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Objectives : To evaluate the cognitive and academic outcomes of LGA children born at early-term (com-
bined exposures or independently) in the light of existing research.
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Introduction (400 words)

Large-for-gestational-age (LGA) is variously defined as weighing over 4000 grams, 4500 grams, or over the
90*" customized weight for gestational age centile™ 2. It affects about 10% of all pregnancies.® Birth of
LGA foetuses has a greater risk of complications including birth trauma, to the foetus specifically, from
shoulder dystocia which can lead to fractures, brachial plexus injury, perinatal asphyxia, and death, and to
the mother of vaginal tears, haemorrhage, and caesarean section.?A Cochrane review shows that compared
with expectant management, early induction reduces the risk of shoulder dystocia and fractures.* A large
clinical trial of LGA foetuses underway in the United Kingdom is also actively exploring whether early
induction of labour starting at 38 weeks will provide perinatal benefits to the foetus and mother.?

However, there is emerging evidence showing that early-term birth (37+°-386 gestational weeks) may be
associated with reduced cognitive abilities or increased learning problems in childhood.5'° Sixteen to 31% of
the population are delivered between 37 to 39 gestational weeks,'!> 12 and a high number of special education
needs (SEN) cases may be attributed to early-term birth. Even small decreases in cognitive scores can have
a marked impact on a child’s ability to learn and perform academically at school,'3and the effects can persist
into adulthood,'® ®bringing with them issues of work status and income-earning capacity.'® 17 The latest
UK NHS guidance (2019) warns of increasing amounts of SEN attributed to early-term births.!8

Considering the adverse effects on cognitive abilities may be confined to children born with growth restriction,
an established risk factor for cognitive impairment from childhood into adulthood!'?, in LGA babies, it is
still unclear whether by avoiding one risk (e.g. shoulder dystocia) we may increase another risk for reduced
cognitive or academic abilities. To date, there are no systematic reviews assessing the association between
LGA babies born at early-term and cognitive or academic abilities. Existing systematic reviews exploring
the effects of only early-term births on cognitive or academic outcomes do not provide estimation for each
specific week of pregnancy, which is crucial to induction timing selection.5-19 20



We aimed to systematically review the available evidence on the cognitive effects of early-term delivery in
LGA babies. However, if we are unable to find enough existing studies, then instead we will review the
effects of early-term birth and LGA on outcomes independently.

Methods

This systematic review and meta-analysis was conducted according to reporting guidelines?' and using a
prospective plrotocol.22

Information source and search strategy

X.Z. performed the search in 5 databases (PubMed, EMBASE, PsycINFO, Web of Science, and Scopus) from
inception to 13" March 2023. We used Medical Subject Headings (MeSH) and text words for the concepts: 1)
early-term delivery, 2) LGA, and 3) cognitive and/or academic outcomes. No date and language restrictions
were applied. If the published language was not English, we used an AI translator (DeepL. SE, Germany)
to perform the translation. Full search strategies are shown in Appendix S1.2? In addition, X.Z. performed
a hand search based on relevant systematic reviews on 215* September 2023. All references were imported
in EndNote 20 (Clarivate, London, United Kingdom).

Selection process and eligibility criteria

Two reviewers (X.Z. and A.P.) independently screened titles and abstracts using self-designed Excel spread-
sheets. After that potentially eligible studies were retrieved for full-text screening. Two reviewers (X.Z. and
A.P.) independently performed a second eligibility check for the studies retrieved. Any disagreements were

fully discussed until consensus was obtained, and if any uncertainty was left, a third reviewer was consulted
(D.W.).

We included studies that evaluated the association of LGA babies born at early-term and cognitive or
academic outcomes, or those evaluated the independent effects of early-term birth or LGA on cognitive or
academic outcomes. We excluded animal studies, reviews, case reports, editorials, comments, conference
abstracts and studies that targeted populations defined by specific health conditions.

Risk of bias assessment

A risk of bias assessment was performed by 2 reviewers (X.Z. and M.S.). It was evaluated according to the
Newcastle-Ottawa Scale, which consists of 8 items with a maximum of 9 stars. Studies judged [?]7 stars were
considered as low risk, [?]5 as relatively low risk, and [?] 4 as high risk. High risk on assessment was not a
reason for exclusion.

Data extraction

We collected data on author, year, study design, sample size, method of assessing LGA, intervention (in-
duction, spontaneous, caesarean delivery or not specified), age at follow-up, cognitive or academic outcome,
and confounders. The primary data extraction was performed by one reviewer (X.Z.) and checked for ac-
curacy by a second reviewer (M.S.). Any disagreements were fully discussed until a consensus was reached.
Corresponding authors of included papers were contacted by email to provide further details if data were
insufficient or missing.

To perform meta-analyses, for continuous variables, we extracted the mean, standard deviation (SD), and
total sample size (N), or mean difference, lower /upper limit, and total N, for the exposed and control groups
in the cognitive assessment scores. For the dichotomous variables, we extracted the 2*2 table or Odds Ratio
and lower /upper limit.

There were two types of reference groups for comparison of early-term infants; one type of study compared
early-term infants (37-38 weeks) with full-term infants (39-41 weeks), in which case we used full-term infants
(39-41 weeks) as the reference group. The second of studies showed results for 37, 38, 39, 40, and 41 weeks
GA separately, in which case we used 40 weeks as the reference group to examine 37w vs 40w and 38w vs
40w GA.



Any measure of cognitive function was considered for inclusion. When results were reported as both an
overall test score (e.g. Intelligence Quotient; IQ) and a domain-specific score (e.g. receptive vocabulary
delay), we chose the overall one in data synthesis. When results were only reported as domain-specific
scores within the same study population, we calculated the mean score across domain-specific tests. Where
multiple cognitive or academic outcomes were reported, we selected the one that provided the most reliable
information for analysis (e.g. 1Q test vs. school grade). Studies with follow-up of at least 6 months were
eligible. When the outcomes were measured more than once at different ages for the same study population,
we selected the oldest age group with the most reliable cognitive assessment. If multiple multivariable models
were reported, we extracted data from the model with the most confounder-adjusted model (e.g. adjusted
by education and sex vs. adjusted by sex).

We extracted data according to three primary outcomes as follows. Cognitive outcomes were based on
cognitive scores (e.g., Bayley Scale of Infant and Toddler Development Mental Developmental Index,?327
and Wechsler Abbreviated Scale of Intelligence,?®) or cognitive impairment (e.g., Wechsler Intelligence Scale
for Children-full scale IQ below average defined as scores below 85 or one standard deviation below the
mean®?). Academic outcomes were based on low academic performance (e.g. special education needs defined
as children in Scottish schools 2005 census requires special education provision, which comprises both children
with learning disabilities, such as dyslexia and dyspraxia, and children with physical disabilities that affect
learning®®). See Appendix S2 for full details of outcome definitions.

To allow comparability of primary outcomes harmonization was required using the extracted data: (a) If the
study reported a cognitive test T score, percentile or Z score, we converted it into intelligence quotient (IQ
with mean: 100; SD: 15); (b) if the direction of a study’s outcome was inconsistent with others (e.g., receiving
a longer education rather than shorter), we converted it to a same-direction outcome; (c) if an LGA-related
study defined LGA not in terms of percentiles but in terms of SD or absolute values, we converted it to
percentiles using the World Health Organization foetal growth calculator (unknown foetal sex).3!

Data synthesis

Meta-analyses were used to describe findings in the present review when data extracted could be used to
calculate the standardized mean difference or risk ratios. We employed Comprehensive Meta-Analysis (CMA)
software (version 4, professional, Biostat Inc. USA) to analyse the data. Random effect models were used in
all the analyses. We used standardized mean difference (SMD) and their 95% confidence intervals (CIs) for
continuous data. When the measurement only supplied dichotomous options, such as cognitive impairment
or not, we used the Odds Ratio (OR) and their 95% CIs instead. Pooled random-effects 95% prediction
intervals and heterogeneity statistics were calculated for meta-analysis where at least three studies were
included. Heterogeneity was evaluated by I2, Tau?, and Q statistics and their p-values. When 12 > 75%,
we conducted a series of subgroup meta-analyses by splitting data according to participants’ characteristics
(such as sex and age at follow-up) or study characteristics (such as outcome measurement scale) to examine
the source of heterogeneity. Forest plots were created to provide a graphical overview of the individual
studies and syntheses.

To assess publication bias, we employed a random-effect model to generate funnel plots for meta-analyses.
In addition, Duval and T'weedie’s trim and fill were used to estimate the number of missing studies that may
exist and the effect that these studies might have had on their outcome.??

Two reviewers (X.Z. and M.S.) independently graded evidence according to the GRADE handbook?? . The
strength of evidence was initially set as low and was rated up for 1) large effect sizes (Relative risk <0.5 or
>2, and SMD<-0.25 or >0.25), 2) where a dose-response relationship was shown, and 3) effect of plausible
residual confounding (such as parental education level )3* was considered. The strength of evidence was
classified as very low, low, moderate, or high quality.

Results

Study selection



Among 1592 unique studies (1572 from databases and 20 from hand-searching) identified from our search,
there were no studies that met the exact criteria of our primary aim that investigated the effects of early-term
birth on cognitive or academic outcomes in LGA babies. For our secondary aim, a total of 68 articles were
considered eligible and included in this systematic review after two-stage screening, as shown in Figure 1.
Among the final included studies that assessed cognitive or academic outcomes, 11 studies (see Table S3)
only investigated the effect of LGA 2545 51 studies (see Table S2) only investigated the effect of early-term
delivery (3719w-38T0w),13 23-26, 29, 46-90 4nd 6 studies (see Table S1) explored the effects of both exposures
simultaneously but independently.?8: 30, 91-94

Early-term delivery
Cognitive Scores

The children born at 37 weeks GA had lower mean cognitive scores than those born at 40 weeks (27 912
children; SMD, -0.13; 95% CI, -0.21 — -0.05; I, 54%; moderate certainty evidence; Trim and Fill, -0.09, -0.18
—-0.01), as shown in Figure 2 a). There was no significant difference between children born at 38 and 40
weeks GA (33 004 children; SMD, -0.04; 95% CI, -0.08 — 0.002; 12, 42%; moderate certainty evidence; Trim
and Fill, -0.04, -0.09 — 0.02) (Figure 2 a). The children born at early-term (37 and 38 weeks GA combined)
had lower mean cognitive scores than full-term (39 to 41 weeks) born children (39 171 children, SMD, -0.14;
95% CI, -0.26 — -0.02; 12, 95%; low certainty evidence; no publication bias) (Figure 2 a). Due to the high
heterogeneity, we conducted a subgroup analysis based on the age of follow-up. The mean differences tended
to be smaller in older children (see Appendix S5).

Cognitive impairment

More cognitive impairment cases were found in children born at 37 weeks (71 597 children; OR, 1.23; 95% CI,
1.13 - 1.33; 12, 49%; moderate certainty evidence; Trim and Fill, 1.30, 1.20 — 1.42) and at 38 weeks (92 572
children; OR, 1.08; 95% CI, 1.03 — 1.12; I2, 0%; moderate certainty evidence; no publication bias) compared
to those born at 40 weeks (Figure 2 b). Cognitive impairment was more common in early-term born children
than full-term (939 397 children; OR, 1.19; 95% CI, 1.13 — 1.25; 12, 86%; low certainty evidence; Trim and
Fill, 1.17, 1.11 — 1.23) (Figure 2 b). We also conducted a subgroup analysis based on age at follow-up in
this synthesis, see Appendix S5. The results showed that the OR for cognitive impairment reduced with
increasing age at follow-up, except for one study®>.

Low academic performance

More low academic performance happened in those born at 37 weeks GA (576 869 children; OR, 1.17; 95%
CI, 1.02 — 1.35; 12, 96%; moderate certainty evidence; Trim and Fill, 1.03, 0.91 — 1.17) and 38 weeks GA
(614 005 children; OR, 1.10; 95% CI, 1.01 — 1.19; 12, 92%; moderate certainty evidence; Trim and Fill, 1.03,
0.95 - 1.13) compared to those born at 40 weeks (Figure 2 ¢). Low academic performance was more common
in early-term born than full-term children (2 714 784 children; OR, 1.15; 95% CI, 1.09 — 1.21; 2, 96%; low
certainty evidence; Trim and Fill, 1.05, 0.99 — 1.11) (Figure 2 ¢). The heterogeneity of the studies in these
three data syntheses was high. We conducted subgroup analyses according to the outcome measurement
scales, see Appendix S5.

Large-for-gestational-age

Seventeen (11 plus 6) studies investigated the effects of LGA on cognitive or academic outcomes. Overall,
LGA children had higher cognitive scores than AGA children (16 774 children; SMD, 0.06; 95% CI, 0.01 —
0.11; 12, 0%; low certainty evidence; Trim and Fill, 0.05, 0.01 — 0.10). The results are shown in Figure 3 b).
Cognitive impairment was less common in LGA children than AGA children (417 562 children; OR, 0.94;
95% CI, 0.92 — 0.97; 12, 0%; low certainty evidence; Trim and Fill, 0.94, 0.91 — 0.97), as was low academic
performance (775 745 children; OR, 0.93; 95% CI, 0.89 — 0.97; I?, 61%; low certainty evidence; Trim and
Fill, 0.90, 0.86 — 0.95) (Figure 3b).

Discussion (1200 words)



Main findings

This systematic review and meta-analyses found that there were no studies before 13 March 2023 that had
investigated cognitive scores, cognitive impairment, or low academic performance in early-term births at
LGA. Existing studies have analysed the effects of LGA against AGA or early-term births (37 to 38 weeks
GA) compared to full-term births (39 to 41 weeks GA) on cognitive outcomes independently, or utilized
one of these exposures as a confounder to adjust for this factor in the association with cognitive outcome.
Children born at early term were found to have slightly lower cognitive scores, a slightly increased risk
for common cognitive impairment, and low academic performance compared to children born at full term.
Within the group of early-term born those born at 37 weeks GA tended to have a slightly larger risk than
those born at 38 weeks compared to those born full-term. This suggests that there may be a dose-response
relationship between GA and cognitive outcome. Compared to AGA children, LGA children had slightly
higher cognitive scores, less common cognitive impairment, and fewer had low academic performance in
childhood. However, this latter evidence is of low certainty.

According to Cohen’s D of means, a 2-point intelligence quotient (IQ) difference refers to a very small effect
size? (e.g. -0.14 standard difference in means * 15 points = -2.10 IQ difference). When early-term deliveries
were examined separately by week of gestation, only a very small clinically significant difference in IQ was
found between children born at 37 weeks compared to those born at 40 weeks while no significant difference
was found for those born at 38 weeks GA compared to those born full term. Considering that 16-31% of
foetuses are born early term, the effect of early term on the overall population IQ may be between 0.4 to
0.7 IQ points maximum, a very small effect. LGA versus AGA birth very slightly favoured those born LGA
but the difference was not clinically significant.

There was no study published before 13 March 2023 that considered both gestational age and LGA, i.e.
relative birth weight for gestation and its effect on cognitive and academic outcomes. Thus, two possibilities
cannot be ruled out, the first being that the small effect of early-term birth may be partly due to confounding
by SGA foetuses more often delivered at early term. SGA is a known factor associated with lower cognitive
outcomes.’® Accordingly, the small benefit of LGA may be confounded by the gestational age at birth due
to the diversity of LGA definitions. The second is that gestational week and weight percentile at birth have
additive effects on cognitive development, so that in early-term born LGA babies the two effects may offset
each other to some extent.””

Strengths and limitations

The present systematic review is the best available evidence of cognitive and academic outcomes in early-
term born LGA babies as it is the most comprehensive meta-analysis to date exploring the association
between early-term birth and cognitive outcomes, and it is also the only systematic review to investigate
the association between LGA and cognitive outcomes. The strengths of this review are that we followed a
pre-registered protocol to search for articles with no time or language constraints. The population sizes were
large and across several countries and follow-up was carried out across childhood.

One limitation of this article is the high heterogeneity of measurements in the definition of cognitive im-
pairment and low academic performance. Included studies that used various metrics for reporting results,
and some studies with missing metrics (e.g. SD of the mean) had to be excluded from the meta-analyses.
Furthermore, different definitions were utilized for LGA or full-term across studies. For example, although
most studies used greater than the 90th percentile as the definition of LGA, several studies used the 80th*°
or 85th3% 42 percentile as the definition. Although most studies used the 10-90*" percentile as the definition
of AGA, some studies used other reference groups, e.g. 20-79th percentile?® or 85-90th percentile*. Even
though all fall within the official definition of the 10-90th percentile, the use of different reference groups is
likely to alter the effect size of the comparisons. Similarly, N. Libuy (2023)%’s use of births at 3979-40+¢
weeks (rather than 3910-4176 weeks) as the full-term reference group also poses a risk of bias in data syn-
thesis. Additionally, only a few studies were stratified according to sex, so the role of sex in their impact
could not be discussed in this review.



Interpretation

There is a paucity of existing studies that stratify children born at the same gestational week according to
their birth weight percentile (or vice versa). Several systematic reviews® !0 29 that evaluated the relationship
between early-term delivery and cognitive or academic outcomes are consistent with the conclusions of our
review. In terms of foetal growth, although there is a systematic review and meta-analysis with good
quality showing that SGA is detrimental to cognitive development,?® we found no extant systematic reviews
synthesizing evidence on cognitive development or academic performance in children with LGA. Analysis by
gestational age or LGA separately is unable to answer whether these effects are additive to or moderate each
other.

Firstly, observational studies are required that allow the investigation of the effect of LGA or relative birth-
weight at each gestational week on cognitive and academic outcomes. A new study published after March
2023 utilized four cohort studies (N: 30 643)°7 and reported that relative birthweight (birth weight percentile
per gestation) and gestational week are two exposure factors that independently affect cognitive scores in
childhood and are thus additive. IQ linearly increased by 4.2 points as birth weight centiles increased from
the 1st to the 69" percentile before completely plateauing (i.e. no more IQ gain at larger birth weight).
Above 32 weeks gestation, each GA week gained was associated with a 0.3 I1Q increase similar to previous
study reports.”®Future studies are needed to report relative birthweight per gestational week and its effect
on cognitive outcomes for obstetric decision-making.

Secondly, the most desirable would be to have a randomized clinical trial comparing the effect of early-term
induction for LGA versus expectant delivery on shoulder dystocia with long-term follow-up of cognitive and
academic outcomes on the of the child. Considering the suggested small effect sizes, this will require large
participant numbers.

Conclusions

On current best evidence and considering all the provisos outlined above, we conclude that early-term birth
for LGA babies, in particular at 38 weeks, is not likely to reduce cognitive outcome to a clinically significant
degree at the population level. For LGA children in particular, a large RCT and/or cohort study with
long-term follow-up is urgently needed to confirm whether the slight advantage of being larger in terms of
cognitive development can compensate for the slight disadvantage of being born two weeks earlier. These
studies will contribute greatly to helping obstetricians and parents weigh the pros and cons of making the
best possible decision about the timing of labour.
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Figure legend
Figure 1 PRISMA flow diagram. LGA, large for gestational age

Figure 2 a) Cognitive scores and early-term delivery. The figure displays for each study included
in the meta-analysis in the summary statistics (mean, standard deviation, and total sample size) for the
cognitive scores and early-term delivery and the standardized mean difference (SMD) and its 95% confidence
interval for the continuous outcome. SD, standard deviation; CI, confidence interval

b) Cognitive impairment and early-term delivery. The figure displays for each study included in
the meta-analysis in the summary statistics (number of events and total sample size) for the cognitive
impairment and early-term delivery and the odds ratios (ORs) and its 95% confidence interval for the
dichotomous outcome. CI, confidence interval

¢) Low academic performance and early-term delivery. The figure displays for each study included
in the meta-analysis in the summary statistics (number of events and total sample size) for the low academic
performance and early-term delivery and the odds ratios (ORs) and its 95% confidence interval for the
dichotomous outcome. CI, confidence interval

Figure 3 a) Cognitive scores and large-for-gestational-age. The figure displays for each study in-
cluded in the meta-analysis in the summary statistics (mean, standard deviation, and total sample size) for
the cognitive scores and LGA and the standardized mean difference (SMD) and its 95% confidence interval
for the continuous outcome. LGA, large for gestational age; AGA, appropriate for gestational age; SD,
standard deviation; CI, confidence interval

b) Cognitive impairment / low academic performance and large-for-gestational-age. The figure
displays for each study included in the meta-analysis in the summary statistics (number of events and total
sample size) for the cognitive impairment or low academic performance and early-term delivery and the odds
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ratios (ORs) and its 95% confidence interval for the dichotomous outcome. LGA, large for gestational age;
AGA, appropriate for gestational age; CI, confidence interval

Table S1 Characteristics of studies exploring the exposures of both early-term delivery and large for gesta-
tional age on cognitive or academic outcomes

Table S2 Characteristics of studies investigating the effect of only early-term delivery on cognitive outcomes

Table S3 Characteristics of studies exploring the exposures of only large for gestational age on cognitive or
academic outcomes

Appendix S1 Full searching strategy

Appendix S2 Three main primary outcomes and their definitions
Appendix S3 Two-stages screening criteria

Appendix S4 Risk of bias in studies

Appendix S5 Subgroup analyses

Appendix S6 ADHD and Gestational Age (early-term vs full-term)
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Pooled (Random effect model) 262644 314225 = 100 1.17(1.02,1.35)

Heterogeneity: 12= 0.02, 2= 96% , Q(4) = 109.45 (p<0.001)

Test of overall effect: Z=2.21,P =0.03

38w vs. 40w

R.J. Burger (2023) 99117 215882 60186 132596 | | 2250 1.02(1.01,1.04)

D. F. MacKay (2010) 2759 51569 5731 130798 - - 2113 1.23(1.18,1.29)

AK. Searle (2017) - 2875 - 6317 - 20.08 1.04(0.98,1.11)

J. L. Gleason (2021) - 5570 - 9370 - 1437 1.13(0.99,1.29)

K.G. Noble (2012) 2058 23319 2861 35135 —— 2030 1.09(1.03,1.16)

TM. Nielsen (2021) 20 288 2 286 —_— 162 0.90 (048, 1.68)

Pooled (Random effect model) 299503 314502 | 100 1.10(1.01,1.19)

Heterogeneity: 12= 0.01, 2= 92% , Q(5) = 62,58 (p<0.001)

Test of overall effect: Z=2.14,P =0.03

Early-term vs. Full-term

K. Lindstroem (2007) 42367 68541 259856 431656 - 1098 1.07(1.05,1.09)

R. J. Burger(2023) 203550 442566 172164 378493 - 1.07 1.02(1.01,1.03)

. Kirkegaard (2006) 30 633 105 3081 - 1.39 1.41(0.93,2.14)

N. Libuy (2023) 19534 57956 47218 156291 - 10.92 1.17(1.15,1.20)

D. F. MacKay (2010) 3976 71403 13109 297000 - 10.54 1.28(1.23,1.32)

R. Wiingreen (2018) a - 89528 - 162169 - 10.27 1.23(1.18,1.29)

A. Hedges (2021) 194 388 360 837 e — 3.31 1.33(1.04,1.69)

E Chan (2014) 237 1258 745 4277 e 5.39 1.10(0.94,1.29)

M. Hanly (2017) 4654 20951 362 43199 - 10.66 1.09(1.05,1.12)

M. J. Berry (2018) 1587 131949 3399 329280 —-— 970 1.47(1.10,1.24)

N. Alterman (2022) 659 1498 2164 5064 —— 7.18 1.05(0.94,1.18)

P. Shah (2016a) - 1789 - 37 - 174 1.40(0.97,2.02)

G. Poulsen (2013) 386 24n 1208 8789 —_— 6.83 1.16(1.03,1.32)

Pooled (Random effect model) 890931 1823853 - 100 1.15(1.09,1.21)

Heterogeneity: 12 = 0.006, I2= 96%, Q(12) = 335.10 (p<0.001)

Test of overall effect: Z=5.13, P <0.001 08 12

Favours Favours.
Early-erm Fullterm
LGA AGA Standard Mean Difference Weight Standard Mean Difference
Study Mean SD Total Mean SD Total 95% Cl) (%) (95% Cl)
AR Bischoff (2017) 9910 1041 21 9847 1043 178 105 0.06(-0.39, 051)
B.Yu (2017) - - 1436 - - 7364 67.26 0.06 (0.01,0.12)
J. F. Paulson (2014) 99.20 - 2n 99.70 - 2659 13.77 0.11(-0.02,0.23)
M. M. Costantine (2021) 93.60 13.70 110 95.10 14.90 875 547 -0.10(-0.30,0.10)
M. Zhang (2020) 9564 2334 287 9414 2352 3623 1245 0.06(-0.07,0.20)
Pooled (Random effect model) 2075 14699 lo 100 0.06(0.01,0.11)
Heterogeneity: 12= 0, 12.= 0%, Q (4) = 3.1
Test of overall effect: Z=2.52, P =0.01
05 0 0s 1
Favours Favours
AGA LGA
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LGA AGA Odds ratio Weight 0Odds ratio

Study Events Total  Events Total (95% Cl) (%) 95% C!
Cognitive impairment
A. Adanikin (2022) 4508 33944 32892 236340 ..- 65.05 0.95(0.92,0.98)
A.Z. Khambalia(2017) 2214 13219 18903 105543 —— 31.20 0.92(0.88,0.97)
C.E. Frank (2018) - 291 - 1 010 010(0.43,230)
M. M. Costantine (2021) 27 110 213 875 0.34 1.01(0.64,1.60)
M. Zhang (2020) 94 27 1515 3623 1.01 0.92(0.70,1.20)
K. Tamai (2020) 145 2435 1186 19571 1 230 0.98(0.82,1.17)
Pooled (Random effect model) 50236 367326 P 100 094 (092,097)
Heterogeneity: 2= 0.00, 2= 0%, Q(5) = 1.19
Test of overall effect: Z =-4.49, P < 0.001
Low academic performance
A.Z. Khambalia(2017) 3273 25158 29501 206660 - 24.92 090(0.86,093)
1. Kirkegaard (2006) 7 175 1 5020 —— 0.28 1.18(0.55,2.56 )
D. F. MacKay (2010) 1741 40203 15131 325867 —— 2149 0.93(0.88,0.98)
B.Yu (2017) - 1436 - 7364 — 9.06 0.96(0.86,1.08)
K. O. Duffany (2020) - 8634 - 99714 29 0.98(0.94,1.03)
L. G. Smithers (2019) 219 13336 7962 42178 —.— 2134 0.89(0.84,093)
Pooled (Random effect model) 88942 686803 - 100 093(0.89,097)
Heterogeneity: 2= 0.001, 12:= 61% , Q(5) = 12.82 (p=0.03)
Test of overall effect: Z =-3.61, P <0.001 08 10

Favours Favours

LGA AGA
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