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Abstract

In this paper, we introduce an innovative temporal consistency enhancement approach, which enables image-based models

on video data by leveraging a deep-learning-based Kalman Filter. More specifically, we propose a novel Bi-direction Kalman

filter strategy, utilizing forward and backward processing to capitalize on higher-quality pose estimations near the camera,

enhancing the robustness and precision of vehicle tracking across varying distances and conditions. Then, rather than using the

conventional mathematical motion model, we propose a learnable motion model, dubbed Future State Predictor, to represent

the complex, non-linear motion patterns observed in vehicles. The experimental results demonstrate that our approach enhances

pose accuracy and temporal consistency, which allows us to handle the challenging occluded/distant vehicles.
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DeepKalPose: An Enhanced Deep-Learning
Kalman Filter for Temporally Consistent
Monocular Vehicle Pose Estimation

Leandro Di Bella,1,2 Yangxintong Lyu,1,2 and Adrian
Munteanu1,2

1Department of Electronics and Informatics, Vrije Universiteit Brussel,
B-1050 Brussels, Belgium
2imec, Kapeldreef 75, B-3001 Leuven, Belgium
Email: yangxintong.lyu@vub.be

In this paper, we introduce an innovative temporal consistency
enhancement approach, which enables image-based models on video
data by leveraging a deep-learning-based Kalman Filter. More specifi-
cally, we propose a novel Bi-direction Kalman filter strategy, utilizing
forward and backward processing to capitalize on higher-quality pose
estimations near the camera, enhancing the robustness and precision of
vehicle tracking across varying distances and conditions. Then, rather
than using the conventional mathematical motion model, we propose a
learnable motion model, dubbed Future State Predictor, to represent the
complex, non-linear motion patterns observed in vehicles. The experi-
mental results demonstrate that our approach enhances pose accuracy
and temporal consistency, which allows us to handle the challenging
occluded/distant vehicles.

Introduction: In recent years, the importance of scene understanding
has become increasingly important, particularly in the development of
technologies for smart mobility and intelligent transportation systems.
The need to comprehend dynamic urban environments underscores the
growing need for accurate monocular vehicle 6D pose estimation in
video. Traditional methods, predominantly image-based [1–4], often
lead to temporal pose inconsistencies in successive video frames.
More precisely, there can be irregular or unrealistic changes in the
estimated poses of vehicles across consecutive video frames. To address
this challenge, a range of innovative methods have been developed
in the field of vehicle pose estimation. The authors in [5] and [6]
have proposed frameworks capable of effectively associating moving
objects over time and estimating pose information from a sequence of
2D images by leveraging LSTM-based modules for motion learning.
[7] employs a Markov Random Field (MRF) to ensure the selection
of the optimal pose over time. This approach infers the pose for a
current frame by considering past and future poses in a batch process.
Additionally, shape completion and tracking techniques are also used,
where candidate shapes are encoded into latent vectors and compared
against a model shape, as seen in [8, 9]. These methods contribute
significantly to maintaining temporal consistency. In contrast, particle
filter-based methods remain a primary approach for pose estimation
adapted to video. For example, [10] improves vehicle detection by
feeding them into a Poisson multi-Bernoulli mixture (PMBM) tracking
filter. Furthermore, [11, 12] integrate a 3D Kalman Filter into their
frameworks, leveraging the kinematic motion of vehicles. This final
approach involves a model-based particle filter, specifically the Kalman
filter, which has demonstrated effectiveness. However, challenges arise
when dealing with systems where the underlying dynamics is unknown
or has highly nonlinear behavior. Under these conditions, creating a
mathematical model for motion becomes very complex.

In this letter, we propose an enhanced deep-learning (EDL) Kalman
Filter-based method for temporally consistent vehicle pose estimation,
dubbed DeepKalPose which is adept at reinforcing temporal consis-
tency. It can effectively address flickering artifacts in vehicle pose esti-
mation which refer to the jittery or unstable pose of a vehicle in sequen-
tial frames. DeepKalPose aims to overcome this by providing more sta-
ble and consistent tracking of the vehicle’s pose. Moreover, the design
tackles the challenges of far-object detection and occlusion by leverag-
ing the predictive capabilities of the Kalman filter. Our method advances
beyond the standard Kalman filter by incorporating a bi-branch net-
work. Each of the branches represents a forward and a backward pass
for a time-series, respectively. Additionally, unlike standard Kalman fil-

Fig 1 Schematic Overview of DeepKalPose.

ters that rely on typical mathematical motion models, our filter integrates
deep learning techniques to effectively handle the nonlinear and complex
motion patterns of vehicles. By employing an encoder-decoder architec-
ture motion model, our method aims to design a more nuanced represen-
tation of vehicular dynamics.

Notations: DeepKalPose estimates and adjusts vehicle pose estimates
over sequential frames given the predictions of an existing pose estima-
tor. Given the importance of the yaw angle in vehicle pose estimation,
this letter focuses exclusively on the yaw angle within the rotation com-
ponents. Our dataset, denoted as D, comprises a series of samples 𝑺𝒊,T ,
each representing a time-series of vehicle poses. 𝑺𝒊,T can be formally
expressed as:

S𝑖,T = {𝒓 𝑖,𝑘 }T𝑘=1 (1)

Here, D = {S𝑖,T }N𝑖=1 where 𝑖 ∈ {1, ..., N} with N representing the
total number of samples. The variable 𝑘 ∈ {1, ..., T} denotes the dis-
crete time steps with T being a fixed time length of the time-series S𝑖,T .
A vehicle pose is represented as 𝒓 𝑖,𝑘 = [𝑥𝑖,𝑘 , 𝑦𝑖,𝑘 , 𝑧𝑖,𝑘 , 𝜃𝑖,𝑘 ] ∈ R4

where 𝑥𝑖,𝑘 , 𝑦𝑖,𝑘 , 𝑧𝑖,𝑘 are the 3D translation components of the 𝑖𝑡ℎ vehi-
cle sample at timestep 𝑘 and 𝜃𝑖,𝑘 denotes the yaw or heading angle
component.

DeepKalPose employs a particle filter approach, specifically using
the Kalman Filter (KF). KF is a state space model for real-time system
that describes the evolution of the system’s state variables over time.
The state space model is described by Eq. 2a and Eq. 2b :

𝒙𝑘 = 𝐹𝒙𝑘−1 + 𝒘𝑘 (2a) 𝒓 𝑘 = 𝐻𝒙𝑘 + 𝒗𝑘 (2b)

where: 𝒙𝑘 is the state vector, 𝒓 𝑘 is the measurements vector, 𝐹

is the motion model, 𝐻 is the measurements matrix, 𝒘𝑘 and 𝒗𝑘 are the
noise covariances. The Kalman filter operates in two main steps, namely
prediction and update steps. The prediction step estimates an a priori
state vector 𝒙̂𝑘 and a prediction error 𝑃̂𝑘 .

a priori state estimate : 𝒙̂𝑘 = 𝐹𝒙𝑘−1 + 𝒘𝑘 (3)

a priori prediction error : 𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 +𝑄𝑘 (4)

Where 𝒙𝑘−1 is a a posteriori state vector at timestep 𝑘 − 1. During the
update step, we compute the Kalman Gain K following:

Optimal Kalman Gain : K𝑘 = 𝑃̂𝑘𝐻
𝑇
𝑘 (𝐻𝑘 𝑃̂𝑘𝐻

𝑇
𝑘 + 𝑅𝑘 )−1 (5)

Updated State Estimate : 𝒙𝑘 = 𝒙̂𝑘 + K𝑘 (𝒓 𝑘 − 𝐻 𝒙̂𝑘 ) (6)

Updated Estimate Covariance : 𝑃𝑘 = (𝐼 − K𝑘𝐻 ) 𝑃̂𝑘 (7)

Where the measurements vector 𝒓 𝑘 refines prediction 𝒙̂𝑘 as in Eq. (6)
and 𝐼 is the identity matrix. By doing so, we can obtain an improved
estimate 𝒙𝑘 .

Proposed Method: An overview of the methodology is illustrated in
Figure 1. This method will refine the pose predictions of an existing
pose estimator to produce a more accurate and temporally consistent
pose time-series output ŜT . To achieve this, the filter takes the
inconsistent pose prediction sequence ST as input. At each iteration 𝑘,
the measurement vector is updated as 𝒓 𝑘 = [ 𝑥̄𝑘 , 𝑦̄𝑘 , 𝑧̄𝑘 , 𝜃𝑘 ] ∈ ST .
For clarity, the symbol ¯ is used to denote measurements belonging to
ST , differentiating them from the state vector used in the KF. Given the
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Fig 2 Schematic of the proposed EDL Kalman Filter module Architecture:
This figure presents an integrated learnable motion model with a directional
KF for state estimation. Z−1 is a unit delay, ⊗ is multiplication operation,
⊕ is a sum operation and ⊖ is a substraction operation.

objective of tracking and correcting pose measurements, the state vector
is defined as 𝒙𝑘 = [𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 , 𝜃𝑘 ], thereby directing the Kalman Filter
to track the vehicle’s pose.

However, existing mathematical model based KF methods [11–14]
have difficulties solving the temporal consistency since most time-series
data from the autonomous driving task dataset typically depict vehi-
cles approaching or receding from the camera’s viewpoint. Thus, the
precision of pose estimation is significantly influenced by the vehicle’s
position within the image. Specifically, the accuracy of the estimates is
higher for vehicles positioned closer to the camera than for vehicles far-
ther away. This variability in accuracy directly impacts the effectiveness
of Kalman Filter (KF) tracking as the initial measurement and the corre-
sponding precision play a crucial role in setting the starting point of the
KF.

To address this challenge, we propose a bi-branch Kalman Filter
approach. The first branch, the forward Kalman Filter, processes the
time-series from timestep 𝑘 = 0 to T where T is the context length
of the input time sequence. Conversely, the backward Kalman Filter
branch processes the time-series in reverse, from the timestep 𝑘 = T
to 0. We note that the proposed method acts as an offline smoother and
processes the input data on chunks of T frames. While this approach
does not render the method online, selecting sufficiently small T can
enable near real time processing. This method capitalizes on the higher
quality of pose estimations near the camera, regardless of their posi-
tion within the time-series. By feeding each time-series through both the
forward and the backward EDL Kalman filter, our methodology aims
to enhance the robustness and accuracy of pose estimations for distant
and partially observed vehicles, as both scenarios present challenges for
baseline estimations.

The Kalman Filter necessitates a thorough understanding of the sys-
tem’s dynamics and noise characteristics to function effectively. How-
ever, for the pose estimation task, our limited knowledge of the vehicle’s
systems presents a significant challenge. Therefore, instead of using a
traditional model-based Kalman Filter, inspired by KalmanNet [15], our
DeepKalPose replaces the computation the Kalman gain K in Eq. 5
and both of the covariances 𝒗𝑘 (Eq. 2a) and 𝒘𝑘 (Eq. 2b) by a Recur-
rent Neural Network (RNN). Moreover, we propose a novel module,
named Future State Predictor (FSP), which is able to learn a predic-
tive motion model, as illustrated in Figure 2. The FSP block follows an
encoder-decoder architecture where the encoder takes as input the state
𝒙𝑘−1 and the sequence that is being processed 𝑆T with T the context
length of the sequence and 𝑘 ∈ {0, ..., T} representing the timestep of
the KF iterative process. More precisely, the top branch of the encoder,
namely the State Feature Extractor Module (SFEM), processes the cur-
rent state 𝒙𝑘−1 to derive a feature vector N. The SFEM captures the rel-
evant aspects of the current state that may influence the future state. The
lower branch of the encoder, namely Spatio-Temporal Feature Extrac-
tion Module (STFEM) is dedicated to extracting features P from the
entire sequence 𝑆T . This module is designed to capture the local spatial
and temporal patterns within the full sequence of 3D position vector to
give an indication on the next state. Spatial patterns represent the rela-
tionship between the different features at a given timestep, here trans-

lation and rotation components. On the other hand, temporal patterns
represent how values in the time-series change over time. In contract,
the SFEM focus on immediate characteristic of the current state. The
feature vectors from the SFEM and the STFEM are concatenated into
a combined feature vector A. The decoder consists of four State Esti-
mation Modules (SEM) which will transform individually the feature
vector A into the three translation components and the rotation compo-
nent of the predicted state vector 𝒙̂𝑘 . To train this model, we have used
a L1-loss for the translation components as follows : L𝛼 = | 𝛼̂ − 𝛼 |
where 𝛼 ∈ {𝑥, 𝑦, 𝑧} and 𝛼̂ denotes the predicted translation values.
The rotation loss is defined as: L𝜃 = 1 − cos(𝜃, 𝜃 ) where cos is the
cosine similarity between the predicted heading angle 𝜃 and the ground
truth 𝜃 . The loss per mini-batch B with the mini-batch size 𝑀 < N is
denoted as :

LB =
1
𝑀

𝑀∑︁
𝑗=1

1
T

T∑︁
𝑘=0

(L𝑥 + L𝑦 + L𝑧 + L𝜃 ) 𝑗,𝑘 (8)

Network Details: For each input image in the sequence, we use both 4D
object detection, namely D4LCN [4] and vehicle 6D pose estimation,
Mono6D [1], as pose estimator. For Mono6D, the measurement vector
is defined as 𝒙𝑘 = [𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 , 𝜃𝑘 ]. In contrast, for D4LCN, due to
the inconsistency of the heading angle prediction, our focus is primar-
ily on the translational components with 𝒙𝑘 = [𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 ]. In the FSP
module, the STFEM consists of two 1-dimensional convolution layers
(1D-CNN) with stride and padding equal to 1. The number of filters is
set to 64 for the low-level features and to 128 for the high-level ones.
Each 1D-CNN is followed by a ReLU activation function and a batch
normalization (Batch Norm). The feature map is then flattened and fed
into two dense blocks with output dimensions of 256 and 128 filters.
In the SFEM, the features N from the state at timestep 𝑘 are extracted
with three dense blocks with output dimensions corresponding, respec-
tively, to 512 - 256 and 128 filters. Both branches’ output N and P are
concatenated and fed into the decoder. This concatenated vector A con-
tains comprehensive information about both the current state and the
evolution of the states in the sequence. The decoder is composed of four
identical parallel linear blocks SEM for Mono6D and three for D4LCN,
each of which will produce a component of the state 𝒙̂𝑘 . In the training
process, the pose estimator firstly learns image by image. Then Deep-
KalPose learns by taking the predictions 𝑆T as inputs.

Experimental setup: The KITTI RAW dataset [16] is a widely used
dataset for monocular object pose estimation [4, 17, 18] and tracking
[19–21]. The dataset comprises 51 videos, divided into 39 for training
and 12 for validation. It includes a total of 9903 images for training and
2977 images for validation. We segment each sequence into fixed length
with 20 timesteps using a stride of 1 for continuity. In total, we have 674
vehicle trajectory patches for training and 375 for validation. To train
DeepKalPose, we extract the pose predictions from an existing vehicle
pose estimator [1, 4] as 𝒓 𝑘 . To handle missing data from a non-detected
vehicle by the vehicle pose estimator, we applied mean substitution. The
network is optimized by Adam Optimizer [22] with a learning rate of
0.001 and a weight decay of 0.00001. We take a batch size of 128 on
1 Nvidia GeForce RTX 2080 (12G). The iteration number for the train-
ing process is set to 4,000. Evaluation metrics used to compare against
D4LCN [4] include 3D precision-recall curves with a 3D bounding box
IoU threshold of 0.7 and 0.5 for cars as this method performs an object
detection step. Against Mono6D [1], evaluation is performed using, for
translation, the Average Relative Euclidean Distance (ARED). For rota-
tion, we use the accuracy with threshold 𝛿, denoted Acc(𝛿 ) and the
median error, Mederr, in degrees. Following the evaluation of D4LCN
in [4], we only consider the detected vehicle with a 2D bounding box
IoU threshold of 0.5.

Experimental results: In Table 1, we compared our proposed method,
DeepKalPose, with the state-of-the-art (SOTA) method D4LCN [4].
One can note that with DeepKalPose, we can significantly outper-
form D4LCN [4]. The average precision @70 of D4LCN improves to
31.12% for Easy, 24.82% for Moderate, and 16.70% for Hard scenarios,
compared to 28.07%, 21.56%, and 14.13% respectively without Deep-
KalPose. The same behavior is observed for the AP@50.
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Fig 3 Qualitative results demonstrating improved car trajectory estimation on the KITTI validation set. Row (a) and (b) depicts car trajectories plotted over
time. From left to right, the columns represent the Variation of X, Variation of Y, Variation of Z over time, and a Bird’s Eye View of the X-Z position of the car.

Table 1. Method comparison in terms of average precision.

Method Average Precision @70 Average Precision @50

Easy Moderate Hard Easy Moderate Hard

D4LCN [4] 28.07 21.56 14.13 67.08 52.55 35.74

Our Method 31.12 24.82 16.70 68.67 53.74 36.89

In addition, we re-trained Mono6D [1] by adding our proposed mod-
ule to its original framework. As shown in Table 2, one could observe
that this integration led to notable improvements in vehicle 6D pose esti-
mation. As such, the ARED saw an improvement from 5.34% to 3.90%
as described in lines 1 and 2. In addition, our method improves the head-
ing angle orientation accuracy by 4.52% for 𝛿 = 𝜋

6 and 2.08% for
𝛿 = 𝜋

18 although the median error slightly increased. This latter result
suggests that the Kalman filter’s smoothing operation leads to more sta-
ble rotations but at the expense of smaller, more frequent errors. Fur-
thermore, in scenarios of partial or complete vehicle occlusion (denoted
Occlusion in Table 2), this experiment reveals that our DeepKalPose
method is robust against occlusion demonstrating a reduction of ARED
error from 6.97% to 4.21%. Thanks to the predictive capabilities of the
Kalman filter and the use of the temporal information from past mea-
surements, DeepKalPose is able to adjust the initial noisy measurements
from the pose estimator due to occlusion and put more emphasis to the
predicted state vector learned by the FSP. Moreover, we evaluated both
methods for various vehicle distances from the camera. Specifically, for
distances exceeding 40 meters (considered as far-object detection), our
proposed method demonstrated a notable decrease in ARED from 6.28%
to 3.55%, indicating a 2.73% improvement. This suggests that Deep-
KalPose utilizes past detections and temporal informations effectively
to mitigate the impact of distance on model performance, in contrast to
the standard pose estimator whose performance diminishes with increas-
ing distance. Figure 4 confirms the efficacy of DeepKalPose against far-
vehicles pose estimation errors as illustrated by a bigger gap in ARED
between the two methods when the distance is increasing. While the
translation errors of the pose estimator increase, DeepKalPose main-
tains a constant translation error regardless of distance. Additionally, the
reduction of the variance confirms the stability of the KF pose estima-
tions across varying distances. Furthermore, in Figure 3, we plot qualita-
tive results on the KITTI validation set for two different car trajectories.
In both trajectories (a) and (b), Kalman filter estimates maintain closer
alignment with the ground truth. The overall trajectory described in both
Bird’s Eye View suggest a higher accuracy in estimating the car’s actual
path.

Conclusion: In conclusion, our research introduces an innovative
approach to monocular vehicle 6D pose estimation applied on video.
This approach integrates a deep learning-based Kalman Filter, specif-

Table 2. Method comparison in terms of translation and rotation
errors. z < and > 40m denote all detected vehicles with depth coor-
dinate higher or smaller than 40 meters. Occlusion denotes evalua-
tion results on (highly or fully) occluded vehicles.

Method ARED Acc ( 𝜋
6 ) Acc ( 𝜋

18 ) Mederr

Mono6D [1] 5.34% 84.66% 65.41% 4.94◦

Our Method 3.90% 89.18% 67.47% 5.46◦

Mono6D [1] (Occlusion) 6.97% 73.86% 49.07% 10.19◦

Our Method (Occlusion) 4.21% 82.50% 51.53% 9.30◦

Mono6D [1] (z<40m) 5.18% 84.96% 65.86% 4.85◦

Our Method (z<40m) 3.96% 89.53% 68.29% 5.24◦

Mono6D [1] (z>40m) 6.28% 82.94% 62.81% 5.51◦

Our Method (z>40m) 3.55% 87.12% 62.67% 7.02◦

Fig 4 The ARED of Mono6D and proposed method in function of distance.
Solid lines represent the mean values, while the shaded areas indicate the
variance.

ically designed to address the challenges of temporal consistency in
autonomous driving scenarios. Our method, employing a learnable
motion model, effectively captures the complex, nonlinear motion pat-
terns of vehicles. The experimental results indicate that our proposed
approach is superior to the existing techniques on both 4D object detec-
tion and vehicle 6D pose estimation tasks. Particularly, our DeepKalPose
achieves notable improvements in AP and ARED across varying difficult
levels when detecting 3D objects from single-view images while more
precise and consistent vehicle pose predictions can be predicted with
the integration of our method. These results affirm the efficacy of our
deep-learning-based Kalman Filter in video-based pose estimation and
suggest its potential in enhancing intelligent transport systems.
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