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Abstract

This article demonstrates geospatial analysis techniques to visualize and quantify deforestation using Sentinel-2 satellite imagery.

It leverages Amazon SageMaker and open datasets from the Amazon Sustainability Data Initiative (ASDI) to process time series

imagery capturing landscape changes related to wildfires near Paradise, California. After configuring access to the Sentinel-2

data registry, bounding boxes and date ranges isolate relevant pre-treatment and post-treatment scenes bracketing major fire

events. Comparative visualization highlights patterns of healthy forest persistence versus zones of more complete canopy removal

post-fire. Suggestion is to move such analytical routines into automated pipeline to enable scalable automated deforestation

mapping as new Sentinel-2 observations become available over time. Overall, this article demonstrates core techniques for

leveraging cloud-based geospatial data and computing tools to derive actionable intelligence maps and indicators pertinent to

sustainability challenges like wildfire impacts and climate adaptation.

Deforestation has reached critical levels globally, with potentially irreversible consequences for environmen-
tal sustainability and exacerbation of climate change. Widespread forest fires occur year-round in regions
spanning the Amazon rainforest in Brazil to the western United States, indicating severe ecosystem disrup-
tion. Deforestation eliminates natural carbon sinks - one of the few remaining mechanisms buffering an-
thropogenic climate impacts. Sustainability solutions could benefit from incorporation of relevant datasets,
whether customer-generated (e.g. building temperatures, vehicle locations) or external (e.g. weather pat-
terns, satellite imagery). Hosting datasets centrally on platforms like AWS facilitates customer access with-
out transfer/storage burdens, allowing faster development. Landsat 8 imagery serves as one example - while
petabyte-scale and requiring significant pre-processing, AWS hosts the catalog publicly, reducing barriers to
leveraging Earth observation data. Overall, AWS centralized datasets help customers focus on core sustain-
ability applications rather than data wrangling.

The AWS Open Data Program is the umbrella for all our free data sets, and the Amazon Sustainability
Data Initiative(ASDI) manages the subset of those related to sustainability. ASDI also enables data-sharing
partnerships aimed at addressing sustainability challenges, such as the recently announced collaboration
with Open Source-Climate. This organization leverages open data to evaluate and mitigate climate-related
financial risks for investors, corporations, and communities. Through such partnerships, ASDI facilitates
access to crucial data for developing innovative solutions to pressing sustainability issues.

Let’s run a sagemaker notebook with advanced visualizations

This sample provides an introduction to performing geospatial data analysis related to sustainability on
SageMaker Studio. We begin by exploring the Sentinel remote sensing dataset from the AWS Open Data
Registry. Using Sentinel-2 data, we analyze deforestation by calculating different spectral indices. As an
example, we look at Paradise Fire disaster in California - similar methods can be applied to identify areas
of forest loss over time. The goal is to demonstrate core concepts in working with Earth observation data
for sustainability applications within the SageMaker environment.

1

https://sustainability.aboutamazon.com/products-services/the-cloud?energyType=true
https://sustainability.aboutamazon.com/products-services/the-cloud?energyType=true
https://registry.opendata.aws/
https://sustainability.aboutamazon.com/environment/the-cloud/asdi
https://sustainability.aboutamazon.com/environment/the-cloud/asdi
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S3 serves as the centralized persistent store for images. SageMaker integrates natively with S3 for data
access for training and inference workloads, abstracting away much of the heavy lifting of data transfers.
This makes it convenient to use images from S3 efficiently for ML development while persistently storing
them in a scalable, durable storage layer like S3.

Figure 1: architecture diagram

Step 1: Install Packages

Setting up environments in SageMaker Studio is straightforward since Conda is installed by default. Required
Python packages can be installed using ‘pip install’ commands. The packages listed below are required for
this workshop - they only need to be installed once when first creating a notebook. Leveraging Conda and
pip helps streamline environment configuration for development in SageMaker Studio.

%pip install pandas

%pip install numpy

%pip install geopandas

%pip install matplotlib

%pip install sentinelhub

%pip install rasterio

%pip install earthpy

%pip install awswrangler

Step 2: Import Packages

Once the appropriate Conda environment has been configured and selected or required packages manu-
ally installed in a SageMaker Studio notebook instance, the Python libraries can be directly imported to
enable development. The integration of Conda and pip with SageMaker Studio notebooks allows for repro-
ducible, sharable software environments tailored to a project’s needs, consistent with research computing
best practices. By proactively managing the notebook environment early in development, dependencies can

2
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be established to facilitate smoother workflow execution, analysis, collaboration, and review. Overall, con-
scious creation of computing environments removes technical barriers and enables fuller focus on the research
questions at hand within SageMaker Studio.

import pandas as pd

import numpy as np

import geopandas as gpd

from shapely.geometry import Point

import matplotlib

import matplotlib.pyplot as plt

import os

import warnings

import datetime

import json

import boto3

import gc

import rasterio as rio

import os

import earthpy.spatial as es

import earthpy.plot as ep

import imageio

import io

import awswrangler as wr

import json

%matplotlib inline

warnings.filterwarnings(’ignore’)

Step 3: Working With Geospatial Images

For geospatial analysis, Sentinel-2 satellite imagery will be utilized as the remote sensing dataset given
its public availability through the AWS open data registry. The Sentinel-2 constellation provides ongoing
high-resolution multispectral coverage as the continuation of prior SPOT and Landsat Earth observation
programs. The sentinelhub Python package facilitates straightforward search and access to Sentinel-2 scenes
relevant to the area of interest from the registry. Incorporation of Sentinel-2 facilitates time-series analysis
of landscape dynamics pertinent to sustainability topics. The AWSD registry lowers barriers to leveraging
Sentinel-2 and similar public domain remotely sensed data.

3
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from sentinelhub import (

MimeType,

CRS,

BBox,

SentinelHubRequest,

SentinelHubDownloadClient,

DataCollection,

bbox to dimensions,

DownloadRequest

)

3. 1 - Sentinel Hub Setup

Proper configuration of access credentials is required to utilize the Sentinel Hub API for retrieval of remotely
sensed data. An optional JSON file stores the authentication parameters to enable programmatic queries
while keeping sensitive tokens secure. Specifically, a valid Sentinel Hub instance ID is necessary and suffices
for read-only data access. Abstracting the credentials into a separate file facilitates sharing of analysis
code without compromising security. More broadly, use of APIs and environmental variables for handling
credentials promotes reproducibility and collaboration by avoiding hard-coding of tokens within software
projects. With credentials configured appropriately, the analysis can then focus solely on core research
questions without impedance from security control permissions.

from sentinelhub import SHConfig

config = SHConfig()

# instance id - Instance ID from from your Sentinel Hub account

config.instance id = ‘please update with your instance id’

config.save()

# Verify credentials

from sentinelhub import WebFeatureService, BBox, CRS, DataCollection, SHConfig

if config.instance id == ”:

print(“Warning! To use WFS functionality, please configure the ‘instance id’.”)

3.2 - Data Search

Defining the spatiotemporal domain is an essential initial step for targeted retrieval of remotely sensed data.
Our area of interest centers on Paradise, CA, impacted by recent wildfires. We specify geospatial boundaries

4

https://www.sentinel-hub.com/
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via a bounding box encompassing Paradise and select a time range spanning pre- and post-fire landscapes.
Explicitly delineating the target geographic extent and time window provides precise criteria for the API to
identify and retrieve relevant Sentinel satellite observations. Tailored queries focusing on the research aims
help filter and collect imagery capturing landscape change dynamics within the region of study. Careful
query formulation reduces data volumes for storage and analysis while isolating observations most likely to
inform about fire ecology in Paradise. Explicit articulation of retrieval parameters promotes reproducibility
and interpretability as well when sharing or publishing analytical findings.

# Specify bounding box and time interval for search

#california paradise after fire

search bbox = BBox(bbox=[-121.666536,39.708771,-121.542266,39.792182],crs=CRS.WGS84)

#before fire

#search time interval = (’2018-11-01T00:00:00’, ‘2018-11-01T23:59:59’)

#after fire

search time interval = (’2019-01-10T00:00:00’, ‘2019-01-10T23:59:59’)

wfs iterator = WebFeatureService(

search bbox,

search time interval,

data collection=DataCollection.SENTINEL2 L1C,

maxcc=0.6,

config=config

)

for tile info in wfs iterator:

print(tile info)

##before fire bucket - s3://sentinel-s2-l1c/tiles/10/T/FK/2018/11/1/0

##after fire bucket - s3://sentinel-s2-l1c/tiles/10/T/FK/2019/1/10/0

3.3 - Working With Geospatial Images

For geospatial analysis in this research, Sentinel-2 satellite imagery is utilized given its public availability
through the AWS open data registry. The Sentinel-2 constellation offers ongoing high-resolution multispectral
Earth observations across 13 bands spanning the visible, near infrared, and shortwave infrared wavelengths.
This continues prior Landsat and SPOT programs’ systematic collection of optical remote sensing data useful
for environmental monitoring. Specifically, each Sentinel-2 satellite carries a MultiSpectral Instrument sensor
designed to capture spectral reflectance signatures of ground surface materials across the specified bands at
10-60 meter pixel resolution. Further technical specifics on the instrument band designations and purposes

5
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are available in the accompanying references. When analyzed sequentially or in combination, these spectra
facilitate study of landscape dynamics like vegetation growth, burn recovery, and other phenomena pertinent
to ecological sustainability challenges. Incorporation of open access Sentinel-2 data thereby enables timely
investigation of research questions relying on Earth observation resources.

The Sentinel-2 satellites each carry a single multi-spectral instrument (MSI) with 13 spectral channels in
the visible/near infrared (VNIR) and short wave infrared spectral range (SWIR). You can read more about
these bands here.

Figure 2: This is a caption

3.4 - Working with Raster Data

Geospatial data consists fundamentally of either raster (gridded) or vector (feature-based) representations.
The Sentinel-2 satellite imagery utilized here is stored as GeoTIFFs - raster datasets encoding Earth obser-
vation data and digital elevation models. Rasterio provides a Python library for programmatic manipulation
of such gridded geospatial data. By reading Sentinel-2 scenes into raster array structures via Rasterio, the
red, green, and blue spectral bands can be combined into composite true color images for interpretation and
analysis. Working natively with the raster arrays facilitates customizable image processing, indexing to areas
of interest, application of filters, etc. The tight integration of Rasterio functionality into the Python geospa-
tial software ecosystem allows researchers to focus more fully on their Earth observation data science tasks

6
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rather than data wrangling challenges. Overall, Rasterio enables flexible, reproducible research workflows
essential for the advancement of open geospatial techniques applied to urgent sustainability issues.

from rasterio import plot

from rasterio.plot import show

from rasterio.session import AWSSession

from rasterio.windows import Window

We will use the AWSSession object to mark requester pays true to request the
file directly from sentinel.

aws session = AWSSession(boto3.Session(), requester pays=True)

with rio.Env(aws session):

with rio.open(’s3://sentinel-s2-l1c/tiles/10/T/FK/2018/11/1/0/B04.jp2’) as src:

red = src.read()

plt.figure(figsize=[10,10],num=1, clear=True)

show(red) #RdYlGn

plt.show()

7
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Figure 3: raw sentinel image to human eyes

The raw Sentinel-2 satellite image appears dark and details are obscured to the human eye. To better vi-
sualize and interpret key features, contrast enhancement and color transformation techniques common in
remote sensing image processing are applied. Specifically, linear contrast stretching improves the dynamic
range devoted to intensities within the region of interest. Additionally, converting the native spectral band
combinations into displays more intuitive for human perception based on long-standing color modeling re-
search facilitates more rapid digitization and annotation. Such pre-processing steps are essential to convert
the raw sensor observations into derivations by visual analytics. They remove barriers to geospatial time
series analysis while retaining the underlying radiometric fidelity. Appropriate image transformations enable
the integration of human semantic understanding about landscape change with automated algorithms. This
helps advance spatiotemporal detection of phenomena related to sustainability challenges.

vmin, vmax = np.nanpercentile(red, (5,95)) # 5-95% contrast stretch

plt.figure(figsize=[10,10])

show(red, cmap=’gray’, vmin=vmin, vmax=vmax)

plt.show()

8
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Figure 4: image after changing contrast ratio

Beyond human-perceived color wavelengths, Sentinel-2 captures reflectance in non-visible near infrared bands
useful for vegetation monitoring. By assigning alternative color schemes to these infrared image layers, dif-
ferent aspects of landscape composition and structure are revealed. For example, healthy vegetation appears
brighter due to higher near infrared reflectivity than soil or dormant plants. Using such infrared-derived
indices facilitates quantitative measurement of biophysical variables like leaf area index and evapotranspi-
ration over time. Appropriate color mappings make the often unfamiliar infrared spectral dimensions more
interpretable for visual training data labeling as well. More broadly, leveraging the full spectrum sensing
capacities of Sentinel-2 via tailored visualization choices enables generation of scientific insights and derived
products not possible from the visible bands alone. Multi-modal visualization approaches which transform
the raw sensor observations into more perceptually intuitive formats help translate Earth observation data
into actionable intelligence around sustainability challenges.

aws session = AWSSession(boto3.Session(), requester pays=True)

with rio.Env(aws session):

with rio.open(’s3://sentinel-s2-l1c/tiles/10/T/FK/2018/11/1/0/B08.jp2’) as src:

nir = src.read()

vmin, vmax = np.nanpercentile(nir, (5,95)) # 5-95% contrast stretch

plt.figure(figsize=[10,10],num=1, clear=True)

show(nir, cmap=’YlGnBu’, vmin=vmin, vmax=vmax) #RdYlGn #YlGnBu

9
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plt.show()

Figure 5: This is a caption

Calculating Spectral Indices

Spectral indices constitute an essential image processing technique for remote sensing applications. An index
combines pixel intensity values across defined bands to accentuate or filter specific ground components based
on their spectral reflectance signatures. For instance, common vegetation indices leverage contrast between
near infrared brightness and visible wavelength absorption to highlight photosynthetically active regions.
Other indices accentuate burn scars, soil exposures, water bodies and snow cover. Carefully constructed
spectral indices thus generate derived image layers emphasizing the relative abundance of targeted land
cover categories pertinent to sustainability research questions. Over the time series, their quantified pixel
values track spatiotemporal dynamics far more specifically than raw broadband intensity alone.

Normalized Difference Vegetation Index - NDVI

The normalized difference vegetation index (NDVI) constitutes a widely used spectral index in remote sens-
ing research for quantitative characterization of live green vegetation coverage and condition. Its formulation
exploits the distinct reflectance signatures of chlorophyll absorption in the visible red wavelengths compared
to high near-infrared reflectivity by leaf mesophyll structures. By difference ratios of these spectral bands,
the resulting NDVI values indicate relative density and health status of vegetation canopies imaged by

10



P
os

te
d

on
23

F
eb

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
70

87
05

63
.3

38
25

68
4/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

satellite sensors. Values range from -1 to 1 based on the vegetation contrasts, with higher positive indices
corresponding to more extensive photosynthesizing foliage. Spatially and temporally, NDVI enables scientific
monitoring of subtle changes in crop vigor, forest phenology, drought impacts on landscapes, and numerous
other dynamics relevant to ecological sustainability and land use management. The sensitivity yet computa-
tional simplicity underpinning spectral indices makes them vital tools for policy-relevant Earth observation
analytics. When validated against ground measurements, they provide robust quantifiable indicators of
vegetation shifts essential for data-driven environmental decision making over time.

The formula for the normalized difference vegetation index is (B8-B4)/(B8+B4). While high values suggest
dense canopy, low or negative values indicate urban and water features. It is calculated as NDVI = (B8 -
B4) /(B8 + B4) or (NIR – Red) / (NIR + Red)

Moisture Index

The moisture stress index derived from remote sensing constitutes a useful indicator for detecting vegetation
water deficits and associated health impacts. Its formulation incorporates contrasting sensitivities in the
shortwave infrared domain associated with leaf liquid water absorption features and the moisture-insensitive
near-infrared reflectance plateau. Higher index values represent higher inferred moisture content within the
imaged vegetation canopies. Conversely, lower index values suggest plants under duress from insufficient
available soil and atmospheric moisture, vulnerable to drought impacts. Spatiotemporal tracking enables
quantification of moisture stress emergence and recovery cycles across landscapes. When validated against
field measurements or climate reanalysis data, the trends quantify changing exposure risks over time that can
inform proactive resource sustainability planning and climate adaptation policies specific to affected ecosys-
tems and human communities dependent upon them. Derivation of biophysical variables like moisture stress
facilitates translation of raw spectral observations into scientifically actionable intelligence for addressing
pressing sustainability challenges.

It is calculated as (B8A - B11) / (B8A + B11). We have processed B4 and B8 bands so now we can
calculate Normalized Difference Vegetation Index

#It calculated as NDVI = (B8 - B4) /(B8 + B4) or (NIR – Red) / (NIR + Red)

ndvisample = (nir.astype(float)-red.astype(float))/(nir.astype(float)+red.astype(float))

#we are using earthpy to visualize NDVI

ep.plot bands(ndvisample, cmap=“RdYlGn”, vmin=-1, vmax=1);
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Figure 6: NDVI image for visulization

The visualization depicts a classified map distinguishing intact dense forest areas (dark green) from regions of
dead or removed forest cover (lighter shades) within the domain of study. To enhance analytical interpreta-
tion, we leverage the EarthPy Python package to transform the continuous Normalized Difference Vegetation
Index (NDVI) spectral index into binned categories. EarthPy facilitates straightforward plotting and anal-
ysis of remote sensing imagery bands. Here, it enables flexible visualization of the gradient of vegetated
conditions derived from the NDVI ranges computed across the Sentinel-2 scene. Quantitative thresholds
divide the index values into categorizations interpretable as grades of forest health and disturbance. Trans-
lating the continuous imagery into discrete thematic classes in this way simplifies identification of regions
undergoing ecological transitions of interest. Over time, aggregation of NDVI-based forest change classifica-
tions produced using open access tools like EarthPy can feed indicators to guide reforestation interventions
or quantify habitat conservation successes.

# Create classes and apply to NDVI resultsndvi class bins = [-np.inf, 0, 0.1, 0.25, 0.4, np.inf]

ndvi density class = np.digitize(ndvisample, ndvi class bins)

# Apply the nodata mask to the newly classified NDVI data

ndvi density class = np.ma.masked where(

np.ma.getmask(ndvisample), ndvi density class

)

np.unique(ndvi density class)
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from matplotlib.colors import ListedColormap# Define color map

nbr colors = [“khaki”, “y”, “yellowgreen”, “g”, “darkgreen”]

nbr cmap = ListedColormap(nbr colors)

# Define class names

ndvi cat names = [

“Dead forest”,

“Scrub”,

“Open Forest”,

“Moderately Dense Forest”,

“Very Dense Forest”,

]

# Get list of classes

classes = np.unique(ndvi density class)

classes = classes.tolist()

# The mask returns a value of none in the classes. remove that

classes = classes[0:5]

# Plot your data

fig, (ax1) = plt.subplots(1, figsize=(12, 12), num=1, clear=True)

im1 = ax1.imshow(np.squeeze(ndvi density class), cmap=nbr cmap)

ep.draw legend(im ax=im1, classes=classes, titles=ndvi cat names)

ax1.set title(

“Sentinel2 - Normalized Difference Vegetation Index (NDVI) Classes”,

fontsize=14,

)

ax1.set axis off()

plt.tight layout()
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Figure 7: image after clustering on NDVI index before paradise fire

In this image we see multiple clusters of forest- ’Very Dense Forest‘ to ’Dead forest’. Now lets process
the image one year post the paradise fire (above image).

aws session = AWSSession(boto3.Session(), requester pays=True)with rio.Env(aws session):

with rio.open(’s3://sentinel-s2-l1c/tiles/10/T/FK/2019/1/10/0/B04.jp2’) as src1:

red = src1.read()

with rio.open(’s3://sentinel-s2-l1c/tiles/10/T/FK/2019/1/10/0/B08.jp2’) as src2:

nir = src2.read()

ndvisample = (nir.astype(float)-red.astype(float))/(nir.astype(float)+red.astype(float))

#ep.plot bands(ndvisample, cmap=“RdYlGn”, vmin=-1, vmax=1);

ndvi density class = np.digitize(ndvisample, ndvi class bins)

# Apply the nodata mask to the newly classified NDVI data

ndvi density class = np.ma.masked where(

np.ma.getmask(ndvisample), ndvi density class

)

np.unique(ndvi density class)
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# Get list of classes

classes = np.unique(ndvi density class)

classes = classes.tolist()

# The mask returns a value of none in the classes. remove that

classes = classes[0:5]

# Plot your data

fig, (ax1) = plt.subplots(1, figsize=(12, 12),num=1, clear=True)

im1 = ax1.imshow(np.squeeze(ndvi density class), cmap=nbr cmap)

ep.draw legend(im ax=im1, classes=classes, titles=ndvi cat names)

ax1.set title(

“Sentinel2 - Normalized Difference Vegetation Index (NDVI) Classes”,

fontsize=14,

)

ax1.set axis off()

plt.tight layout()

Figure 8: image after clustering on NDVI index after paradise fire

The foregoing visualization depicts a classified map delineating intact dense forest areas (dark green) and
zones of dead or removed forest cover (lighter tones) within the study region. Building on this initial

15



P
os

te
d

on
23

F
eb

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
70

87
05

63
.3

38
25

68
4/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

exploration, analogous image processing and spectral index derivation methods can be encoded into serverless
Lambda functions as constructed in prior sections. Deploying the algorithms for on-demand execution
facilitates scalable automated analysis of new Sentinel-2 scenes as they become available from the geospatial
archive. With appropriately tuned categorization thresholds, the Lambda functions will output classified
deforestation maps highlighting areas of forest loss over time. These discrete change maps can subsequently
inform downstream sustainability policy decisions or conservation actions targeting documented zones of
concern. More broadly, wrapping reusable image analysis scripts into cloud-based functions promotes not
only scalability but also facilitates standardized products, sharing of best practices across projects, and
accessibility to audiences beyond individual researchers.

Sample code available on github

References:

Registry of open data: https://registry.opendata.aws/

Sentinel dataset: https://registry.opendata.aws/sentinel-2/

Sentinel hub: https://www.sentinel-hub.com/

Sentinel hub python package: https://sentinelhub-py.readthedocs.io/en/latest/

Sentinel-2 wiki: https://en.wikipedia.org/wiki/Sentinel-2#Spectral_bands

RasterIO python package: https://rasterio.readthedocs.io/en/latest/

EarthPy python package : https://earthpy.readthedocs.io/en/latest/

16

https://github.com/aws-samples/aws-smsl-geospatial-analysis-deforestation/tree/main
https://registry.opendata.aws/
https://registry.opendata.aws/sentinel-2/
https://www.sentinel-hub.com/
https://sentinelhub-py.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Sentinel-2#Spectral_bands
https://rasterio.readthedocs.io/en/latest/
https://earthpy.readthedocs.io/en/latest/

