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Abstract

Testing is one of the most time-consuming and unpredictable processes within the software development life cycle. As a result,

many Test Case Optimisation (TCO) techniques have been proposed to make this process more scalable. Object Constraint

Language (OCL) was initially introduced as a constraint language to provide additional details to UML models. However,

as OCL continues to evolve, an increasing number of systems are being expressed by this language. Despite this growth, a

noticeable research gap exists for the testing of systems whose specifications are expressed in OCL. In our previous work, we

verified the effectiveness and efficiency of performing the Test Case Prioritisation (TCP) process for these systems. In this study,

we extend our previous work by integrating the Test Case Minimisation (TCM) process to determine whether TCM can also

benefit the testing process under the context of OCL. The evaluation of TCO approaches often relies on well-established metrics

such as the Average Percentage of Fault Detection (APFD). However, the suitability of APFD for Model-Based Testing (MBT)

is not ideal. This paper addresses this limitation by proposing a modification to the APFD metric to enhance its viability for

MBT scenarios. We conducted four case studies to evaluate the feasibility of integrating the TCM and TCP processes in our

proposed approach. In these studies, we applied the multi-objective optimisation algorithm NSGA-II and the genetic algorithm

independently to the TCM and TCP processes. The objective was to assess the effectiveness and efficiency of combining TCM

and TCP in enhancing the testing phase. Through experimental analysis, the results highlight the benefits of integrating

TCM and TCP in the context of OCL-based testing, providing valuable insights for practitioners and researchers aiming to

optimise their testing efforts. Specifically, the main contributions of this work include: 1). We introduce the integration of

the TCM process into the TCO process for systems expressed by OCL. This integration benefits the testing process further by

reducing redundant test cases while ensuring sufficient coverage. 2). We comprehensively analyse the limitations associated

with the commonly used metric, APFD, and then a modified version of the APFD metric has been proposed to overcome these

weaknesses. 3). We systematically evaluate the effectiveness and efficiency of OCL-based TCO processes on four real-world

case studies with different complexities.
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Abstract

Testing is one of the most time-consuming and unpredictable processes
within the software development life cycle. As a result, many Test Case
Optimisation (TCO) techniques have been proposed to make this process
more scalable. Object Constraint Language (OCL) was initially intro-
duced as a constraint language to provide additional details to UML
models. However, as OCL continues to evolve, an increasing number of
systems are being expressed by this language. Despite this growth, a
noticeable research gap exists for the testing of systems whose speci-
fications are expressed in OCL. In our previous work, we verified the
effectiveness and efficiency of performing the Test Case Prioritisation
(TCP) process for these systems. In this study, we extend our previ-
ous work by integrating the Test Case Minimisation (TCM) process to
determine whether TCM can also benefit the testing process under the
context of OCL. The evaluation of TCO approaches often relies on well-
established metrics such as the Average Percentage of Fault Detection
(APFD). However, the suitability of APFD for Model-Based Testing
(MBT) is not ideal. This paper addresses this limitation by proposing
a modification to the APFD metric to enhance its viability for MBT
scenarios. We conducted four case studies to evaluate the feasibility of
integrating the TCM and TCP processes in our proposed approach.
In these studies, we applied the multi-objective optimisation algorithm
NSGA-II and the genetic algorithm independently to the TCM and TCP
processes. The objective was to assess the effectiveness and efficiency
of combining TCM and TCP in enhancing the testing phase. Through
experimental analysis, the results highlight the benefits of integrating
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2 OCL-Based Test Case Optimisation with Modified APFD Metric

TCM and TCP in the context of OCL-based testing, providing valuable
insights for practitioners and researchers aiming to optimise their test-
ing efforts. Specifically, the main contributions of this work include: 1).
We introduce the integration of the TCM process into the TCO pro-
cess for systems expressed by OCL. This integration benefits the testing
process further by reducing redundant test cases while ensuring suffi-
cient coverage. 2).We comprehensively analyse the limitations associated
with the commonly used metric, APFD, and then a modified version of
the APFD metric has been proposed to overcome these weaknesses. 3).
We systematically evaluate the effectiveness and efficiency of OCL-based
TCO processes on four real-world case studies with different complexities.

Keywords: Object Constraint Language, Test Case Optimisation, Genetic
Algorithm, Modified APFD Metric

1 Introduction

Software testing aims to validate the correctness and performance of the soft-
ware system and determine whether the system specification conforms to the
pre-set requirements [1]. As the size and complexity of the system increase,
testing becomes one of the most labour-intensive and unpredictable processes
within the software development life cycle. Typically, more than 50% of the
total development time is spent on testing [2], so optimising this process is
necessary and meaningful.

There are three common Test Case Optimisation (TCO) strategies
employed to enhance the efficiency of the testing process, namely, Test Case
Minimisation (TCM), Test Case Prioritisation (TCP), and Test Case Selec-
tion (TCS). TCM is an approach designed to accelerate the testing process
by eliminating redundant and irrelevant test cases. TCP focuses on early
defect detection through systematically re-ordering test cases. Meanwhile, TCS
involves classifying test cases and determining which subsets are required for
re-execution subsequently. It is important to note that the fundamental aim of
these techniques is to benefit the system tester by reducing the effort invested
in the testing process [3].

Despite the extensive research conducted on TCO techniques throughout
recent decades, a substantial proportion of these studies are based on source
code or system level [4]. Compared to the code-based approaches, fewer works
are performed within the context of Model-Based Testing (MBT) scenarios,
especially for Object Constraint Language (OCL) [5].

The MBT process has its natural advantage that it can be conducted before
the actual systems implementation phase. Moreover, expressing system speci-
fications at the model level will be language or platform independent, enabling
the optimisation result to be used for all implementations of the corresponding
OCL specifications.
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Initially, OCL has been proposed as a constraint language to add more
details to Unified Modeling Language (UML) model [6], but alongside the
development of OCL itself, there are more and more systems that are
expressed by OCL. Although OCL is not as sophisticated as other 3GLs1,
many researchers and practitioners are contributing to the community [7–
9]. Therefore, exploring the different aspects of OCL-based techniques is
necessary.

Mutation testing is a crucial technique that guides or acts as the objective
for TCO processes. In our previous work [10], we established a full set of
mutation operators applicable to the OCL standard library. These operators
can thus be effectively utilised to facilitate the TCO processes for the systems
whose specifications are expressed by OCL.

Our earlier research [11] demonstrated the effectiveness and efficiency of
applying the TCP process to system specifications expressed in OCL. In this
study, we build upon this foundation by incorporating the TCM process to dis-
cern whether its integration will bring additional benefits to the testing process.
Further, to verify the potential benefits of integrating the TCM process, four
case studies have been applied. Given that TCM represents a multi-objective
optimisation problem, we adopt the NSGA-II algorithm to manage the min-
imisation process. A more detailed discussion of the proposed approach will
be provided in Section 4.

The Average Percentage of Fault Detection (APFD) serves as a crucial met-
ric for evaluating TCO processes, especially in the context of TCP. The APFD
assesses how fast the test cases detect system defects. However, the classic
APFD metric, predicated on the assumption that all defects within the system
are identifiable, is not entirely suitable for MBT and mutation testing sce-
narios. Since OCL-based TCO techniques tailor these two scenarios together,
this needs a revision of the original APFD metric. Further explanations of the
modified APFD are demonstrated in Section 4.

This paper is organised as follows. Section 2 demonstrates the basic back-
ground, while related studies are discussed in Section 3. The details of TCM
and TCP processes applicable to systems expressed in OCL and the overall
idea of the modified APFD metric are explained in Section 4. Section 5 intro-
duces the research questions, outlines the experimental methodology, presents
the results, and proposes subsequent discussions. Possible threats to the valid-
ity of this research are mentioned in Section 6, while the final section concludes
the paper and presents future works.

2 Background

The OCL was initially designed as a constraint language for the UML standard,
but its application field has been substantially extended over time. Since OCL
can be applied to many Model-Driven Engineering (MDE) activities, such as
model transformation and specification requirements, OCL already became

1Third Generation Language



4 OCL-Based Test Case Optimisation with Modified APFD Metric

a key component of MDE. Several versions of the OCL standard have been
released to adopt this language into various MDE application domains, and
the current version of OCL is 2.4 [5].

OCL is a type of declarative language based on set theory and predicate
logic and without any side effect on the system state [12]. Since OCL operates
on the same abstract level as the system model, it does not rely on any specific
implementation language. This inherent feature allows OCL to play a crucial
role in diverse MDE activities, including the generation of test cases and code.

In the current study, we undertake TCO processes for systems whose
specifications are expressed in OCL. OCL is employed to depict the system
specifications via pre- and post-conditions, as demonstrated in Fig. 1. The
operation modelled in this figure is used to calculate Macaulay duration within
a Bond system. While there have been efforts to extend the OCL standard
library, we focus exclusively on the standard operators since not all existing
specifications or tools support the new operators. The operators within the
OCL standard library are fully supported by our in-house tool, AgileUML [13].

AgileUML offers a variety of services for MDE processes, such as system
modelling, test case generation, and code generation. When the input specifi-
cation is OCL, AgileUML facilitates the generation of executable and abstract
test cases directly from the OCL specification. Moreover, AgileUML also can
perform mutation testing on OCL specifications, enabling the construction
of mutated OCL specifications and the generation of the corresponding exe-
cutable JAVA code. Lano, through a case study, demonstrated the primary
services offered by AgileUML [14].

Fig. 1 OCL Example

The TCO techniques deployed in this study are TCM and TCP. We chose
to exclude TCS from this research, considering that the selection process only
preserves a subset of test cases for re-execution, and some of the test cases
might be eliminated during the selection process. Nevertheless, the discarded
test cases might be useful in future testing periods. Although TCM also results
in removing some test cases, it distinguishes itself from TCS in that the min-
imisation process only eliminates redundant test cases [15]. We provide the
definitions for these problems as follows.
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The TCM problem aims to reduce the size of the test suite by eliminating
redundant and unnecessary test cases to improve the testing ability. The TCM
problem can formally be defined as [3]:

Given: A test suite, T , a set of test requirements r1,...,rn, that must be
satisfied to provide the desired ’adequate’ testing of the program, and subsets
of T , T1 , . . . , Tn , one associated with each of the ris such that any one of
the test cases tj belonging to Ti can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies
all ris.

When each test requirement in r1,...,rn is satisfied by at least one of the test
cases, the testing criteria will be considered as satisfied. The newly formed test
suite, T ′ is the representative set of test cases selected from Tis. Moreover, to
maximise the effectiveness of the TCM process, the T ′ should be the minimal
representative set of Tis.

A test suite is composed of all test cases that intend to fulfil pre-defined
testing requirements. As the size and complexity of the software grow, the test
suite correspondingly expands. Running all the test cases within this increas-
ingly large test suite can become impracticable and inflate the testing budget.
The technique of TCM produces a representative subset from the original test
suite that attempts to meet all the requirements covered by the original suite
with a reduced number of test cases. A test case is redundant when other test
cases can fulfil the same requirements. Consequently, removing such a test case
does not decrease the fault detection capacity.

The TCP problem aims to reveal the defects as quickly as possible by re-
ordering the test case sequence, even if the testing procedure is prematurely
halted. The TCP problem can be defined as [16]:

Given: T , a test suite, PT , the set of permutations of T , and f , a function
from PT to the real numbers.

Problem: Find T ′ ∈ PT , such that
(∀T ′′) (T ′′ ∈ PT ) (T ′′ ̸= T ′) [f(T ′) ≥ f(T ′′)].

And in this definition, PT is all possible combinations of prioritisation of
set T . Moreover, f is a function that returns a reward value, such as APFD
value, to a specific ordering combination.

From the above definition, to find the potential best solution T ′, the priori-
tisation algorithm must define the set of every permutation PT of test cases.
Consequently, choose the T ′, which can maximise the function f .

Analysing each combination of test cases is practically unfeasible, espe-
cially when dealing with a large test suite. Assuming a test suite encompasses
n test cases, the size of PT will be n!. This circumstance might re-frame the
TCP problem into a variant of the Traveling Salesman Problem, a well-known
NP-complete problem [17]. Therefore, the TCP problem is usually guided by
a heuristic algorithm, such as a genetic or ant colony algorithm. These algo-
rithms employ their powerful search capabilities to construct the sequence of
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test cases. In this research, we utilise the genetic algorithm to guide the pri-
oritisation process [18]. Simultaneously, we use the NSGA-II2 to navigate the
execution of the TCM process [19].

Within the scope of MBT, elements such as system defects and actual
implementations are unavailable for TCO processes. In order to overcome this
situation, mutation testing often acts as a guiding mechanism for TCO proce-
dures. Mutation testing is a fault-based testing technique that has been studied
for over 50 years since it can be traced back to 1971 [20].

In mutation testing, from a program or specification p, a set of faulty
versions p′ called mutants are generated by making, for each p′, a single simple
change to the original artefact p. Mutation operators are the transition rules
defining how to perform these changes and represent the mutants. Mutated
versions of expressions are syntactically and type-correct, but should have a
distinct semantics from their source.

A principal application of mutation testing involves the calculation of the
mutation score (MS) for test cases. This score represents the proportion of
mutants that have been successfully killed or detected, providing a measure of
the effectiveness of the testing process [21]. The formal mathematical definition
of the mutation score is provided subsequently.

MS =
Km

Tm − Em
(1)

In this equation, Km refers to the number of killed mutants, Tm is the
number of generated mutants and Em is the number of equivalent mutants. A
mutant p′ will be considered as killed when a different result compared to the
original program p has been returned. The range of mutation scores is from 0
to 1, and a higher mutation score means higher confidence in the corresponding
test cases.

In the field of MBT, scholars typically employ mutation testing to verify
the effectiveness of proposed methodologies or as a guide for optimisation pro-
cesses. With respect to TCO processes, mutants can simulate system defects or
requirements, or alternatively, mutation scores can be utilised as an evaluative
measure of the capacity for fault detection.

3 Related Works

Owing to the limited research specifically addressing TCO processes for the
systems whose specifications are expressed in OCL, the related works section
primarily focuses on the general aspects of TCM and TCP processes. Studies
focusing solely on mutation testing have been omitted from this review, as
this technique is employed in this study as a methodological tool rather than
directly being the subject of investigation.

2Non-dominated Sorting Genetic Algorithm II
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3.1 Test Case Minimisation

In [22], Tallam proposed a delayed greedy strategy for the TCM process.
One potential weakness of the greedy strategy is that the early selected test
cases may eventually be made redundant by subsequently selected test cases.
The authors overcame this weakness by constructing a concept lattice, a
hierarchical clustering that recorded the relationship between test cases and
requirements. The experiment result showed that the delayed greedy strategy
could select fewer test cases than the greedy strategy.

Palomo [23] used an exact search-based technique to perform the minimi-
sation process and maintain the mutation coverage meanwhile. The approach
mutated the original specifications and compared their behaviours versus
the original ones for the test suite. If the mutants cannot be killed, the
corresponding test cases will classify the test case as redundant.

A genetic algorithm approach is demonstrated in [24] by Bhatia. The pro-
posed algorithm aims to provide optimal fitness value by combining the genetic
algorithm and class partition. The modified GA minimises the number of
test cases by finding the most error-prone test cases based on the priority
of the path information. Although path analysis is an effective technique, its
application in the context of MBT may still be considerably challenging.

Lin [25] proposed an approach to minimise test suite for composition ser-
vice by modification impact analysis. They compared structural and variable
changes and located the impacted nodes by dependency analysis. Through
the influenced information, they excluded redundant test cases to perform the
TCM process.

Hashim [26] proposed a TCM approach based on the firefly algorithm. The
optimisation process is combined with the UML state machine diagram, by
analysing the path coverage for the state machine to calculate the fitness value
for each test case. Then, through a firefly algorithm to minimise the test suite.
Although this study aligns directly with the MBT domain, there are differences
between the state machine diagram, which models the behavioural aspect of
the system, and the OCL, which models the structural aspect of the system.

Deneke [27] also proposed a TCM approach by using an evolutionary
algorithm, which is based on particle swarm optimisation. The proposed
approach uses requirements coverage information to guide the particle swarm
optimisation process. They validate the effectiveness of their method by com-
paring various benchmark techniques. In contrast to this study, our approach
employs the NSGA-II algorithm to lead the minimisation process. More-
over, we substitute the requirement coverage with the use of mutants for
optimisation.

Li [28] proposed a mutation-based TCM approach. Based on the fault
detection information of each test case, the hierarchical clustering process is
conducted. Then the test case with the highest priority in each cluster is
selected according to the cut-level threshold. If there exists any edge test or
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edge mutation program, the corresponding one will be chosen. The edge muta-
tion program is the faulty mutation version that can only be killed by one
specific test case, and that test case is the edge test.

Bajaj [29] suggested an improved quantum-behaved particle swarm opti-
misation for TCO processes, which include the TCM process. The proposed
approach has been validated against various evolutionary algorithms. They
used fault coverage or statement coverage as the fitness function to guide the
optimisation process. The coverage information for the MBT process still needs
further exploration since the actual implementations are not yet available.

3.2 Test Case Prioritisation

Rapos proposed a novel methodology that employed fuzzy logic to guide the
TCP process, as reported in their study [30]. They transformed UML models
into symbolic execution trees. Subsequently, they used test suite size, symbolic
execution tree size, relative test case size, and output significance as inputs
via 39 fuzzy rules to infer the priority. The efficacy of their proposed approach
was assessed through a comparative analysis with a random strategy.

In a recent study, Shin [31] employed an alternating variable method to exe-
cute a model-based TCP process. The researchers customised a set of mutation
rules that were applied to the state machine diagram, which subsequently led
to the generation of test cases in accordance with the mutants. The test case
prioritisation process is based on the fault coverage criteria and guided by the
alternating variable method. Then the effectiveness of the proposed approach
is examined by the APFD metric. Instead of performing mutation testing to
state machine diagrams, we applied this technique to OCL specifications.

Pospisil [32] conducted the TCP process by employing an enhanced vari-
ant of the Adaptive Random Prioritisation (ARP) method. In contrast to
the traditional ARP, they substituted the original distance function with a
multi-criteria decision-making approach. Additional parameters, such as path
complexity and coverage information, were incorporated in determining the
priority.

Pan [33] disclosed the outcomes of a systematic literature review that
focused on the application of machine learning methods to the TCP process.
Gupta [4] conducted a comprehensive examination of multiple-objective and
hybrid strategies addressing the TCP problem while also proposing future
directions for research in the field.

Both Ma [34] and Rattan [35] leverage the genetic algorithm to navigate
the TCP process. However, the methodologies in these two articles exhibit
significant differences. Ma utilised control flow diagrams and path information,
whereas Rattan employed an extended system dependence graph to guide the
prioritisation process.

Sornkliang [36] conducted research closely related to the MDE context.
In their approach, they attach the weight information to each node in the
UML activity diagram. Then test path priorities are established based on the
computed scores for each path.
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In their research, Chaudhary [37] extensively compared the TCP capa-
bilities of four unsupervised clustering algorithms through five distinct case
studies. The DBK-means algorithm3 was found to be superior in perfor-
mance compared to the rest. Meanwhile, Morozov [38] suggested a model-based
TCP methodology. This method relies on analysing fault activation and error
propagation for application in automotive systems.

Sun [39] introduced an approach for the TCP process in metamorphic test-
ing by path analysis. Their method starts by analysing feasible paths with
symbolic execution, followed by generating relevant test cases via a constraint
solver. These produced test cases are prioritised by computing the distances
between them based on statement coverage.

4 OCL-Based TCO Processes

In this section, we will first discuss the modified APFD metric, which serves as
one of the objectives within our proposed algorithms. Following this, we will
detail the algorithms employed for executing OCL-based TCO processes.

4.1 Modified APFD Metric

One of the primary evaluation metrics used in TCO processes is the APFD,
which measures how quickly or early the test suite can detect system defects
[40]. The equation used to calculate the original APFD is as follows:

APFD = 1− TF1 + TF2 + · · ·+ TFm

nm
+

1

2n
(2)

In the presented equation, TFi represents which test case first detects the

ith fault, while n indicates the total number of test cases in the test suite,
and m represents the total number of faults within the software system. In
the context of MDE, because system faults cannot be known in advance, the
faults also can be used instead of the artificially injected defects.

The APFD metric is designed to range between 0 and 1, with a higher
value indicating a more efficient fault detection ability. However, the maximum
actual APFD value is 1− 1

2n , which is obtained when the first test case detects

all faults. On the other hand, the minimum APFD value is 1
2n , which is reached

when the last test case detects all faults.
This means that the actual APFD result does not traverse the full range

from 0 to 1, which represents the first shortcoming of the original APFD. For
instance, in an extreme scenario where a single test case in the suite can detect
all system faults, the APFD value will only reach 0.5, which is a relatively low
result but is already the maximum value (the maximum value 1− 1

2n ).
The second point is that the original APFD value assumes all defects are

detectable. This assumption is unfeasible when performing mutation testing in
an MDE environment. Mutation testing injects mutants into the system and
then validates whether the test cases can kill the artificial mutants. Due to

3Density-Based K-means Algorithm
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mutated specifications being generated based on the mutation rules, we cannot
guarantee that the test suite can detect all system defects in this scenario.

One possible solution to undetectable faults is assuming that TFi is the
last position in the test suite. However, this cannot distinguish whether the
test suite cannot detect the defects or the last test case detects the defect.
Walcott proposed another possible solution, that when a fault is missed, the
TFi equals the number of test cases plus one [41]. This is a feasible solution
to the second imperfection of the APFD metric, but in the extreme scenario
that all faults can not be detected, the APFD value will be − 1

2n , which does
not range from 0 to 1 anymore.

The third imperfection is that even when two test orders have the same
APFD value, one may still be better than the other. Considering that there are
three test cases and six faults, the fault detection information is shown as Fig.
2.

Fig. 2 An Example of Fault Detection

There are two test orders, {1, 2, 3} and {3, 2, 1}. These two orders have the
same APFD value since the TF1 + TF2 · · ·+ TFm is the same. For the first
one is 2 + 1 + 1 + 1 + 1 + 3, and for the second one is 2 + 2 + 2 + 1 + 1 + 1,
where all of them are 9. TCP aims to detect faults as early as possible, even if
the testing process is prematurely halted. From the APFD results, these two
test orders have the same effectiveness. However, if the testing process is halted
after executing only one test case, the first order can detect four faults, while
the second order can detect three faults. In this scenario, the original APFD
value may not adequately reflect the effectiveness of the TCP approach.

To summarise, the original APFD metric suffers from the following three
disadvantages. Firstly, its actual value range is not ranged between 0 and 1.
Secondly, the metric may not provide an accurate assessment when faults are
undetectable. Finally, even when two test orders have identical APFD values,
one may still be superior to the other.

While some studies, such as [42], have attempted to address the issues
identified with the original APFD metric, none have specifically tackled its
application within the context of MDE. To address these shortcomings, we
propose introducing a reward system that increases the APFD value when a
fault is detected by the first test case. Simultaneously, we suggest including a
penalty system that reduces the APFD value if the fault cannot be detected
by any test case.
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We proposed a modified APFD metric in this work. The modified APFD
value can be calculated by Equation 3 and Equation 4.

APFDm = 1− TF1+TF2+···+TFm

nm + 1
2n + (α− β) ∗ λ (3)

λ =
1

2nm
(4)

In this metric, the first part is the same as the original APFD metric. We
called this part a reward and penalty factor in the second part (α− β) ∗ λ. α
is the number of faults that can be detected by the first test case, and β is the
number of faults that cannot be detected by any test case. λ is the reward or

penalty value, which equals to 1
2nm .

Using the modified APFD value, this metric ranges from 0 (all defects
are undetectable) to 1 (the first test case detects all defects). Through the
improvements, this metric has the reward and penalty mechanism to deal with
the aforementioned situations.

4.2 Proposed Approach

In this subsection, we explain the algorithms we have proposed for executing
the OCL-based TCO processes. For the TCM and TCP processes, we employ
the NSGA-II and genetic algorithm, respectively. Our approach treats the
TCM process as a multi-objective problem, while the TCP process is consid-
ered a single-objective problem. The followings are a detailed description of
these two processes.

4.2.1 Test Case Minimisation

Algorithm 1 shows the pseudo-code of the general TCM process.
In Algorithm 1, the input is an OCL specification, while the output is the

selected (minimised) test cases. The first two lines are the preparation works
for the algorithm. When the input specification for the AgileUML tool set is
OCL, the mutated OCL specification, test suite and corresponding executable
JAVA programs can be generated. The generated test suite is treated as the
original one, waiting to be minimised.

In line 2, AgileUML will analyse the original test suite and mutants to
extract the necessary information, mainly focusing on which test case can
detect which mutants. Despite various attempts to make OCL directly exe-
cutable [43–45], when system specifications are expressed in OCL, the test suite
cannot run directly against these specifications. To tackle this obstacle, we
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Algorithm 1 Test Case Minimisation

Input: OCL Specification
Output: Selected Test Cases
1: AgileUML ← OCL Specification (mutated specifications, test suite, exe-

cutable Java program are generated)
2: information ← agileUMLAnalysis(testSuite, mutants)
3: initialPopulation(testSuite)
4: until NSGA-II stop criteria do
5: selection, crossover, mutation operators
6: setObjective(0, selectedSize)
7: setObjective(1, faultDetectionRate)
8: setObjective(2, APFDMetric)
9: fitnessEvaluation(population)

10: end until
11: solutions ← getNSGA-IISolutions()
12: result ← solutionAnaysis(solutions)

initially produce corresponding JAVA specifications via model-to-text trans-
formation, which are then used to test the suite. It is worth noting that this
is just one viable solution we have opted for and is not the exclusive answer.

line 3 - line 10 are the main processes of the NSGA-II algorithm. Start with
the randomly generated population, then through the evolutionary operators
iteratively to solve the corresponding problem. The bit data structure is used
to represent individuals, and one example is Fig. 3.

Fig. 3 Individuals in NSGA-II

In this example, the test suite has five test cases, and in these two indi-
viduals, test cases {1, 3, 4} and {3, 5} will be included in the minimised test
suite separately. In the TCM problem, the length of the chromosome equals
the number of test cases within the original test suite. Each bit position is used
to describe whether the corresponding test case is selected for the minimised
test suite, where the value of 1 indicates that the test case has been selected
and 0 indicates that it has been excluded.

The selection operator is tournament selection, which randomly selects a
subset of the population from the original one and then chooses the best one
according to the fitness value. A larger tournament size increases the chance



OCL-Based Test Case Optimisation with Modified APFD Metric 13

of selecting the best individual but also increases the computational cost of
the selection process. In this work, we set this value as 2.

The crossover operator in this work is two points crossover, which selects
two crossover points in the parent solutions, and swaps the corresponding parts
between these points to create new offspring solutions, which shows like Fig.
4. Meanwhile, the mutation operator we chose is the bit flip mutation, which
flips each bit position (0 to 1 and 1 to 0) according to the mutation probability.

Fig. 4 Two Points Crossover

One of the essential steps within the NSGA-II algorithm is the fitness
evaluation, which corresponds to the multiple objectives. The primary aim of
the TCM process is to reduce the testing efforts by minimising the number of
test cases, hence the first optimisation objective is the Number of Test Cases.

In addition, the reduction should not threaten or significantly impair the
fault detection capability, leading to the second optimisation objective, the
Fault Detection Ability. Given scenarios where actual fault detection informa-
tion is lacking within the MDE or OCL context, this attribute will be replaced
by the mutant detection ability.

The TCM process solely determines the selection of test cases into the
minimised suite without altering their sequence. Intuitively, this process will
not be related to the APFD metric. However, it is meaningful in deciding the
redundant test case to eliminate. For instance, if only test case 2 and test case
5 can detect two particular faults, the optimisation process would prefer to
remove test case 5 instead of test case 2. This preference is because removing
test case 5 allows the faults to be detected earlier in the testing process. As
such, the third objective is the Original or Modified APFD metric.

In short, there are three objectives, the number of test cases, fault or mutant
detection ability and the original or modified APFD metric.
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The NSGA-II algorithm generates a solution set known as the Pareto set.
This set contains a group of solutions where none can outperform the others
based on all objectives simultaneously. However, we need to select one final
solution as the minimisation result. The selection criteria for this solution
are based on achieving the maximum fault detection ability with the smallest
size. This choice aligns with the objective of the TCM process, which aims to
minimise the number of test cases while ensuring a high fault detection rate.

4.2.2 Test Case Prioritisation

As the same procedure of our previous work [11], the following is the pseudo-
code of the TCP process.

Algorithm 2 Test Case Prioritisation

Input: Selected Test Cases or OCL Specification
Output: Prioritised Test Cases
1: initialPopulation(selectedTestSuite)
2: until stop criteria do
3: selection, crossover, mutation operators
4: setObjective(APFDMetric)
5: fitnessEvaluation(population)
6: end until
7: result ← getGASolution()

The inputs for the TCP process, as shown in Algorithm 2, can either come
from the minimised test cases from the TCM process or from the original OCL
specification when conducting the TCP process exclusively. The first approach
involves the merging of TCM and TCP processes, whereas the second approach
runs the TCP process in isolation. In instances where the input is the OCL
specification, some preparation work is needed, similar to the first two lines
within Algorithm 1. TCP, in contrast to TCM, has a single objective. Thus,
the basic genetic algorithm is employed for the optimisation.

In TCP problems, the chromosome is the permutation of the test cases, so
the chromosome length is precisely the same number of test cases within the
test suite, like Fig. 5.

Fig. 5 Example of Individual
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In this example, there are two individuals, which are {1, 2, 3, 4, 5} and {3, 2,
1, 5, 4}. The sequence of numbers is the execution order of the corresponding.
The first individual will execute the first test case at the beginning, then the
second, third, fourth, and fifth. However, the second individual will start with
the third test case, then the second, first, fifth and finally the fourth one. Due
to the TCP problem being modelled as a permutation problem, each distinct
number will only appear once in the individual.

As in the original study, the crossover operator used is the Partially Mapped
Crossover (PMX), the mutation operator is the permutation swap mutation,
and the selection operator is binary tournament selection. However, in contrast
to the original study, this research proposes a modified APFD metric. This
study focuses on examining the applicability of the TCM process within the
OCL-based TCO processes, and for further details on the TCP process, refer
to our previous research work.

The TCM and TCP processes can be applied separately or in combina-
tion to the systems whose specifications are expressed in OCL. However, it
is advisable to carry out TCM before TCP when combining these processes.
The primary function of TCM is to select a subset from the original test suite,
whereas TCP re-orders the test cases. By performing TCM first, the search
space for TCP is decreased, which enhances overall efficiency. On the other
hand, the results of the TCP process do not reduce the search space for the
TCM process.

Both TCM and TCP processes consistently employ the (modified) APFD
value as an optimisation objective. This metric measures how fast the cor-
responding test suite detects software defects. Since the OCL-based TCO
processes are a model-based strategy, the actual system defects are not read-
ily available when these optimisation activities are conducted. To address this
issue, we simulated the defects artificially according to the mutation operators.
The operators we used are derived from our prior work, where we proposed a
full set of mutation operators for the OCL standard library [10].

4.2.3 Applied Mutation Operators

As this paper does not concentrate on the definition of mutation operators
for the OCL expressions, we only present a subset of the full set of operators.
The operators we focus on here are relevant to the Collection type within the
OCL standard library. The format of the descriptions is: the original standard
specifications marked with •, the mutants begin with MOi (i indicates the
number of mutation operators), and the comments are introduced with %. The
detailed operators and their classifications are available in our previous work.
• = (c: Collection(T)): Boolean

MO1 : <>
• <> (c: Collection(T)): Boolean

MO1 : =
• size(): Integer

MO1 : size() - 1 MO2 : size() + 1



16 OCL-Based Test Case Optimisation with Modified APFD Metric

• includes(object: T): Boolean
MO1 : excludes(object)

• excludes(object: T): Boolean
MO1 : includes(object)

• count(object: T): Integer
MO1 : count(object) - 1 MO2 : count(object) + 1

• includesAll(c2: Collection(T)): Boolean
MO1 : c2 →exists(e | self →excludes(e))

• excludesAll(c2: Collection(T)): Boolean
MO1 : c2 →exists(e | self →includes(e))

• isEmpty(): Boolean
MO1 : notEmpty()

• notEmpty(): Boolean
MO1 : isEmpty()

• max(): T
MO1 : min()

• min(): T
MO1 : max()

• sum(): T
NULL % no corresponding mutation operator

• product(c2: Collection(T2)): Set(Tuple(first: T, second: T2))
NULL % no corresponding mutation operator

• selectByKind(type: Classifier): Collection(T)
MO1 : selectByType(type)

• selectByType(type: Classifier): Collection(T)
MO1 : selectByKind(type)

The development of these mutation operators followed specific strategies:
1) Negation of original operations. 2) The difference between OCL stan-
dard and common programming languages. For instance, differences related to
collection-type elements are considered. Most common programming languages
have a 0-based index, while OCL uses a 1-based index. 3) Common errors are
addressed, such as misunderstandings in semantics. A prime example would
be the confusion between →including and →excluding.

The design was limited to those operations that currently exist within the
OCL standard library. Despite proposed additions to future OCL types or
operations, like those in [46], we have not included mutation operators for
these types or operations because they are not universally supported across all
OCL tools.

Although these strategies have proven to be useful, they are not flawless
and will likely need to be improved upon in future research. Not all operations
within the standard library have corresponding mutation operators. When we
cannot identify a suitable mutation operator for a particular operation based
on our strategies, we choose to neglect it.



OCL-Based Test Case Optimisation with Modified APFD Metric 17

5 Evaluation

In this section, we propose three research questions to assess the feasibility of
the OCL-based TCO processes. The corresponding experimental procedure is
designed, and the relevant results are presented.

5.1 Research Questions

In this study, we aim to apply TCO techniques to systems whose specifications
are expressed by OCL, expanding on previous work to introduce the TCM
process. We propose the following research questions to evaluate our approach:

RQ 1. Effectiveness: These research questions focus on the efficacy of
our proposed method.

RQ 1.1: How effective is the test case minimisation within the context
of OCL?

RQ 1.2: Using the modified APFD metric, how effective is the TCP
process without applying TCM process?

RQ 1.3: Using the modified APFD metric, how effective is the TCP
process with the application of TCM process?

RQ 2. Overhead What is the overhead when applying test case optimi-
sation to OCL specifications?

RQ 3. Difference What are the variances between the original and
modified APFD metrics within the process of TCP?

The first series of research questions primarily deals with effectiveness. To
answer RQ 1.1, we consider that the purpose of TCM is to enhance the testing
process by eliminating redundant or unnecessary test cases. Therefore, the
evaluation metric for this question would be the reduction rate in size and the
fault detection ability for the minimised test suite. The goal of optimisation
is to decrease the size of the test suite while aiming to maintain or minimally
affect the fault detection capability.

In regards to RQ 1.2 and RQ 1.3, the evaluation metric is the enhancement
of the modified APFD value. In this question, we concentrate solely on the
modified APFD value, and the improvements relative to the original APFD
value will be discussed under RQ 3.

In response to RQ 2, we measured the time taken by the TCM and TCP
processes. If the overhead of implementing a new methodology is excessive,
its real-world application may not be justified. As a result, the time taken
by the optimisation process serves as a key evaluation metric. The overhead
mainly includes the time spent generating test cases and mutants, analysing
fault detection data, and the time used by the NSGA-II and genetic algo-
rithms. The optimisation process can be deemed worthwhile if the overhead is
within an acceptable range. For comprehensive results, each experiment will
be performed 50 times.

In RQ 3, we address the need to understand the impact of our adjustments
to the original APFD metric. As this modified metric is primarily utilised
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for evaluation within the TCP process, we focus on comparing the differences
between the original and our modified APFD metrics in the TCP context.

5.2 Experimental Procedure

To answer the research question and assess our proposed method, we utilise
four distinct OCL specifications collected from real-world studies: Bond, Inter-
est Rate, MathLib and UML2PY. These studies vary in their complexity. The
specifics of each case study, including their size (as measured by lines of code)
and the number of operations, are demonstrated in Table 1. Same as Fig. 1,
Fig. 6 provides an example OCL specification with a single function, including
the function name, pre-conditions, and post-conditions.

Table 1 Case Study Details

Study Name Size Operation
Bond 93 5

Interest Rate 411 2
MathLib 212 15
UML2PY 1053 18

Fig. 6 OCL Example

The AgileUML tool generates corresponding test cases (forming the original
test suite), mutated specifications, and executable JAVA files when given OCL
specifications as input. For a particular function, the number of generated test
cases (at a functional level) for the four case studies ranges from 4 to 243.

The mutated OCL specifications are created in accordance with the corre-
sponding OCL expressions and invariant variables, using the detailed transition
rules based on our previous work [10]. The test cases at the functional level
are constructed using the boundary value of each parameter and the various
combinations of these parameters.

The following details the configurations for the two optimisation algo-
rithms. To limit the influence of parameter configurations, the same settings
were applied across all four case studies.

For the NSGA-II algorithm (used for TCM), we adopted a crossover rate
of 0.9 with a two-point crossover operator. The mutation rate was set to
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1/TestSize, employing a bit-flip mutation operator. Binary tournament selec-
tion was the chosen selection operator. The population size was fixed at 50,
and the maximum iteration count was set to 1000.

As for the basic genetic algorithm (employed for TCP), the crossover rate
was also 0.9, but the Partially Mapped Crossover (PMX) was the crossover
operator of choice. The mutation rate was defined as1/TestSize, and a per-
mutation swap mutation operator was used. Like NSGA-II, we selected binary
tournament as the selection operator. The population size for this algorithm
was the same, set at 50, with a maximum iteration count of 1000.

During the preliminary phase of this study, an informal combinatorial
experiment was conducted in which the population interval was set at 10 and
the iteration interval at 100. This led us to the final configuration of 50 for the
population size and 1000 for the iterations. For our chosen case studies, these
settings delivered effective outcomes in a reasonable overhead.

However, it is critical to note that this study is not primarily focused on
identifying the most optimal configurations for the optimisation algorithm.
Hence, the parameters we chose to work with may not be the best for all
circumstances. In real-world applications, these variables and the evolutionary
operators can be adjusted based on specific needs and requirements.

Given the inherent randomness in both the NSGA-II and genetic algo-
rithms, we carried out each experiment 50 times to decrease the deviations.
To maintain a consistent experiment environment, all experiments were con-
ducted on the same machine with MacOS 12.3.1, a 2GHz Quad-Core Intel
Core i5 processor, and 16GB 3733 MHz LPDDR4X RAM. The algorithms
were implemented in the JAVA within IntelliJ Idea IDE.

5.3 Results Analysis

As described in Experimental Procedure, we performed each experiment 50
times to collect the results, Table 2 - 9 are the collected results for Bond,
Interest Rate, MathLib and UML2PY case studies.

Within the Bond case study, there are five different operations: bisection,
discount, macaulayDuration, timeDiscount, and value. In Table 2, these oper-
ations are represented by the codes A1 - A5 for simplification. The second
case study, Interest Rate, has nelsonseigal and ns operations, which are substi-
tuted by B1 and B2 in Table 3. Similarly, for the MathLib and UML2PY case
studies, we replaced the detailed operation names by C1 - C15 and D1 - D18
within the the Table 4 - 6 and Table 7 - 9. More details about the MathLib
case study are available in [47].

The results of each case study are systematically presented in four parts
within the tables. The initial part demonstrates the number of test cases within
the original test suite, which was directly derived from the AgileUML tool set.
The corresponding original and modified APFD values are computed based on
the generated mutants, and these APFD values are treated as the benchmark.

The second part demonstrates the result of the TCM process, providing
average values for the test suite selection rate, fault detection loss rate, and



20 OCL-Based Test Case Optimisation with Modified APFD Metric

Table 2 Bond

Name A1 A2 A3 A4 A5
Test Cases 64 80 4 80 4

Original APFD 0.9399 0.9187 0.6376 0.9187 0.7389
Original APFDm 0.9399 0.9187 0.6836 0.9187 0.8186
TCM Process
Selection Rate 43.5937% 43.225% 50% 43.25% 50%
Detection Loss 0% 0% 0% 0% 0%
Time (ms) 3600.38 5901.3 6251.02 5786.12 6304.36

TCP Process
APFD 0.9886 0.9937 0.6383 0.9935 0.7389
APFDm 0.9947 0.9996 0.6843 0.9994 0.8186

Random APFDm 0.8980 0.9479 0.6078 0.9444 0.7587
Time (ms) 2188.06 2169.42 7119.42 2103.9 6158.28

TCO Process
Selection Rate 43.5937% 43.2% 50% 42.975% 50%
Detection Loss 0% 0% 0% 0% 0%

APFD 0.9645 0.9855 0.5913 0.9854 0.6593
APFDm 0.9781 0.9986 0.6833 0.9983 0.8186

TCP Time (ms) 2037.2 1940.76 5045.76 1916.94 4506.9
Overhead 42270.96 ms

operation duration over 50 runs. Simultaneously, the third part solely focuses
on the TCP process, which includes the average results for the prioritised
test suite using the original and modified APFD metrics and the time cost.
A comparative analysis is conducted between the prioritised test suite and a
randomly ordered one under the modified metric.

The fourth part combines the TCM and TCP processes and includes the
average selection rate, fault detection loss rate, the original APFD value and
modified APFD value for the optimised test suite. For the TCO process, we
initially applied the TCM process on the original test suite, followed by the
TCP process. We collected the time expense for the TCP process on the min-
imised test suite to validate whether the TCM process could benefit the TCP
process in terms of time usage.

The final line captures the average total overhead, encompassing time
allocations for generating test cases and mutants, processing fault detection
information, and the operational time for the NSGA-II and genetic algorithms
for all operations within each case study. All time usages are measured in
milliseconds during the evaluation process.

Within the aforementioned tables, certain cells are denoted by ”-”, indi-
cating that following the TCM process, only a single test case remains.
Consequently, the TCP process becomes redundant and unnecessary in such
instances.

Following are the answers to the research questions and the discussions of
the experimental results.

Answers to RQ1 : The set of research questions within RQ 1 mainly
validates the effectiveness of the proposed approach. The metrics for the TCM-
related question are the size reduction rate and the fault detection loss after the
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Table 3 Interest Rate

Name B1 B2
Test Cases 243 243

Original APFD 0.9727 0.4190
Original APFDm 0.9727 0.4183
TCM Process
Selection Rate 43.786% 42.4279%
Detection Loss 0% 0%
Time (ms) 146.44 141.52

TCP Process
APFD 0.9974 0.6659
APFDm 0.9993 0.6666

Random APFDm 0.9828 0.6111
Time (ms) 66.98 81.94

TCO Process
Selection Rate 44.0823% 42.6666%
Detection Loss 0% 0%

APFD 0.9942 0.665
APFDm 0.9984 0.6666

TCP Time (ms) 26.64 28.26
Overhead 327.88 ms

Table 4 MathLib (1)

Name C1 C2 C3 C4 C5
Test Cases 3 5 5 25 5

Original APFD 0.6111 0.9 0.6 0.32 0.6333
Original APFDm 0.7222 1 0.6 0.315 0.6333
TCM Process
Selection Rate 33.3333% 60% 60% 34.8% 20%
Detection Loss 0% 0% 0% 0% 0%
Time (ms) 17.42 13.98 15.1 21.82 14.9

TCP Process
APFD 0.8333 0.9 0.7 0.7395 0.9
APFDm 1 1 0.75 0.75 1

Random APFDm 0.8277 1 0.6185 0.4882 0.8806
Time (ms) 5.32 3.78 4.24 10.56 4.4

TCO Process
Selection Rate 33.3333% 60% 60% 35.92% 20%
Detection Loss 0% 0% 0% 0% 0%

APFD - 0.8333 0.6666 0.7213 -
APFDm - 1 0.75 0.75 -

TCP Time (ms) 0 3.46 3 4.12 0
Overhead 336.14 ms

minimisation. The original and modified APFD metrics are used to evaluate
the TCP-related question.

There are three kinds of test suites within our experiments: the original test
suite (generated by AgileUML directly), the prioritised test suite (only applied
TCP process), and the optimised test suite (applied both TCM and TCP pro-
cesses). We performed the non-parametric Wilcoxon test on the APFD metrics
to verify a significance level of 5%, with the null hypothesis that the observed



22 OCL-Based Test Case Optimisation with Modified APFD Metric

Table 5 MathLib (2)

Name C6 C7 C8 C9 C10
Test Cases 7 20 5 5 5

Original APFD 0.2142 0.155 0.5 0.8 0.9
Original APFDm 0.1785 0.14 0.5 0.85 1
TCM Process
Selection Rate 33.7142% 33% 60% 60% 60%
Detection Loss 0% 0% 0% 0% 0%
Time (ms) 14.72 19.28 14.3 13.18 13.86

TCP Process
APFD 0.5 0.395 0.9 0.9 0.9
APFDm 0.5 0.385 1 0.997 1

Random APFDm 0.4042 0.2145 0.836 0.97 0.52
Time (ms) 5.22 8.56 3.98 4.1 4.04

TCO Process
Selection Rate 35.4285% 33.8% 60% 60% 60%
Detection Loss 0% 0% 0% 0% 0%

APFD 0.5 0.385 0.8333 0.8333 0.8333
APFDm 0.5 0.355 1 1 1

TCP Time (ms) 2.8108 3.64 3.16 2.88 3.18
Overhead 336.14 ms

Table 6 MathLib3 (3)

Name C11 C12 C13 C14 C15
Test Cases 5 5 5 20 100

Original APFD 0.8 0.9 0.4333 0.345 0.795
Original APFDm 0.85 1 0.4666 0.34 0.795
TCM Process
Selection Rate 60% 60% 60% 31.7% 41.84%
Detection Loss 0% 0% 0% 0% 0%
Time (ms) 13.52 14.38 13.9 18.62 42.4

TCP Process
APFD 0.9 0.9 0.7 0.785 0.9924
APFDm 1 1 0.7333 0.7999 0.996

Random APFDm 0.953 0.923 0.6346 0.4246 0.9283
Time (ms) 3.78 3.82 4.1 7.9 26.42

TCO Process
Selection Rate 60% 60% 60% 31.9% 41.78%
Detection Loss 0% 0% 0% 0% 0%

APFD 0.8333 0.8333 0.5 0.7469 0.9815
APFDm 1 1 0.5555 0.8 0.9902

TCP Time (ms) 2.66 2.92 2.68 3.38 8.92
Overhead 336.14 ms

differences in the modified APFD value between compared test suites are not
statistically significant.

To obtain the statistical findings, three distinct sets of comparisons were
carried out. Group A involved comparing the original test suite with the pri-
oritised one, aiming to investigate the potential improvement in early fault
detection capability facilitated by the TCP process. Group B compared the
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Table 7 UML2PY (1)

Name D1 D2 D3 D4 D5 D6
Test Cases 2 5 5 125 125 25

Original APFD 0.25 0.3666 0.8384 0.5949 0.3213 0.5533
Original APFDm 0.125 0.3666 0.923 0.5934 0.3186 0.55
TCM Process
Selection Rate 50% 40% 60% 41.776% 41.776% 43.68%
Detection Loss 0% 0% 0% 0% 0% 0%
Time (ms) 12.22 593.12 20205.2 23694.46 127896.86 492.86

TCP Process
APFD 0.5 0.5666 0.8384 0.624 0.3346 0.82
APFDm 0.5 0.5666 0.923 0.625 0.3333 0.8333

Random APFDm 0.305 0.4799 0.923 0.6218 0.3326 0.7223
Time (ms) 2.68 814.32 15830 41444.58 245046 496.24

TCO Process
Selection Rate 50% 40% 60% 41.744% 41.584% 44%
Detection Loss 0% 0% 0% 0% 0% 0%

APFD - 0.4166 0.782 0.6226 0.3365% 0.803
APFDm - 0.4166 0.923 0.625 0.33% 0.8333

TCP Time (ms) 0 413.34 11093.66 14645.76 82150.2 348.76
Overhead 1958134.06 ms

Table 8 UML2PY (2)

Name D7 D8 D9 D10 D11 D12
Test Cases 125 125 125 125 125 125

Original APFD 0.7118 0.764 0.156 0.708 0.3213 0.764
Original APFDm 0.7114 0.764 0.1528 0.707 0.3186 0.764
TCM Process
Selection Rate 42.096% 42.2% 42.127% 41.88% 41.712% 42.096%
Detection Loss 0% 0% 0% 0% 0% 0%
Time (ms) 1048380 748.02 5535.2 25250.9 14143.8 739.28

TCP Process
APFD 0.885 0.996 0.2024 0.7479 0.3346 0.9958
APFDm 0.9032 0.9992 0.1995 0.75 0.3333 0.9997

Random APFDm 0.8821 0.9357 0.1892 0.7452 0.3316 0.925
Time (ms) 862544 213.6 11878.3 38329.2 29532.8 211.1

TCO Process
Selection Rate 42.144% 42.255% 42.16% 42.144% 42.064% 42.144%
Detection Loss 0% 0% 0% 0% 0% 0%

APFD 0.8955 0.99 0.2056 0.7452 0.3365 0.9905
APFDm 0.9032 0.9989 0.1999 0.75 0.3333 0.9994

TCP Time (ms) 499110 219.5 3896.8 13545.9 9918 225.1
Overhead 1958134.06 ms

prioritised test suite with a randomly ordered suite, with the intention of con-
firming the benefits of the TCP process over a random approach during the
testing phase. Lastly, Group C compared the original test suite with the opti-
mised version to verify whether the minimised test suite still advantages the
TCP process. The comprehensive results are displayed in Table 10. While we
do not explicitly report the APFD value for the random ordering under the
original metric, a comparative analysis is still conducted.
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Table 9 UML2PY (3)

Name D13 D14 D15 D16 D17 D18
Test Cases 125 125 5 5 125 5

Original APFD 0.956 0.916 0.7787 0.7 0.5413 0.1
Original APFDm 0.956 0.916 0.853 0.7625 0.5396 0.0333
TCM Process
Selection Rate 41.76% 42.352% 40% 20% 42.384% 20%
Detection Loss 0% 0% 0% 0% 0% 0%
Time (ms) 679.84 972.8 58970.94 7264.12 60109.9 165.28

TCP Process
APFD 0.996 0.996 0.806 0.7455 0.5781 0.3666
APFDm 1 1 0.88 0.8734 0.5771 0.3293

Random APFDm 0.9962 0.9716 0.8732 0.8155 0.5262 0.1526
Time (ms) 74.8 210.4 52146.72 6763.22 112976.4 232.82

TCO Process
Selection Rate 41.776% 42.4% 40% 20% 42.416% 20%
Detection Loss 0% 0% 0% 0% 0% 0%

APFD 0.99 0.99 0.6742 - 0.5686 -
APFDm 1 1 0.8598 - 0.567 -

TCP Time (ms) 66.34 222.08 29368.18 0 38629.96 0
Overhead 1958134.06 ms

Table 10 p-value for Comparison

Bond Interest Rate MathLib UML2PY
A - Original 6.734926e-23 6.032983e-23 4.267474e-23 2.644815e-20
A - Modified 1.034388e-22 2.628025e-23 1.034388e-22 2.896893e-20
B - Original 2.727755e-19 6.608213e-20 4.701583e-20 5.938878e-18
B - Modified 1.358524e-19 3.300387e-20 1.109617e-19 6.376576e-18
C - Original 4.512534e-19 3.097848e-20 2.120344e-20 9.393336e-19
C - Modified 4.756323e-19 3.123845e-20 2.20862e-20 9.400991e-19

• In response to RQ 1.1 : An analysis of Tables 2 - 9 indicates that the exe-
cution of the TCM process on the original test suite results in a reduction of
size between 40% and 80%, without any loss in fault detection capacity. Gen-
erally, the minimised test suite contains around 40% of the original test cases.
These results confirm the efficacy and safety of applying the TCM process to
systems whose specifications are expressed in OCL.

Fig. 7 - 9 display the distribution of the selection rate for the minimised
test suite for each case study. Each plot (x-axis) in these figures corresponds
to a particular operation within the respective case study. Observing these
charts, it is noticeable that, except for operations C6 and C14 in the MathLib
case, the minimisation process consistently exhibits a stable performance with
only slight deviations across 50 executions.

Our analysis indicates that in most cases, the proposed TCM process gen-
erally enhances the testing process. The minimisation procedure efficiently
decreases the size of the test suite without any loss in fault detection capability.
• In response to RQ 1.2 : We examined the effectiveness of the TCP process

using the original and modified APFD metrics without the involvement of the
TCM process. Regardless of which metric is used for evaluation, there is an
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Fig. 7 TCM Process for Bond and Interest Rate

Fig. 8 TCM Process for MathLib

observable increase in the APFD value following the prioritisation process.
While A5, C2, C10, C12, and D3 show no improvements, we further analysed
these specific instances. The absence of enhancement can be traced to the
optimal sequencing already present in the original test suite, which results in
the prioritisation process not offering any additional benefits to the testing
process.
• In response to RQ 1.3 : Similar to the findings in RQ 1.2, the optimised

test suite enhances the testing process irrespective of whether the original or
modified APFD metric is utilised. The p-value presented in Table 10 further
confirms a significant variance between the original and optimised test suites,
in which both TCM and TCP processes are applied. In the result tables, there
are instances where the TCO part is marked with a ”-”. The reason for this is
that after the TCM process, only one test case is selected, causing the execution
of the TCP process to be unnecessary.
• In summary of RQ 1 : Our findings validate that applying the TCP pro-

cess, the TCM process, or a combination of both, generally brings advantages
to the testing process for systems whose specifications are expressed in OCL.
This observation is consistent regardless of whether the original or the modified
version of APFD is used as the evaluation metric.
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Fig. 9 TCM Process for UML2PY

In response to RQ2 : Throughout our experiments, we monitored the
duration of the TCP and TCM processes. The overhead incorporates aspects
such as the analysis of OCL specifications and test detection information, the
generation and injection of mutants, and the execution of the optimisation
algorithms. The overall time required for all procedures (TCM + TCP) fluc-
tuates between a few seconds to around 30 minutes, largely dependent on the
complexity of the OCL specifications. In most instances, the overhead does
not exceed the time typically spent on a lunch break. From these observations,
we can deduce that the overall overhead associated with applying the TCP or
TCM process to OCL-based systems is generally reasonable and manageable.

In response to RQ 3 : This research question aims to uncover the corre-
lation and variances between the original and modified versions of the APFD
metric. The modified variant enhances the original by introducing a reward
and penalty system for the test case and undetectable defects. Throughout our
experimental procedure, we could not determine a direct correlation between
these two metrics. However, we can consolidate our findings into three main
observations. Firstly, when the number of defects identifiable by the first test
case matches the number of undetectable defects, both metrics will produce
identical results. In this case, the modified APFD metric essentially reverts to
its original form. Second, when the defects detectable by the first test case out-
number the undetectable ones, the modified APFD value will typically exceed
the original one. And vice versa for the third situation.

In addressing RQ 1, we noted that employing either the TCP process alone
or in combination with the TCM process generally benefits the testing process
under both the original and modified APFD evaluation metrics. Reasonably,
we noted that the time required for the TCP process decreases subsequent to
the TCM process due to the reduced size of the test suite. A comparison of
the time spent on the TCP process under both circumstances was analysed,
with the results outlined in Table 11. The calculated p-value indicates that
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Table 11 p-value for Time Comparison

Case Study p-value

Bond 7.056516e-18

Interest Rate 2.49044e-15

MathLib 6.871565e-14

UML2PY 7.066072e-18

performing the TCM process prior to the TCP process always reduces the time
necessary for prioritisation.

Discussions: We present several discussions related to the outcomes of
this study.

The first point concerns the sequence of test cases within the original test
suite. Both the TCM and TCP processes alter the original test suite, and our
evaluation metrics consistently compare the optimised suite with the original
and random ones. This raises a question: Are these optimisations still mean-
ingful if the initially generated test suite is considered sufficient, a condition
we have noted in some of our case studies? Indeed, it is always desirable to
optimise the test case generation process. However, it is crucial to note that
a perfect generation process cannot be guaranteed. Furthermore, numerous
pre-existing test suites still need to be optimised, illustrating the continuing
applicability of these optimisation techniques.

The second discussion focuses on the modified APFD metric. Our modi-
fications aimed to solve the limitations of the original metric, particularly its
failure to range from 0 to 1 and its handling of undetectable faults. In cases
where all faults are detectable, the maximum value could potentially reach 1.
Conversely, the maximum value becomes the fault detection rate if some faults
are undetectable. Although the modified version enhances the original in cer-
tain aspects, it is clear that the modified APFD metric could still benefit from
further refinement.

Our final discussion is related to the evaluation process, specifically con-
cerning the original APFD metric and equivalent mutants. For the original
APFD metric, undetectable defects are not taken into account. In our exper-
imental approach, when we encounter a mutant that cannot be detected, we
hypothesise that the last test case will identify the mutant, thus making the
TFi equal to the total number of test cases in the test suite.

On the subject of equivalent mutants, these are mutated specifications
where, although the mutation operator has been applied, the original behaviour
of the specifications remains unaltered. While the detection of equivalent
mutants is recognised as an undecidable problem [48], their existence does
impact the mutation testing process, particularly in terms of the results of
the mutation score. In our experiment process, we straightforwardly classify
equivalent mutants as undetectable.
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6 Threats to Validity

Threats to Internal Validity: This threat is related to potential inconsisten-
cies in the treatment of case studies that might influence the outcomes [49].
We have mitigated these threats by ensuring all case studies were conducted
under the same configuration and environment. Every algorithm was written
in JAVA, and each experiment was conducted on the same machine. For both
NSGA-II and genetic algorithm, consistent parameters were used across all
studies, such as population size, crossover probability, and mutation operator,
regardless of the differences in OCL specification. These precautions helped
minimise the internal validity threats.

Threats to External Validity: Although we used four case studies for our
experiments, the primary threat to external validity is the limited generalis-
ability of these chosen studies. As with any empirical evaluation, the OCL
specifications in this study may not fully represent the entire population. To
mitigate this threat, we selected systems that are expressed in OCL with vary-
ing complexity, with generated test cases ranging from a handful to hundreds.
Moreover, some operations within the OCL standard library lacked corre-
sponding mutation operators in this work because, based on our strategies,
we were unable to identify suitable mutation operators for these operations,
leading us to omit them. Our approach of ignoring equivalent mutants and
treating them as not exterminated also presents a potential validity threat.
These gaps might be bridged with contributions from other OCL users and
through further research.

Threats to Construct Validity: Our work uses two versions of the genetic
algorithm, NSGA-II and GA, to navigate the TCM and TCP processes. The
stochastic nature of the evolutionary algorithm may result in inconsistent
outcomes between different executions. To minimise this threat, we ran each
experiment 50 times and used the averaged results. Another threat is linked to
the NSGA-II algorithm being a multi-objective optimisation algorithm, pro-
ducing a Pareto set. It is impractical to examine every solution in the Pareto
set manually. To deal with this threat, we selected the solution from the result
set with the maximum fault detection ability and minimised test size according
to the objective of the TCM process.

7 Conclusion

In this study, we have conducted TCM and TCP processes on systems whose
specifications are expressed in OCL, supported by the AgileUML tool-set and
guided by a genetic algorithm and its variations NSGA-II. This work has
delivered three primary contributions: 1) We have proven the feasibility of
applying TCM and TCP processes to the systems expressed in OCL. 2) We
have innovatively modified the APFDmetric, making it more compatible under
the MDE and mutation testing context. 3) We have assessed the efficiency and
overhead of the proposed approach through empirical studies on four real-world
case studies.
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The empirical results confirm the effectiveness of our proposed approach.
The TCM process successfully decreases the size of the test suite while pre-
serving its ability to detect faults, and the TCP process proves efficient in
enhancing early fault detection capability. Importantly, performing the TCM
process before the TCP process has been found beneficial in reducing optimi-
sation time. The overhead associated with these methods is also reasonable,
typically ranging from a few seconds to approximately 30 minutes.

Looking towards the future, we plan to extend test case optimisation to
a broader array of OCL specifications to establish more general findings. We
intend to consider a more extensive range of OCL expressions and operators
to obtain more precise outcomes, thereby expanding the potential OCL spec-
ifications that can be utilised as case studies. Beyond TCM and TCP, we aim
to investigate further optimisation strategies and compare performance across
different optimisation algorithms.
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