
....
x y +

...
x ẏ + 3(

...
x ẏ + 2ẍÿ + ẋ

...
y )

+ ẋ
...
y + x

....
y − b ....

z

x(6) = σ(y(5) − x(5))
y(6) = rx(5) − y(5) − (x(5)z +

....
x ż

+
....
x ż +

...
x z̈

+ 3(
....
x ż +

...
x z̈

+ 2(
...
x z̈ + ẍ

...
z ) + ẍ

...
z + ẋ

....
z )

+ ẍ
...
z + ẋ

....
z + ẋ

....
z + xz(5))

z(6) = x(5)y +
....
x ẏ +

....
x ẏ +

...
x ÿ

+ 3(
....
x ẏ +

...
x ÿ

+ 2(
...
x ÿ + ẍ

...
y ) + ẍ

...
y + ẋ

....
y )

+ ẍ
...
y + ẋ

....
y + ẋ

....
y + xy(5) − bz(5)

....

(51)

The above derivatives have been obtained analytically and form higher-order equivalent differential equations
[9] which are used in the solution of the waveform of the nonlinear vectors, using the semi-analytical procedures
considered in Section 2.4. Further higher order derivatives may be necessary to increase accuracy. Vector values



of displacements, xi, yi, and zi, are then determined and updated recursively from the explicit Taylor series
expansions.

xn+1 = xn + ∆tẋn + ∆t2

2! ẍn + ∆t3

3!

...
x n + ..., n = 0, 1, 2, 3, ...

yn+1 = yn + ∆tẏn + ∆t2

2! ÿn + ∆t3

3!

...
y n + ..., n = 0, 1, 2, 3, ...

zn+1 = zn + ∆tżn + ∆t2

2! z̈n + ∆t3

3!

...
z n + ..., n = 0, 1, 2, 3, ...

(52)

where the exact values of velocity, acceleration and higher-order derivatives are evaluated from the higher-order
equivalent differential equations.

4 Results and discussions

First order, ẋ = f(x, t), and second order, ẍ = f(ẋ, x, t), vector-valued differential equations have been solved.
Explicit incremental solutions of nonlinear multiple-degree-of-freedom systems have been developed. Higher or-
der equivalent differential equations were formulated and then subsequent values of vectors were updated using
explicit Taylor series expansions. Clearly, as the time-step, ∆t→ 0, the values of displacement and velocity are
exact in the Taylor series expansions involving as many higher order derivatives as necessary.

Figure 9 shows a graph for the van der Pol equation with data: Velocity - displacement graph for: ẍ +
µ(x2 − 1)ẋ + x = 0;x(0) = x0, ẋ(0) = ẋ0;µ = 160; for various initial conditions: (0.5, 0.0); (1.0, 100.0);
(1.0,−100.0); (2.0, 100.0); (2.0,−100.0); (−1.0, 100.0); (−1.0,−100.0); (−2.0, 100.0); (−2.0,−100.0); ∆t = 0.001
seconds and having a limit cycle, using µ = 160. Figure 10 shows a velocity - displacement graph, for the
constants µ = 0, 1, 1.5, 2. While the maximum displacement is 2(m), for the different constants, the maxi-
mum velocity for µ = 2 is greater than that of µ = 1, given by ẋmax = 4

3µ. The bigger the constant, the
greater the maximum velocity. For µ >> 1, the value of period is, τ = µ 16

9 , which compares favourably with
τ = µ(3− 2ln2) + 2αµ−0.333 + ..., where α = 2.338, as derived in Strogatz [12]. and therefore the corresponding
natural frequency is, ω = 1

µ
9π
8 . Figure 11 shows the corresponding displacement - time graph for µ = 0, 1, 2.

Further developments consisted of closed-form solutions of the van der Pol equation, as shown in Table 1,
with corresponding Figures (5), (6) and (7), showing, respectively, two graphs of velocity vs displacement and
a graph of acceleration vs displacement. The curves are mostly enclosed inside the limit cycle determined using
the semi-analytical procedures. The closed-form solutions show autonomus equations such that acceleration,
ẍ = f(ẋ, x) and velocity, ẋ = f(x), for − 4

3µ < ẋ < 4
3µ and displacement, −2 < x < 2. What remains to be

determined is the closed-form solution of, x = f(t).

Table 3 shows profile data of functions in which self-time and total time spent in functions are compared.
The displacement (s) truncation errors, Es, are also indicated, taken from [7],[8], plus the type of algorithm,
such as iterative (implicit) or incremental (explicit). The van der Pol constant used was µ = 160, using a
time-step of 0.001 seconds.

From Table 3, the fastest time was achieved by the Newmark equivalent scheme (maek1s2v) because
of the least number of steps in the program. The second fast scheme (maek1s4v2022c) is the incremental
scheme because it does not include iterative steps. The slowest scheme is the one-step five-value method
(maek1s5v2nd3rd4th) which was a combined procedure including the second, third, fourth and fifth order
equivalent differential equations. This scheme has the least truncation error in the table. The second slow
scheme (maek1s4v2022) is the one-step four-value method which has the less truncation error than that of the
Runge-Kutta method. Between one-step four-value and Runge-Kutta methods, the self-time and total time are
not much different. The corresponding displacement vs time graph is shown in Figure 12. All the methods gave
reasonably the same results, except the Newmark equivalent scheme whose plot indicate a slight phase lead.
These results confirm those obtained in references [7] and [8].

Figure 13 shows a graph for the Duffing equation, taken from Thomson [16] wiith data: Velocity - displacement
graph for: ẍ + δẋ + αx + βx3 = γcos(ωt);x(0) = x0, ẋ(0) = ẋ0. Initial conditions: (0, 0), (−6,−6), (6, 6), and
constants, δ = 0.4, α = 1, β = 0.5, γ = 0.5, ω = 0.5. The steady-state conditions were reached after 1 cycle for
various initial conditions, and Figure 14 shows a displacement - time graph for three initial conditions and the
steady-state conditions were reached after 1 cycle. The results given in Thomson [16] are confirmed.

Figure 15 shows a graph for the nonlinear pendulum equation with data: Velocity - displacement graph for:
θ̈ + g

l sin(θ) = 0; g = 9.81 (m/s2); length of pendulum: l = 2 (m); initial θ = π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8,
7π/8, 7.9π/8 ≈ π (rad) for inner ring, initial θ = π/8, whereas for outer ring, initial θ ≈ π; ∆t = 0.01 seconds
and having length l = 2(m), for various initial angles of deflection from θ = π/8 to a large θ ≈ π. Figure 16
shows a graph for the pendulum of length l = 10(m). The maximum steady-state deflections for both cases are



Table 3: MATLAB profile data

File Calls Total time Self-time Error Es Iterative /
(seconds) (seconds) Incremental

call 1 92.916 0.018

maek1s5v2nd3rd4th 1 35.585 30.568 −∆t11

11! s
(11)(ζs) Iterative

maek1s4v2022 1 27.126 2.792 ∆t9

9! s
(9)(ζs) Iterative

call-rkgen 1 11.227 0.013 ∆t5

5! s
(5)(ζs) Iterative

rkgen 1 11.181 10.255 ∆t5

5! s
(5)(ζs) Iterative

maek1s4v2022c 1 9.894 1.739 ∆tk

k! s
(k)(ζs) Incremental

maek1s2v (Newmark) 1 9.066 5.064 ∆t5

5! s
(5)(ζs) Iterative

maek1s4vb (4-value) 1 3.344 1.418 ∆t9

9! s
(9)(ζs) single iteration

maek1s5vb (5-value) 1 2.344 1.190 −∆t11

11! s
(11)(ζs) single iteration

maek1s4vc 1 1.896 0.738 ∆tk

k! s
(k)(ζs) Incremental

Note:
Self time is the time spent in a function excluding anytime spent in child functions.
The time includes any overhead time resulting from the profiling process
The total time for the Runge-Kutta method is the total for call-rkgen and rkgen

The truncation error for the incremental scheme was of order O(∆tk)
k! s

(k)(ζs), k = 10
The last three lines show improved performances because of
minimising calls to external functions: using one function routine

practically the same whereas the maximum steady-state speed for the pendulum of length l = 2(m) is higher
than that of the pendulum of length l = 10(m). The shorter pendulum swings faster than the longer pendu-
lum for the same initial angles. Large initial angles resulted in nonlinear oscillatory motions of the pendulum,
noticeable from the departure from a simple harmonic motion having a circular phase trajectory. This is also
noticed in the graph of velocity vs time in Figure 17, which is not simple harmonic.

Figures 18 and 19 show graphs of velocity vs displacement for systems x1 and x2. The results of a nonlin-
ear two-degrees-of-freedom first order differential equations taken from Meirovitch [15], are confirmed such that
a limit cycle ended in a circle of radius 1, centred around (0, 0), for various initial conditions. Higher order
equivalent differential equations have been used to demonstrate how to extend from first and second order dif-
ferential equations.

The examples for the Lorenz system have been left out in this article because the system requires a wide
range of initial conditions to be tested together with a wide range of constants for the Prandtl and Rayleigh
numbers to demonstrate the nature of chaos.

Figure 20 shows a graph of displacement vs time for a linear two-degrees-of-freedom system taken from Thomson
[16]: m11 = m1 = 100,m12 = m21 = 0,m22 = m2 = 25; b11 = b12 = b21 = b22 = 0; k11 = 54000, k12 = k21 =
−18000, k22 = 18000; f1 = 0, f2 = 400. The eigenvalues were found as, λ1 = 258.9, with the corresponding
fundamental natural frequency, ω1 = 16.09 rad/s, and λ2 = 1001.1 with the corresponding natural frequency,
ω2 = 31.6 rad/s. The results given in Thomson [16] are confirmed.

A finite element example is taken from Y. Wang et. al. [26], which was a multiple-degree-of-freedom mass-spring
system with up to 1500 nonlinear springs, whose details are shown in Table 4. The system governing equations
are given by those in Section 3.2, where each element of the spring matrix, K, is a function of displacement, ui,
and the system does not have damping. Figure 21 shows a graph of displacement vs time for a 10-dof system
solved using a fixed time step of ∆t0 = 1e − 3(s). The CPU time was 2.197(s) for the duration of simulation
of 10π(s) or 5 periodic cycles. Figure 22 shows a graph of displacement vs time for: a 100-dof system; given
a prescribed ∆t0 = 1e − 02(s); with adaptive time stepping scheme used based on the radius of convergence
and ratio test, 281.5945e − 6 ≤ ∆tn ≤ 1e − 3(s), CPU time, 254.616(s), whereas for fixed ∆t0 = 1e − 3(s),
CPU time reduced to 69.094(s), for the same duration of simulation of 10π(s). Figure 23 shows a graph of
displacement vs time for: a 200-dof system; given a prescribed ∆t0 = 1e − 02(s); with adaptive time stepping
scheme used, 281.5945e − 6 ≤ ∆tn ≤ 1e − 3(s), CPU time, 965.138(s), whereas a CPU time of 258.764(s)
for fixed ∆t0 = 1e − 3(s), for the same duration of simulation of 10π(s). Figure 24 shows a graph of dis-
placement vs time for: a 500-dof system; prescribed ∆t0 = 1e − 02(s); with adaptive time stepping scheme



Table 4: Multiple-degree-of-freedom nonlinear mass-spring system

Mass (kg) Spring (N/m) Force (N)
m1 = 1 k1 = k f1 = sin(t)
m2 k2 f2 = sin(t)
m3 k3 f3 = sin(t)
... ... ...
mn kn fn = sin(t)

k = 105N/m α = −2

mi = 1 kg, α = −2, ki = k[1 + α(ui − ui−1)2] 2 ≤ i ≤ n

used, 281.5945e − 6 ≤ ∆tn ≤ 1e − 3(s), CPU time, 5380.668(s), and for fixed ∆t0 = 1e − 03(s), CPU time of
1478.304(s), for the same duration of simulation of 10π(s). Figure 25 shows a graph of displacement vs time
for a 1000-dof system solved using a fixed time step of ∆t0 = 1e− 3(s). The CPU time was 6485.748(s). While
the CPU time is much greater than that of Y. Wang et. al. [26] having a time-step of 0.01(s), the graph
is showing the same results, supporting the proof of concept for this incremental explicit method of solution
which inevitably requires small time steps for both accuracy and stability. The theoretical truncation errors

for displacement and velocity Taylor series recurrence equations used, were respectively, of order O(∆tN

N ! x
(N)
ζs

)

and O( ∆tN−1

(N−1)!x
(N)
ζv

), with N = 10. The graphs revealed that for a small number of degrees of freedom, such

as 10-dof, the response is sinusoidal, whereas for many degrees of freedom, for example, greater than 100-dof,
the responses departed from the sinusoidal curves. For the examples solved here, the fixed prescribed time step
resulted in less CPU time as shown in Table 5, mostly because, for the adaptable time stepping implemented,
far smaller time steps were applied automatically, based on the radius of convergence and ratio test for optimal
accuracy and stability.

Table 5: CPU time for a duration of 10π seconds or 5 periods

Degree of freedom 10 100 200 500 1000
∆t (s) 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3

Total time (s) 2.197 69.094 258.764 1478.304 6485.748

5 Conclusions

First order, ẋ = f(x, t), and second order, ẍ = f(ẋ, x, t), vector-valued nonlinear differential equations have
been solved using explicit incremental semi-analytical solutions for nonlinear multiple-degree-of-freedom sys-
tems. Higher order equivalent differential equations were formulated and then subsequent values of vectors were
updated using explicit Taylor series expansions. Clearly, as the time-step, ∆t → 0, the values of displacement
and velocity are exact in the Taylor series expansions involving as many higher order derivatives as necessary.

Second order differential equations considered were, the van der Pol equation, Duffing equation and nonlin-
ear equation for the pendulum. A first order equation, was a nonlinear two-degrees-of-freedom first order
differential equation.

A linear system of two-degrees-of-freedom, taken from Thomson [16], was initially solved to illustrate how
to extend the methods to deal with multiple-degrees-of-freedom systems using matrices and vectors, which are
typically obtained in finite element methods, as shown in Table 4 with corresponding results shown in Figures
21, 22, 23, 24 and 25.

Further developments consisted of closed-form solutions of the van der Pol equation. The closed-form solutions
showed autonomous equations such that acceleration, ẍ = f(ẋ, x) and velocity, ẋ = f(x), for − 4

3µ < ẋ < 4
3µ

and displacement, −2 < x < 2. What remains to be determined is the closed-form solution of, x = f(t).

It is recommended that further applications of the semi-analytical procedures to time-dependent systems be
extended to time-independent systems that are differentiable in terms of other independent variables, such as
partial differential equations having many independent variables.
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Figure 2: Displacement - time graph: Van der Pol equation: ẍ+µ(x2−1)ẋ+x = 0;x(0) = x0, ẋ(0) = ẋ0;µ = 160;
for initial conditions: (0.5, 0.0); ∆t = 0.001 seconds

Figure 3: Velocity - displacement graph: Van der Pol equation: ẍ+µ(x2−1)ẋ+x = 0;x(0) = x0, ẋ(0) = ẋ0;µ =
160; for initial conditions: (0.5, 0.0) ; ∆t = 0.001 seconds



Figure 4: Acceleration - displacement graph: Van der Pol equation: ẍ+ µ(x2 − 1)ẋ+ x = 0;x(0) = x0, ẋ(0) =
ẋ0;µ = 160; for initial conditions: (0.5, 0.0); ∆t = 0.001 seconds

Figure 5: Velocity - displacement graph: Van der Pol equation: ẍ + µ(x2 − 1)ẋ + x = 0;x(0) = x0, ẋ(0) =

ẋ0;µ = 160; for initial conditions: (2.0, 0.0) ; Closed-form solution: ẋ2

2 + µ(x
3

3 − x)ẋ + x2

2 + C = 0; For

x = x0, ẋ = ẋ0, C = −[
ẋ2
0

2 + µ(
x3
0

3 − x0)ẋ0 +
x2
0

2 ]; Solve for the quadratic in ẋ given any −2 < xt < 2, and
ẍ = −[µ(x2 − 1)ẋ+ x]



Figure 6: Velocity - displacement graph: Van der Pol equation: ẍ+µ(x2−1)ẋ+x = 0;x(0) = x0, ẋ(0) = ẋ0;µ =

160; for initial conditions: (2.0, 0.0) ; Closed-form solution: For x = x0, ẋ = ẋ0, C = −[
ẋ2
0

2 + µ(
x3
0

3 − x0)ẋ0 +
x2
0

2 ];

µx
3

3 ẋ+ x2

2 − µxẋ+ ẋ2

2 + C = 0; Solve for cubic in x given any −µ 4
3 < ẋt < µ 4

3 , and ẍ = −[µ(x2 − 1)ẋ+ x]

Figure 7: Acceleration - displacement graph: Van der Pol equation: ẍ+ µ(x2 − 1)ẋ+ x = 0;x(0) = x0, ẋ(0) =

ẋ0;µ = 160; for initial conditions: (2.0, 0.0) ; Closed-form solution: For x = x0, ẋ = ẋ0, C = −[
ẋ2
0

2 + µ(
x3
0

3 −
x0)ẋ0+

x2
0

2 ]; µx
3

3 ẋ+ x2

2 −µxẋ+ ẋ2

2 +C = 0; Solve for cubic in x given any−µ 4
3 < ẋt < µ 4

3 , and ẍ = −[µ(x2−1)ẋ+x]



.

Figure 8: Velocity - time and Acceleration - time graphs: Van der Pol equation: ẍ+ µ(x2 − 1)ẋ+ x = 0x(0) =
x0, ẋ(0) = ẋ0;µ = 160, ∆t = 0.001 seconds; showing peak velocity and peak acceleration and asymptotic curves

Figure 9: Velocity - displacement graph: Van der Pol equation: ẍ + µ(x2 − 1)ẋ + x = 0;x(0) = x0, ẋ(0) =
ẋ0;µ = 160; for initial conditions: (0.5, 0.0); (1.0, 100.0); (1.0,−100.0); (2.0, 100.0); (2.0,−100.0); (−1.0, 100.0);
(−1.0,−100.0); (−2.0, 100.0); (−2.0,−100.0); ∆t = 0.001 seconds



Figure 10: Velocity - displacement graph: Van der Pol equation: ẍ+ µ(x2 − 1)ẋ+ x = 0;x(0) = x0, ẋ(0) = ẋ0;
µ = 0, 1, 1.5, 2 for inner ring µ = 0, outer ring µ = 2; initial conditions: (2.0, 0.0); ∆t = 0.1 seconds

Figure 11: Displacement - time graph: Van der Pol equation: ẍ + µ(x2 − 1)ẋ + x = 0;x(0) = x0, ẋ(0) = ẋ0;
µ = 0 ”− ”;µ = 1 ” + ”;µ = 2 ”x”; initial conditions: (2.0, 0.0); ∆t = 0.1 seconds



.

Figure 12: Displacement - time graph: Van der Pol equation: ẍ+ µ(x2 − 1)ẋ+ x = 0;x(0) = x0, ẋ(0) = ẋ0;µ =
160; initial conditions: (0.5, 0.0); ∆t = 0.001 seconds; plotted during profiling functions

Figure 13: Velocity - displacement graph: Duffing equation: ẍ+δẋ+αx+βx3 = γcos(ωt);x(0) = x0, ẋ(0) = ẋ0.
Initial conditions: (0, 0), (−6,−6), (6, 6), and constants, δ = 0.4, α = 1, β = 0.5, γ = 0.5, ω = 0.5; steady-state
conditions reached after 1 cycle



Figure 14: Displacement - time graph: Duffing equation: ẍ + δẋ + αx + βx3 = γcos(ωt);x(0) = x0, ẋ(0) = ẋ0.
Initial conditions: (0, 0), (−6,−6), (6, 6), and constants, δ = 0.4, α = 1, β = 0.5, γ = 0.5, ω = 0.5; steady-state
conditions reached after 1 cycle

Figure 15: Velocity - displacement graph: Pendulum equation: θ̈ + g
l sin(θ) = 0; g = 9.81 (m/s2); length of

pendulum: l = 2 (m); initial θ = π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8, 7π/8, 7.9π/8 ≈ π (rad) for inner ring, initial
θ = π/8, outer ring, initial θ ≈ π; ∆t = 0.01 seconds



Figure 16: Velocity - displacement graph: Pendulum equation: θ̈ + g
l sin(θ) = 0; g = 9.81 (m/s2); length of

pendulum: l = 10 (m); initial θ = π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8, 7π/8, 7.9π/8 ≈ π (rad) for inner ring,
initial θ = π/8, outer ring, initial θ ≈ π; ∆t = 0.01 seconds

Figure 17: Velocity - time graph: Pendulum equation: θ̈ + g
l sin(θ) = 0; g = 9.81 (m/s2); length of pendulum:

l = 10 (m); initial θ = 7.9π/8 ≈ π (rad); ∆t = 0.01 seconds



Figure 18: Graph of velocity vs displacement: System-x1; initial conditions: (1.5,0),(-1.5,0),(0.5,0),(-0.5,0),
(0,1.5),(0,-1.5),(0,0.5),(0,-0.5); ∆t = 0.1, 0.01, 0.001, 0.0001 seconds, gave same limit cycles.

Figure 19: Graph of velocity vs displacement: System-x2; initial conditions: (1.5,0),(-1.5,0),(0.5,0),(-0.5,0),
(0,1.5),(0,-1.5),(0,0.5),(0,-0.5); ∆t = 0.1, 0.01, 0.001, 0.0001 seconds, gave same limit cycles.



Figure 20: Graph of displacement vs time: 2-dof system; x(0) = 0, ẋ(0) = 0, ∆t = 2.3416e − 06(s); 2-dof:
m11 = 100,m12 = m21 = 0,m22 = 25; b11 = b12 = b21 = b22 = 0; k11 = 54000, k12 = k21 = −18000, k22 = 18000;
f1 = 0, f2 = 400

Figure 21: Graph of displacement vs time: 10-dof system; fixed ∆t0 = 1e− 03(s); CPU time, 2.197(s), duration
of simulation, 10π(s)



Figure 22: Graph of displacement vs time: 100-dof system; ∆t0 = 1e − 02(s); with adaptive time stepping
scheme used, 281.5945e − 6 ≤ ∆tn ≤ 1e − 3(s), CPU time, 254.616(s); fixed ∆t0 = 1e − 3(s), CPU time,
69.094(s), duration of simulation, 10π(s)

Figure 23: Graph of displacement vs time: 200-dof system; ∆t0 = 1e − 02(s); with adaptive time stepping
scheme used, 281.5945e − 6 ≤ ∆tn ≤ 1e − 3(s), CPU time, 965.138(s); fixed ∆t0 = 1e − 3(s), CPU time,
258.764(s)duration of simulation, 10π(s)



Figure 24: Graph of displacement vs time: 500-dof system; ∆t0 = 1e − 02(s); with adaptive time stepping
scheme used, 281.5945e − 6 ≤ ∆tn ≤ 1e − 3(s), CPU time, 5380.668(s), fixed ∆t0 = 1e − 03(s), CPU time,
1478.304(s), duration of simulation, 10π(s)

Figure 25: Graph of displacement vs time: 1000-dof system; fixed ∆t0 = 1e − 03(s); CPU time, 6485.748(s),
duration of simulation, 10π(s)


